On (k, r)－gatherings on a Road

Toshihiro Akagi ${ }^{\dagger}$

Shin－ichi Nakano ${ }^{\dagger}$

Abstract

Given two integers k and r ，a set of customer locations C ，and a set of potential facility locations F ， we wish to compute an assignment A of C to F such that（1）for each $c \in C$ the distance between c and $A(c) \in F$ is at most k ，and（2）for each $f \in F$ the number of customers assigned to f is either zero or at least r ．Such an assignment is called $a(k, r)$－gathering of C to F ．Intuitively we wish to assign customers to near＂open＂facilities so that each＂open＂facility has an enough number of customers，namely r or more customers． In this paper we solve the problem in linear time when the customer locations and potential facility locations are on a line．

1 Introduction

Given two integers k and r ，a set of customer locations C ，and a set of potential facility locations F ，we wish to compute an assignment A of C to F such that（1）for each $c \in C$ the distance between c and $A(c) \in F$ is at most k ，and（2）for each $f \in F$ the number of customers assigned to f is either zero or at least r ．Such an assignment is called $a(k, r)$－gathering of C to F ．See some examples in Fig． 1 and 2 ．We say a facility f is open in an assignment if the number of customers assigned to f is at least r ．Intuitively we wish to assign customers to near open facilities so that each open facility has an enough number of customers，namely r or more customers． This is a variant of the r－gathering problem in［1］．However the graph version of the problem is NP－hard even for $k=1$ and $r=3[1]$ ．

In this paper we solve the problem in linear time when the customer locations and potential facility locations are on a line．

Figure 1：An example of a non－overlapping (k, r)－gathering．

Figure 2：An example of an overlapping（ k, r ）－gathering．

[^0]We regard C as the set of distinct coordinates of the customers，and F as the set of distinct coordinates of the potential facilities．In this paper we assume the elements in C and F are on the horizontal axis and sorted respectively．

If some customer has no facility within distance k then no (k, r)－gathering exists，so we assume no such customer exists in C ．If some facility has less than r customers within distance k then the facility is never open in any (k, r)－gathering，so we assume no such potential facility exists in F ．

2 First Algorithm

In this section we design our first algorithm for the（ k, r ）－gathering problem，and all $c \in C$ and $f \in F$ are integers． The algorithm is a simple dynamic programming．First we define subproblems for our dynamic programming．

Given two integers x and s ，let $C(x, s)$ be the subset of C consisting of the coordinates of customers with $x+k-s$ or less，and $F(x)$ be the subset of F consisting of the coordinates of potential facilities with x or less． An assignment A of $C(x, s)$ to $F(x)$ is called a partial gathering of $C(x, s)$ to $F(x)$ if（1）A is a（ $k, r)$－gathering of $C(x, s)$ to $F(x)$ ，and（2）the facility f at x is open．Intuitively this is a（ k, r ）－gathering of customers locating ＂left＂of open facility f at x ，in which the customers in the rightmost s locations of f are not assigned yet．A (k, r)－gathering of C to F ，a solution of the original problem，exists if and only if a partial gathering of $C(x, 0)$ to $F(x)$ exists for some facility at x within distance k from the rightmost customer．Let $\mathrm{PG}(x, s)$ be the subproblem which ask for the existance of a partial gathering of $C(x, s)$ to $F(x)$ ．

We have the following fact．

Fact 1 If $\operatorname{PG}(x, s)$ has a solution with $s>1$ ，then $\operatorname{PG}(x, s-1)$ has a solution．

We have two lemmas．We say a solution of $\operatorname{PG}(x, s)$ is overlapping if for some pair of facilities the two intervals induced by the assigned customers overlap．The assignment in Fig． 1 is non－overlapping，while the assignment in Fig． 2 is overlapping．

Lemma 1 If $\operatorname{PG}(x, s)$ has a solution then $\operatorname{PG}(x, s)$ has a non－overlapping solution．

Proof We say a pair of customers $\left(c_{l}, c_{r}\right)$ is a reverse pair in an assignment A if $A\left(c_{l}\right)>A\left(c_{r}\right)$ and $c_{l}<c_{r}$ ． Assume $\mathrm{PG}(x, s)$ has only overlapping solutions．Let A be a solution with the minimum number of reverse pairs． Then by swapping the assignments of a reverse pair c_{l} and c_{r} a solution with less reverse pairs is obtained．A contradiction．

Lemma 2 For each $x \in F, \operatorname{PG}(x, s)$ has a solution if and only if
either
（i）$|x-c| \leq k$ for each $c \in C(x, s)$ and $|C(x, s)| \geq r$ ，or
（ii）for some $x^{\prime}<x$ and $s^{\prime} \in[0,2 k], \mathrm{PG}\left(x^{\prime}, s^{\prime}\right)$ has a solution such that either
（a）$x^{\prime}+k<x-k$ and $\left(x^{\prime}+k, x-k\right)$ has no customer location，and $[x-k, x+k-s]$ contains r or more customers，
（b）$x^{\prime}+k \geq x-k, x^{\prime}+k-s^{\prime}<x-k$ and $[x-k, x+k-s]$ contains r or more customers，or
（c）$x^{\prime}+k-s^{\prime} \geq x-k$ and $\left(x^{\prime}+k-s^{\prime}, x+k-s\right]$ contains r or more customers．

Figure 3：Illustrations for condition（ii）of Lemma 2.

Proof Assume $\operatorname{PG}(x, s)$ has a solution．Then $\operatorname{PG}(x, s)$ has a non－overlapping solution A by Lemma 1 ．We have two cases．If all customers are assigned to the facility at x then（i）holds．Otherwise let x^{\prime} be the open facilities in A with the maximum coordinate except x ．Then（ii）holds．

Assume either（i）or（ii）holds．If（i）holds then $\mathrm{PG}(x, s)$ has a simple（ k, r ）－gathering，in which all customers are assigned to the facility at x ．If（ii）holds then by assigning the customers in either $[x-k, x+k-s]$ or $\left(x^{\prime}+k-s^{\prime}, x+k-s\right]$ to the facility at x we can extend a solution of $\operatorname{PG}\left(x^{\prime}, s^{\prime}\right)$ to a solution of $\mathrm{PG}(x, s)$ ．

Intuitively above condition means $\mathrm{PG}(x, s)$ has a solution if and only if either（i）the facility at x can serve all customers and the number of customers is r or more，or（ii）some smaller subproblem $\mathrm{PG}\left(x^{\prime}, s^{\prime}\right)$ has a partial gathering A^{\prime} and an assignment of customers around the facility f at x to f can be＂patched＂to A^{\prime} to construct a partial gathering of $\operatorname{PG}(x, s)$ ，in which the customers in the rightmost s locations of f are reserved，and possibly to be assigned to some facility on the right．

Based on Lemma 2 we have the following algorithm．If subproblem $\operatorname{PG}(x, s)$ has a solution then the algorithm sets $\operatorname{Ans}(x, s)=$＂exists＂，otherwise sets $\operatorname{Ans}(x, s)=$＂not exist＂．

Algorithm find－gathering (C, F, k, r)

01．let $c_{\min }$ and $c_{\max }$ be the minimum and the maximum in C
．for each facility $x \in F$ with $\left|x-c_{\text {min }}\right| \leq k$（in increasing order）
03．for each $s \in[0,2 k]$
04．if $|C(x, s)| \geq r$
05．then $\operatorname{Ans}(x, s)=$＂exists＂
06．else $\operatorname{Ans}(x, s)=$＂not exist＂
07 ．for each facility $x \in F$ with $\left|x-c_{\text {min }}\right|>k$（in increasing order）
08．for each $s \in[0,2 k]$
09 ．begin
10． $\operatorname{Ans}(x, s)=$＂not exist＂
11．for each facility x^{\prime} with $x^{\prime}<x$
12．for each $s^{\prime} \in[0,2 k]$
13．if $\operatorname{Ans}\left(x^{\prime}, s^{\prime}\right)=$＂exists＂and either
（a）$x^{\prime}+k<x-k$ and（ $x^{\prime}+k, x-k$ ）has no customer and $[x-k, x+k-s]$ contains r or more customers，
（b）$x^{\prime}+k \geq x-k$ and $x^{\prime}+k-s^{\prime}<x-k$ and
$[x-k, x+k-s]$ contains r or more customers，or
（c）$x^{\prime}+k-s^{\prime} \geq x-k$ and $\left(x^{\prime}+k-s^{\prime}, x+k-s\right]$ contains r or more customers
14．then $\operatorname{Ans}(x, s)=$＂exists＂
15．end
16．Ans $=$＂not exist＂
17．for each facility $x \in F$ with $\left|x-c_{\max }\right| \leq k$
18．if $\operatorname{Ans}(x, 0)=$＂exists＂
19．then Ans $=$＂exists＂
20．return Ans

As a preprocessing we prepare the following data in three arrays L, R and r ．For each facility $f \in F$ we compute the total number $L(f)$ of customers less than $f-k$ and the total number $R(f)$ of customers less than or equal to $f+k$ ．Then（ $x^{\prime}+k, x-k$ ）has no customer iff $R\left(x^{\prime}\right)=L(x)$ ，and we can check this in constant time．Also for each $f \in F$ we compute the location $r(f)$ of the r－th smallest customer in $[f-k, f+k]$ ，which always exists by the assumption in Section 1．Then $[x-k, x+k-s]$ contains r or more customers iff $r(f) \leq x+k-s$ ，and we can check this in constant time．One can compute L by the following algorithm as preprocessing，and also compute R and r similarly．Assume $C=\left\{c_{0}, c_{1}, \ldots, c_{|C|-1}\right\}$ ．However in the algorithm above we need $O(k)$ time to check if $\left(x^{\prime}+k-s^{\prime}, x+k-s\right]$ contains r or more customers．

```
Algorithm \(L(C, F, k)\)
1. \(j \leftarrow 0\)
2. for each \(f_{i} \in F\) (in increasing order)
    begin
        while \(c_{j}<f_{i}-k\)
            \(j \leftarrow j+1\)
        \(L\left(f_{i}\right)=j\)
    end
```

Lemma 3 One can solve the（ k, r ）－gathering problem in $O\left(k^{3}|F|^{2}\right)$ time if all customers and facilities are on a line with integer coordinates．

3 Improvement I

In this section we design a faster dynamic programming algorithm．The algorithm in Section 2 computes the existance of a solution of $\mathrm{PG}(x, s)$ for each x and s ．Let $s(x)$ be the maximum s such that $\mathrm{PG}(x, s)$ has a solution， and $\mathrm{PG}(x)$ be the subproblem which ask for $s(x)$ ．For convenience let $s(x)=-1$ if $\mathrm{PG}(x, s)$ has no solution for any $s \in[0,2 k]$ ．By Fact $1, \mathrm{PG}(x, s)$ has a solution for each $s \leq s(x)$ and has no solution for $s>s(x)$ ．Thus if we have just $s(x)$ then we know whether each of $\mathrm{PG}(x, 0), \mathrm{PG}(x, 1), \ldots, \mathrm{PG}(x, 2 k)$ has a solution or not．

We have the following algorithm．

```
Algorithm find-gathering2 \((C, F, k, r)\)
01 . let \(c_{\min }\) and \(c_{\max }\) be the minimum and the maximum in \(C\)
02 . let \(c_{r}\) be the \(r\)-th smallest customer in \(C\)
03. for each facility \(x_{i} \in F\) with \(\left|x_{i}-c_{m i n}\right| \leq k\) (in increasing order)
    \(/^{*}\left[x_{i}-k, x_{i}+k\right]\) contains \(r\) or more customers */
04. \(s\left(x_{i}\right)=x_{i}+k-c_{r}\)
05 . for each facility \(x_{i} \in F\) with \(\left|x_{i}-c_{\text {min }}\right|>k\) (in increasing order)
06. begin
07. \(s\left(x_{i}\right)=-1\)
08. for each facility \(x_{j}\) with \(x_{j}<x_{i}\)
09. if \(s\left(x_{j}\right) \neq-1\) and \(x_{j}+k<x_{i}-k\) and \(\left(x_{j}+k, x_{i}-k\right)\) has no customer
10. then \(s\left(x_{i}\right)=\max \left\{x_{i}+k-c^{\prime}, s\left(x_{i}\right)\right\}\) where \(c^{\prime}\) is the \(r\)-th smallest customer in \(\left[x_{i}-k, x_{i}+k\right]\)
        /* \(\left[x_{i}-k, x_{i}+k\right]\) contains \(r\) or more customers */
        else if \(s\left(x_{j}\right) \neq-1\) and \(x_{j}+k \geq x_{i}-k\) and \(x_{j}+k-s\left(x_{j}\right)<x_{i}-k\)
        then \(s\left(x_{i}\right)=\max \left\{x_{i}+k-c^{\prime}, s\left(x_{i}\right)\right\}\) where \(c^{\prime}\) is the \(r\)-th smallest customer in \(\left[x_{i}-k, x_{i}+k\right]\)
        else if \(s\left(x_{j}\right) \neq-1\) and \(x_{j}+k-s\left(x_{j}\right) \geq x_{i}-k\) and
            \(\left(x_{j}+k-s\left(x_{j}\right), x_{i}+k\right]\) contains \(r\) or more customers
        then \(s\left(x_{i}\right)=\max \left\{x_{i}+k-c^{\prime \prime}, s\left(x_{i}\right)\right\}\)
            where \(c^{\prime \prime}\) is the \(r\)-th smallest customer in \(\left(x_{j}+k-s\left(x_{j}\right), x_{i}+k\right]\)
        end
    Ans \(=\) "not exist"
    for each facility \(x_{i} \in F\) with \(\left|x_{i}-c_{\max }\right| \leq k\)
        if \(s\left(x_{i}\right) \geq 0\)
        then Ans \(=\) "exists"
        return Ans
```

In this algorithm all $c \in C$ and $x_{i} \in F$ are allowed to be real numbers，and not restricted to integers．We store the coordinate of $x_{i} \in F$ and $c_{j} \in C$ in an array respectively and access it with its index．For each facility $x_{i} \in F$ we compute the index of the smallest customer c_{j} with $x_{i}-k \leq c_{j}$ ，and the index of the largest customer c_{j} with $c_{j} \leq x_{i}+k$ ．We additionally store the index t of the customer at $x_{j}+k-s\left(x_{j}\right)$ for each $x_{j} \in F$ ．Then we can compute the r－th smallest customer in $\left(x_{j}+k-s\left(x_{j}\right), x_{i}+k\right]$ in constant time，since it is c_{t+r} ．

Lemma 4 One can solve the（ k, r ）－gathering problem in $O\left(|F|^{2}\right)$ time if all customers and facilities are on a line．

4 Improvement II

In this section we design a linear time algorithm．Our idea is the following two lemmas．Let $c_{m i n}$ be the minimum in C ．

Lemma 5 For two facilities x_{l} and x_{r} ，if $x_{l}<x_{r}, s\left(x_{l}\right) \neq-1$ and $s\left(x_{r}\right) \neq-1$ ，then $x_{l}+k-s\left(x_{l}\right) \leq x_{r}+k-s\left(x_{r}\right)$ ．

Proof If $x_{l}+k \leq x_{r}-k$ then it is clear．Otherwise $x_{l}+k>x_{l}-k$ ．Assume for the contradiction that $x_{l}+k-s\left(x_{l}\right)>x_{r}+k-s\left(x_{r}\right)$ holds．Since $s\left(x_{r}\right) \neq-1$ ，a (k, r)－gathering A_{r} of $C\left(x_{r}, s\left(x_{r}\right)\right)$ to $F\left(x_{r}\right)$ exists． Modify A_{r} so that the customers assigned to x_{r} to be assigned to x_{l} ．The resulting assignment is a (k, r)－gathering of $C\left(x_{l}, s^{\prime}\right)$ to $F\left(x_{l}\right)$ with some $s^{\prime}>s\left(x_{l}\right)$ ．A contradiction．

Lemma $6 s\left(x_{i}\right) \neq-1$ if and only if
either
（i）$\left|x_{i}-c_{\min }\right| \leq k$ ，
（ii）$\left|x_{i}-c_{m i n}\right|>k$ and $\left(x_{c}+k, x_{i}-k\right)$ has no customer
where x_{c} is the facility having the maximum coordinate satisfying $x_{c}+k<x_{i}-k$ and $s\left(x_{c}\right) \neq-1$ ，
（iii）$\left|x_{i}-c_{\text {min }}\right|>k, x_{c}+k>x_{i}-k, x_{c}+k-s\left(x_{c}\right)<x_{i}-k$ ，and $\left[x_{i}-k, x_{i}+k\right]$ contains r or more customers where x_{c} is the facility having the minimum coordinate satisfying $x_{c}+k \geq x_{i}-k$ and $s\left(x_{c}\right) \neq-1$ ，or （iv）$\left|x_{i}-c_{m i n}\right|>k, x_{c}+k-s\left(x_{c}\right) \geq x_{i}-k$ and $\left(x_{c}+k-s\left(x_{c}\right), x_{i}+k\right]$ contains r or more customers where x_{c} is the facility having the minimum coordinate satisfying $x_{c}+k \geq x_{i}-k$ and $s\left(x_{c}\right) \neq-1$ ．

Proof Assume $s\left(x_{i}\right) \neq-1$ then $\operatorname{PG}\left(x_{i}\right)$ has some solution．Then $\operatorname{PG}\left(x_{i}\right)$ has a non－overlapping solution A by Lemma 1．We have two cases．If all customers are assigned to x_{i} in A then（i）holds．Otherwise A has two or more open facilities and $\left|x_{i}-c_{\text {min }}\right|>k$ holds．Let x_{c}^{\prime} be the open facility in A having the maximum coordinate except x_{i} ．If $x_{c}^{\prime}+k<x_{i}-k$ then，since（ $x_{c}^{\prime}+k, x_{i}-k$ ）has no customer and $x_{c} \geq x_{c}^{\prime}$ ，（ii）holds．Otherwise $x_{c}^{\prime}+k \geq x_{i}-k$ holds．If $x_{c}^{\prime}+k-s\left(x_{c}^{\prime}\right)<x_{i}-k$ then，since $x_{c} \leq x_{c}^{\prime}$ and Lemma 5 means $x_{c}+k-s\left(x_{c}\right) \leq x_{c}^{\prime}+k-s\left(x_{c}^{\prime}\right)$ ，（iii） holds．Otherwise $x_{c}^{\prime}+k-s\left(x_{c}^{\prime}\right) \geq x_{i}-k$ then similarly either（iii）or（iv）holds．

Assume either（i），（ii），（iii）or（iv）holds．If（i）holds then $\mathrm{PG}\left(x_{i}\right)$ has a simple（ k, r ）－gathering，in which all customers are assigned to x_{i} ．If either（ii），（iii）or（iv）holds then by assigning the customers in either $\left[x_{i}-k, x_{i}+k\right]$ or $\left(x_{c}+k-s\left(x_{c}\right), x_{i}+k\right]$ to x_{i} we can extend a solution of $\operatorname{PG}\left(x_{c}\right)$ to a solution of $\operatorname{PG}\left(x_{i}\right)$ ．

Now by Lemma 6 we can skip many parts of Algorithm find－gathering2．We have the following algorithm．

```
Algorithm find-gathering3( \(C, F, k, r\) )
01. let \(c_{\min }\) and \(c_{\max }\) be the minimum and the maximum in \(C\)
02. let \(c_{r}\) be the \(r\)-th smallest coordinate in \(C\)
. for each facility \(x_{i} \in F\) with \(\left|x_{i}-c_{\min }\right| \leq k\) (in increasing order) \(/ *\) condition (i) */
04. \(/^{*}\left[x_{i}-k, x_{i}+k\right]\) contains \(r\) or more customers */
05. \(s\left(x_{i}\right)=x_{i}+k-c_{r}\)
06. for each facility \(x_{i} \in F\) with \(\left|x_{i}-c_{m i n}\right|>k\) (in increasing order)
07. begin
08. \(s\left(x_{i}\right)=-1\)
09. if there is a facility \(x_{c}\) satisfying \(x_{c}+k<x_{i}-k\) and \(s\left(x_{c}\right) \neq-1\) then \(/ *\) condition (ii) */
10. begin
11. let \(x_{c}\) be the maximum of such facilities
12. if \(\left(x_{c}+k, x_{i}-k\right)\) has no customer
13. then \(s\left(x_{i}\right)=x_{i}+k-c^{\prime}\) where \(c^{\prime}\) is the \(r\)-th smallest customer in \(\left[x_{i}-k, x_{i}+k\right]\)
14. end
15. if there is a facility \(x_{c}\) satisfying \(x_{c}+k \geq x_{i}-k\) and \(s\left(x_{c}\right) \neq-1\) then \(/^{*}\) condition(iii), (iv) */
            begin
                let \(x_{c}\) be the minimum of such facilities
                if both \(\left(x_{c}+k-s\left(x_{c}\right), x_{i}+k\right]\) and \(\left[x_{i}-k, x_{i}+k\right]\) has \(r\) or more customers then
                if \(x_{c}+k-s\left(x_{c}\right) \geq x_{i}-k\)
                then \(s\left(x_{i}\right)=x_{i}+k-c^{\prime \prime}\) where \(c^{\prime \prime}\) is the \(r\)-th smallest customer in \(\left(x_{c}+k-s\left(x_{c}\right), x_{i}+k\right.\) ]
                else \(s\left(x_{i}\right)=x_{i}+k-c^{\prime \prime}\) where \(c^{\prime \prime}\) is the \(r\)-th smallest customer in \(\left[x_{i}-k, x_{i}+k\right]\)
        end
    end
. Ans \(=\) "not exist"
for each facility \(x_{i} \in F\) with \(\left|x_{i}-c_{\max }\right| \leq k\)
    if \(s\left(x_{i}\right) \geq 0\)
    then Ans \(=\) "exists"
    return Ans
```

To check the condition（ii）of Lemma 6 efficiently we maintain x_{c} for the current x_{i} so that x_{c} is the facility having the maximum x_{c} satisfying（1）$x_{c}+k<x_{i}-k$ and（2）$s\left(x_{c}\right) \neq-1$ ．We need $O(|C|+|F|)$ time in total for this maintenance．Also to find x_{c} in line 17 efficiently we maintain the list L of＂useful facilities＂for the current x_{i} so that L contains all facilities x_{j} satisfying（1）$x_{j}+k \geq x_{i}-k,(2) s\left(x_{j}\right) \neq-1$ ．Then we can find x_{c} in line 17 in constant time．We need $O(|C|+|F|)$ time in total for this maintenance．Thus we have the following theorem．

Theorem 1 One can solve the（ k, r ）－gathering problem in $O(|C|+|F|)$ time if all customers and facilities are on a line．

By a simple dynamic programming algorithm on array $s\left(x_{i}\right)$ one can compute a (k, r)－gathering with the mini－ mum number of open facilities．

5 Conclusion

In this paper we designed a linear time algorithm to solve the (k, r)－gathering problem when the customers and facilities are on a line．

If each customer has a weight，and the sum of the weights of the customers assigned to each open facility should be r or more，then it is the weighted version of the (k, r)－gathering problem．Unfortunately it is NP－complete even for $|F|=2$ ，as follows．Given a set S of integers，problem PARTITION asks for the existance of a subset S^{\prime} with $\sum_{a \in S^{\prime}} a=\sum_{a \notin S^{\prime}} a$ ．PARTITION is NP－complete［2］．We can transform PARTITION to the weighted version of the（ k, r ）－gathering problem as follows．Let $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ ．Locate each customer with weight a_{i} at i for each $i=1,2, \ldots, n$ ．Set $F=\{1, n\}, k=n$ and $r=\left(\sum_{i=1}^{n} a_{i}\right) / 2$ ．Now a (k, r)－gathering exists if and only if PARTITION has a solution．
If customers can gather at any place，not restricted at potential facility locations，then one can perturbate any solution of the problem so that every gathering place is at $c_{i}+k$ for some c_{i} ．So，by locating possible facilities at $c_{i}+k$ for each $c_{i} \in C$ ，we can find a solution of this problem using our algorithm．The running time is $O(|C|+|F|)=O(|C|+|C|)=O(|C|)$ ．

References

［1］A．Armon，On min－max r－gatherings，Theoretical Computer Science，412，573－582（2011）．
［2］M．R．Garey and D．S．Johnson，Computers and Intractability：a Guide to the Theory of NP－Completeness， Freeman，San Francisco（1979）．

[^0]: ${ }^{\dagger}$ Department of Computer Science，Gunma University

