
PatchMatchを用いたアニメ画像のマッチングの高速化

PatchMatch for Efficient Matching of Cartoon Images

ガルシア トリゴ パブロ† 金森 由博‡ 楽 詠灝† 今井 星† 西田 友是†

Pablo Garcia Trigo† Yoshihiro Kanamori‡ Yonghao Yue† Sei Imai† Tomoyuki Nishita†

1. Introduction

Hand-drawn 2D animated cartoons are popular due to their

expressiveness, but they require high amounts of work to be

produced. There exist several methods for automating their

production and most are based on image registration or image

matching, a technique to find the correspondences between a

source image and a target image. Image matching algorithms

divide the source image into regions called patches and for each

patch in the source image, search exhaustively for the most

similar patch, called match, in the target image. Because many

patch comparisons are performed, these algorithms tend to be

slow, reducing their applications.

In this paper, we propose a method to accelerate the cartoon

image matching method proposed by Sykora et al. [3] by the use

of a random-based approximation algorithm proposed by Barnes

et al. [4] that reduces the number of patch comparisons. Our

initial tests show that our approach is successful at speeding up

the matching.

2. Related Work

There exist several methods for automating or assisting the

production of hand-drawn 2D animated cartoons.

Madeira et al. [1] and Qiu et al. [2] proposed methods that

consist in segmenting cartoon images into regions (e.g., the face

or the hand of a character), computing the features for each

region and using these features to find the most similar region.

These regions employ regions instead of patches, are focused

mainly at coloring cartoons, and do not yield correspondences at

the pixel level inside the regions, called dense correspondences,

which are necessary for techniques such as retexturing and

relightening.

To overcome the above limitation, Sykora et al. [3] presented a

method based on the deformation of images. This approach

assumes that characters in the input images are not occluded and

the surface of the regions that make up the character does not

vary greatly between frames. To deform the characters, this

method divides the input frame into patches and searches

exhaustively for the best matches of each, performing many

patch comparisons and thus, becoming slow.

Recently, in the image processing field, Barnes et al. [4]

proposed PatchMatch, a random-based algorithm to calculate the

matches of a set of patches in photographs. It reduces the number

of patch comparisons by not comparing to all patches but only to

a few ones picked up randomly. To our knowledge, this method

has not been used yet with cartoons.

In this paper, we propose a method to combine the approaches

of Sykora et al. [3] and Barnes et al. [4] to obtain a matching

algorithm with dense correspondences that preserves rigidity and

is faster than the method of Sykora et al. [1].

3. Previous Approaches

In this section we review the methods by Sykora et al. [3] and

Barnes et al. [4] for explaining later how to combine them.

Sykora et al. [3] calculate the matching of two input drawings

or bitmap images F1 (source) and F2 (target), by deforming

iteratively F1 into F2 using a grid. Figure 1 shows the two frames

and the grids before and after the deformation using the girl

character. Through interpolation, with the grids we can obtain the

correspondences for all pixels and allow transformations such as

recoloring, relightening and retexturing. The slowest part of the

method proposed by Sykora et al. [3] is the step called push. For

each grid point p in frame F1 the algorithm constructs a patch A

in F1 around p, and uses it as reference for finding the

correspondence of p in F2. In F2 it sets a search area centered at

the same coordinates as p, with a size being several times larger

than the grid cell size. Then, for each pixel q in search area S, a

patch T centered at q is compared to A and the most similar is

chosen as the best patch match, with its center q’ is chosen as the

match for point p’. It is all these patch comparisons inside the

search area that slows down the algorithm. Figure 2 shows this in

the left and center pictures. The grid is represented with red lines

and the grid point p is highlighted in red. Around it, the patch A

is the square drawn in red. The picture in center is the frame F2

and the search area S is drawn in black.

If we analyze the matching we can see that each patch can fall

in one of three cases: C1) The match of the patch is correct.

C2) The most similar patch was chosen, but was a wrong one.

Figure 1: Inputs and outputs of our method. © CELSYS, Inc.

Left: Input source frame F1and red grid on top of it. Center:

Input target frame F2 . Right: Outputs of our algorithm, frame F1
deformed to match F2 with deformed red grid on top.

†東京大学 The University of Tokyo

‡筑波大学 University of Tsukuba

FIT2012（第 11 回情報科学技術フォーラム）

Copyright © 2012 by
The Instiute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 349

I-043

(第3分冊)

C3) There were equally similar patches and the algorithm just

picked one without further information. The most troubling case

for the algorithm by Sykora et al. [3] is C2) which can lead to a

wrong deformation.

The method by Barnes et al. [4] is an iterative random-based

image matching algorithm intended to work over all the pixels of

two photographs H1 and H2. Initially, each pixel in H1 is assigned

randomly another pixel H2 as a match.Then, inside a loop, the

algorithm tries to improve the match for every pixel i in H1 in

two steps: 1) In the propagation step, the pixel i with coordinates

H1 (x, y) receives from its neighbor pixels H1 (x-1, y) and H1 (x,

y-1) their respective matches H2(x’, y’) and H2(x’’, y’’). Then, the

neighbors H2(x’+1, y’) and H2(x’’, y’’+1) of the matches are

evaluated as possible match candidates for the pixel i. If one of

them is more similar than the current match, the match is updated.

2) In the random search step, several pixels are picked up

randomly and the current match for pixel i is updated if any of

the randomly chosen pixels is a better match. In both steps, the

similarity of the patches centered at the pixels being compared is

used to determine if it is a better match.

4. Proposed Method

Our proposal consists in using the method by Sykora et al. [3]

substituting the push step by a modified version of PatchMatch

[4]. In order to be able to combine these two methods, there are

two difficulties that need to be overcome: 1) When taking the

points in the method by Sykora et al. [3] as the pixels in the

method by Barnes et al. [4], they stop being contiguous and, in

the propagation step, matches that are too far can fall in the case

C2) and mislead the algorithm. To solve this, we decided to skip

the propagation step altogether and rely only on the random

search step. 2) In the random search step, even if the algorithm

picks similar patches, it may never reach a stable configuration,

and for areas with many matches equally similar such as those in

Figure 2, they could lead to undesirable random local

deformations. In this case we give preference to matches close to

the center p’, as shown in Figure 2, so that in the case of matches

equally similar, the points tend to rest in the same place and are

later displaced in the regularize step of the method proposed by

Sykora et al. [3], resulting in smooth deformations. Thanks to

these modifications, we covered cases C2) and C3) and were able

to combine these two algorithms.

5. Results and Discussion

We have built a prototype of our method running on the CPU

in a single core and compared to the method by Sykora et al. [3].

Our testing machine is a laptop equipped with an Intel Core i7

Q740 at 1.73GHz and 4 GB of RAM. In table 1 we show the

running time for the cartoon images in Figure 1. We used the

root-mean-square error between the deformed F1 and the target

F2 as a stop criterion. We stopped them when the difference went

down to 9%. The size of the frames is 500 x 375.

Table 1: Running time for the cartoon images in Figure 1

 Iterations Total Time

Sykora 65 344.48s

Our Method 97 38.99s

In our experiment we have observed that our algorithm is

faster, with a speed up of 8.84 times, but our method needs more

iterations to converge to the target image. We think this is due to

the lack of the propagation step. While there is a risk of

introducing wrong matches, we want to evaluate its effect on

speed and accuracy. Additionally, Sykora et al. use in their

method a algorithm proposed by Li and Salari [5] to skip certain

patch comparisons to satisfy an inequality. We plan to introduce

it in both implementations and evaluate how the speedup changes.

6. Conclusion and Future Work

We have presented an acceleration method based on

PatchMatch [4] for accelerating the cartoon image matching

method by Sykora et al. [3] and have seen a speedup in our test.

As future work, we would like to repeat the experiments

incorporating the propagation step of PatchMatch [4] and the

method by Li and Salari [5].

References

[1] J. Madeira, A. Stork, and M. Gross, “An approach to computer-
supported cartooning," The Visual Computer,Vol. 12, No. 1, pp. 1-17,

(1996).

[2] J. Qiu, H. S. Seah, F. Tian, Q. Chen, Z. Wu, and K. Melikhov, “Auto
coloring with enhanced character registration”, International Journal

of Computer Games Technology, Vol. 2008, pp. 2:1-2:7, (2008).

[3] D. Sykora, J. Dingliana, and S. Collins, “As-rigid-as-possible image
registration for hand-drawn cartoon animations”, in Proceedings of

the 7th International Symposium on Non-Photorealistic Animation

and Rendering, pp. 25-33, (2009).
[4] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman,

“PatchMatch: A randomized correspondence algorithm for structural
image editing”, ACM Transactions on Graphics (Proc. SIGGRAPH

2009), Vol. 28, No. 3, pp. 24:1-24:11, (2009).

[5] W. Li and E. Salari, “Successive elimination algorithm for motion
estimation”, IEEE Transactions on Image Processing, Vol. 4, No. 1,

pp. 105-107, (1995).

Figure 2: Random matches example © CELSYS, Inc. Left: The

grid point and its patch on frame F1, both in red. Center: Search

area in black on frame F2, centered at the same point. Random

matches in green. Many patches are identical in the yellow part

of the shirt. Right: Final match. When there is not a match that is

more similar than others, our algorithm chooses the closest to the

point for stability.

FIT2012（第 11 回情報科学技術フォーラム）

Copyright © 2012 by
The Instiute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 350

(第3分冊)

