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On Observability of Steady States in a Boolean Network

Tatsuya Akutsu'

1 Introduction

The Boolean network (BN) is known as a discrete
mathematical model of gene regulatory networks [3].
In a BN, each node corresponds to a gene and takes
one of two values 0 and 1, where 0 (resp., 1) means
that the corresponding gene is inactive (resp., active).
The value of a node at a given time step is determined
according to a regulation rule, which is a Boolean
function of the values of the predecessors of the node
at the previous time instant. The values of nodes are
updated synchronously, and the (global) state of a
network at a given time step is the vector of its node
values. Beginning from any initial state, the system
eventually falls into an attractor, which is classified
into two types: a singleton attractor corresponding to
a stable state, and a periodic attractor correspond-
ing to a sequence of states that repeats periodically.
In some interpretation, attractors are considered as
cell types: different attractors correspond to different
cell types [3]. Based on this interpretation, extensive
studies have been done on distribution of attractors
and detection of attractors. Furthermore, extensive
studies have recently been done on controllability and
observability of BNs [2, 4].

By the way, it is also important for medical di-
agnosis to identify the type of each cell by observ-
ing expression patterns of a few genes (e.g., marker
genes). Therefore, in this technical report, we con-
sider the problem of identifying attractors by observ-
ing expression levels (0 or 1 in BN) of a small number
genes using the BN model. In particular, we focus
on finding the minimum number of genes, by which
all given attractors can be discriminated. Since treat-
ing periodic attractors is much more difficult, we only
consider singleton attractors. Although it is #P-hard
to enumerate all singleton attractors, we assume that
the set of singleton attractors is given. We can even
assume that this set is given independent of a BN be-
cause gene expression data for each cell type may be
able to be experimentally obtained without knowing
the structure of the underlying genetic network.

2 Problem Definition

Let A be an m x n binary matrix. A[i,j] denotes
the element at i-th row and j-th column. A[i, —] and
Al—,j] denote the i-th row and j-th column of A,
respectively. Let J = {j1,...,Jjr} be a set of column
indices. Then, A; denotes a submatrix of A consisting
of j1, 72, -, jr-th columns.
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Input: A set of singleton attractors represented as
an m X n binary matrix A, where m and n cor-
respond the number of singleton attractors and
the number of genes, respectively.

Output: A minimum cardinality set J of columns
(i.e., genes) such that A ;[i1, —] # As[iz, —] holds
for all iy # io.

For example, consider the following matrix A:
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Then, J = {2,3,5,6} is a solution of MOSA for A
because
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It is to be noted that MOSA is a special case (i.e.,
binary case) of the minimum key problem [1, 5], and
even the special case is known to NP-hard [7].

3 A Simple Dynamic Program-
ming Algorithm

MOSA can be trivially solved in O(2"poly(m,n)) time
by examining all possible subsets of columns. How-
ever, n is usually large and m is usually small be-
cause n corresponds to the number of genes and m
corresponds to the number of attractors (the number
of different types of cells). Here we present a sim-
ple dynamic programming algorithm that works in
O(m™poly(m,n)) time.

Let s be an m-dimensional vector of integers be-
tween 0 to m — 1, which we call a signature vector. It
is to be noted that there are m™ possible signature
vectors. 0 denotes the signature vector consisting only
of 0’s. s; denotes the i-th element of s.

If each element of s is at most 2¥ — 1 for some in-
teger k (i.e., each element of s is represented using k
bits), s is called a k-bit signature vector. Then, we
identify such s with m x k binary matrix by regarding
the i-th element of s as the i-th row consisting of k
bits. Let M (s) denotes such a matrix. Conversely, we
can construct a k-bit signature vector s from a given
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m x k binary matrix by identifying each row with % bit
number. However, we use a compact form of s by re-
naming the numbers appearing in s (with keeping the
ordering) so that only consecutive numbers beginning
from 0 are used. Let the resulting vector be v(M).
For m x k1 matrix M7 and m X ko matrix My, My - My
denotes m x (k1 + ko) matrix obtained by concatenat-
ing M7 and M5. For example, consider the matrix
A given in Section 2. Then, for s = (1,6,6,3,2,2),
M (s) is a matrix consisting of the first three columns
of A{2,3,5,6}7 and M(S)A[—, 6] = A{2,3,5,6}' While Sig-
nature vectors corresponding to Ay 351 and Az 3 5.6}
are (1,6,6,3,2,2) and (3,12,13,6,5,4) respectively,
v(Apssy) = (0,3,3,2,1,1) and v(Aas561) =
(0,5,6,3,2,1).

We define a binary table D[s, k| by: D[s, k] = 1
if and only if there exists J with |J| = k such that
v(Aj) = s. DJs, k] can be computed by the follow-
ing dynamic programming procedure. Although it
returns only the minimum size of J, such J can be
obtained by using the standard traceback procedure.
All D[s, k]s are initialized to be 0.

Procedure SolveMOSA(A)

D[0,0] < 1;

for k =1tondo

for all s such that D[s,k — 1] =1 do
for all column j of A do
M’ M(s) - Al ;
s’ — v(M');
DIs' k] — 1;
if s; # s;, holds for all iy # i then
return k

Theorem 1 MOSA
O(m™poly(m,n)) time.

can be solved mn

Although the time complexity may be slightly im-
proved by identifying identical signatures (e.g., iden-
tifying (0,1,2,2,3) and (2,1, 3,3,0)), significant im-
provement of the time complexity is left as future
work.

4 Remark on Feedback Vertex
Set

Mochizuki et al. showed that all (singleton and peri-
odic) attractors can be identified by observing states
of nodes in an FVS [6]. Here we give a very simple
example (see also Fig. 1) showing that the minimum
FVS does not necessarily give a solution of MOSA.
Let V' = {v1,v2,v3} be a set of nodes. We define a
BN on these nodes by the following regulation rules

7 (t + 1) = M (t) V ’Ug(t)
Vo (t + 1) = VU2 (t) A ’Ug(t)
V3 (t + 1) V1 (t) (S5) (%) (t)

where z Ay, xVy, and z @y denote logical AND, OR,
and XOR, respectively. Then, we can see that (0,1,1)

and (1,0, 1) are the singleton attractors (i.e., 0-1 as-
signments to nodes such that v;(t + 1) = v;(¢) for all
i = 1,2, 3). These two attractors can be discriminated
by observing the state of vy (or vg). Therefore, the
size of the minimum observer node set is 1. On the
other hand, the minimum FVS is {v1, v2}. Therefore,
we can see that the minimum FVS does not neces-
sarily give a solution of MOSA. Although self loops
are included in this example, we can modify it so that
there does not exist self loops.
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Figure 1: Example of BN showing that the mini-
mum FVS does not necessarily give a solution of
MOSA. In this figure, T-type arrow means that
the input is negated.
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