I-030

投影装置補正による位相シフト法を用いた三次元計測精度の向上

Accuracy Improvement of 3D Measurement using Phase Shifting Method by Projection Device Revision

加藤 嗣†	田口 亮†	保黒 政大‡	梅崎 太造†
Kato Tsukasa	Ryo Taguchi	Masahiro Hoguro	Taizo Umezaki

1. まえがき

本研究は市販のプロジェクタ,カメラおよび計算機を用 いることで安価な三次元計測装置を構築し、また高精度な 計測の実現を目的とする.しかしながら、市販プロジェク タは PC など映像出力装置から入力された指示値を自動補 正等により変換するため,投影する光は指示値と異なり, また投影された光は計測器周辺の環境からの影響を受けて 歪む. 位相シフト法は正弦波縞パターンを計測対象に 3~4 回投影して、その様子をカメラで撮影することにより、計 測対象の形状を高精度に計測できる手法である[1]. 位相シ フト法では位相値を算出する際に、受光時に歪みのない正 弦波が再現されることを前提としているため、この歪みは 計測精度に影響を与える. そこで, 正弦波の歪みを考慮し て補正した投影パターンを用いることでカメラ受光時の正 弦波の歪みを減少させ、精度向上を図る手法を提案する. また、本手法を2台のプロジェクタで評価することで汎用 性を確認する.

2. 実験環境

本研究では、図1に示す実験装置を用いて、計測環境を 構築した.実験装置は市販のプロジェクタ、カメラ、撮影

表 1 400-PRJ001 スペック

外観	
明るさ[lm]	10
解像度[pixel]	640 x 480
最短投射距離[m]	0.2

†名古屋工業大学, Nagoya Institute of Technology

‡中部大学, Chubu University

表 2	<u>EB-W10 スペック</u>	
外観		
明るさ[lm]	2600	
解像度[pixel]	1280 x 800	
最短投射距離[m]	0.9	

画像処理用のコンピュータから構成されている. カメラに は IMAGINGSOURCE 社の DFK61BUC02 を採用している. 解像度は 2048×1536 [pixel]である. プロジェクタにはサン ワサプライ社の 400-PRJ001 (表 1) およびエプソン社の EB-W10 (表 2) を採用している.

3. 提案手法

従来研究では,線形性が仮定可能な輝度値の範囲のみを 使用する手法,投影・撮影画像の輝度値変換テーブルを利

相解析を行う手法が提案さ れているが,ダイナミック レンジが狭くなることや後 処理として補正するために 処理時間が増加するなどの 課題がある.本稿ではこれ らの問題を生じずに補正で きる手法を提案する.提案 手法では、まずグレイコー ドパターンを利用してプロ ジェクタ画素とカメラ画素 のマッピングを行う.次に 正弦波縞パターンをプロジ ェクタから投影し, マップ 情報から撮影画像の各画素 の座標と正弦波縞パターン の同座標における画素の輝 度値の誤差を求めて,正弦

用する手法や格子画像の位

波縞パターンにフィードバックすることを繰り返し最適化 することで補正を行う.処理の概要を図 2 のフローチャー トにて示す.図 2 において、*Pattern_A* とは計算機内で作成 される理想的な正弦波であり、*Pattern_B* および *Pattern_C* とは外的要因により歪みを生じた正弦波である.また、こ れらのパターンから得た誤差を*Parameter_a_n*とした.ま た、nはフィードバック回数を示している.

4. 補正実験

提案手法を用いた補正実験を行う.フィードバックを 150[回]繰り返して補正した.補正前後の撮影画像輝度値を 図3に示す.また図4に繰り返し回数が0,30,150[回]に おける輝度値と理想値の周波数特性を示す.次に,図5に 示すように平板を0.1[mm]ピッチで移動しつつ計測を行い。 近似平面からの平均二乗誤差で評価した.距離値の算出に は計測開始と終了位置での位相値を基準とした.結果を図 6に示す.

図 4 の理想値の周波数特性では赤線で示した空間周波数 においてはピークが観察できないが、誤差が収束していな い繰り返し回数の周波数特性では同じ空間周波数でピーク

が存在している. このスペクトルは正弦波の歪みを示して いると考えられる. このピークは補正前に比べて補正後 (150[回])では大きく減退しており本手法により正弦波縞パ ターンが補正されている. また,図6から計測誤差は最大 47[%],平均30[%]低下しており,本手法により計測精度の 向上が可能である. 次に,図1で示した実験装置のプロジ ェクタ400-PRJの代わりに,表2で示したプロジェクタ EB-W10を設置して同様の計測精度検証実験を実施した. 図7に補正前,図8に補正後の計測結果から画像中央のx 方向に1ライン分の距離値を示す. ただし,計測結果は移 動平均により平滑化を行い,包絡線を示している.

図 7 および図 8 に示す, 平板の各位置における計測結果 から補正後の計測結果では補正前に比べて明らかに周期性 のあるノイズが発生している. これは図 5 に示すように輝 度の補正を実施した際の平板位置が距離値 0.0[mm]にあり, この位置で投影パターンが最適化されたためと考えられる. 今後はより詳細にデータを検証することで,対応したい.

4. まとめ

正弦波縞パターンの輝度補正手法について提案した.本 手法により補正済み投影パターンを使用して計測を行うこ とで計測誤差の減少が確認できた.しかしながら,EB-W10を用いた場合は,精度の悪化が見られた.今後は精度 悪化の原因を追求して,よりロバストな手法に改良したい.

参考文献

[1] 森本吉春,松井徹,藤垣元治, "光干渉縞や投影格子の波形の 位相を用いた三次元形状変形計測",情報処理学会論文誌, Vol.47, No.SIG5 (2006)