
A Novel Detection and Recovery Techniques for Hard Errors in FPGAs
Motoki Amagasaki† Masaki Inoue† Yuki Nishitani† Masahiro Iida†

Morihiro Kuga† Toshinori Sueyoshi†

1.Introduction

A fault tolerance is crucial for dependable sys-
tems, such as airplanes and medical equipment. FP-
GAs(Field Programmable Gate Arrays) can more eas-
ily realize fault tolerant techniques owing to their
programmability. However, although traditional sys-
tems are practically attained by hardware redundancy
techniques, these are very expensive in terms of area,
power, and delay.
If faulty points are detected, FPGAs can recover

from hard error unlike ASICs(Application Specific In-
tegrated Circuits) using its programmability. Hence,
it is necessary to detect and avoid faulty points to
realize fault tolerance of target systems. However,
FPGA fault detection consumes a great deal of test
time compared to ASICs because FPGAs have more
complex structures. Moreover, once faulty points are
detected, placement and routing must be performed
again to avoid these points. Because the relation-
ship of detection, avoidance and performance have a
trade-off based on the detection granularity, we must
consider recovery time and performance degradation.
In order to explain these trade-off, Fig. 1 shows

three detection level: (A) tile level, (B)switch
block(SB) level, and (C) multiplexer level. We explain
these differences based on the assumption that there is
one faulty in SB. The coarsest granularity is tile level
detection. In this case, we need to re-place and re-
route, because the tile includes logic block(LB), SBs
and connection blocks(CBs). Although this case is
the simplest, many hardware resources are wasted in
spite of faulty multiplexer is only one. Consequently,
performance degrade significantly. On the other hand,
The finest granularity is multiplexer level detection.
In this case, we only have to execute re-routing to
avoid the faulty multiplexer. Hence, we can mitigate
performance degradation. However, multiplexer level
detection consumes longer time than tile level detec-
tion.
In the present paper, we propose stuck-at error de-

tection method for global interconnects and investi-
gates fault avoidance technique using CAD tools ac-
cording to three detection levels. First, we propose
the fault detection method for a faulty multiplexer
in SBs. In previous studies[1][2], an easily testable
routing architecture and an efficient method are intro-
duced to reduce testing time for manufacturing test.
In this study, we introduce two detection levels, which

†Graduate School of Science and Technology, Kumamoto
University

IOBIOBIOB
IOB IOBIOB
IOB IOBIOB

IOBIOB
IOB

IOBIOBIOB
IOB LBCB

Tile CBSB
(A) Tile level (B) SB level (C) Multiplexer level

Detection Time

Avoidance Time

Performance

Short

Long

Low

Long

Short

High

Tile SB

Figure 1: Relationship of three detection levels.

are tile level and multiplexer level, and basically use
the previous configuration patterns for fault detec-
tion. Moreover, additional configurations are added
to identify the genuine faulty point. Only six test
configurations can detect candidate of faulty points
by using our FPGA architecture. Next, in order to
avoid faulty points, we modify VPR5.0[3], which is
used for following re-placement and re-routing:

• Re-placement : avoidance of LB in the faulty tile.

• Re-routing : prevention of the signals from both
SBs and CBs in the faulty tile.

Finally, we discuss the detection granularity in terms
of detection time, avoidance time, and circuit perfor-
mance.
We evaluated the novel detection and avoidance

technique. Our method achieved efficient detection
of faulty points in a short time. Moreover, we con-
firmed that multiplexer level detection is superior to
tile level detection in terms of recovery time and cir-
cuit performance.
The remainder of the present paper is organized as

follows. Related research is discussed in Section 2.
Section 3 describes our previous research on testing.
In Section 4, we describe the proposed fault detec-
tion method. Section 5 explains the placement and
routing algorithms used to avoid multiplexer defects.
In Section 6, we evaluate the proposed detection and
avoidance methods and discuss their granularities. Fi-
nally, conclusions are presented in Section 7.

2.Related work

Fault avoidance for FPGA can be roughly classi-
fied into two types[4]. The first approach attempts

FIT2012（第 11 回情報科学技術フォーラム）

Copyright © 2012 by
The Instiute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 333

C-031

(第1分冊)

IOB

IOB

IOB

IOB IOBIOB

IOB IOBIOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

LB

SBCB

Aligner

CB

Tile

A
lig
n
e
r

Routing tracks

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Figure 2: Completely homogeneous tile architecture.

to provide spare regions of the tile array. When
faults are diagnosed during manufacturing tests, in or-
der to avoid fault points, user circuits are re-mapped
onto the spare region. In most studies involving this
technique[5][6], fault avoidance is executed in tile level
or block level fault detection due to the area overhead
of the extra hardware resources. In this case, tile level
detection is preferable to multiplexer level detection in
terms of the detection time. The second approach ex-
ecutes re-mapping, re-placement, and re-routing the
circuits[7]. In this technique, multiplexer level de-
tection is adopted because most of the hardware re-
sources can be used except at fault points. Thus,
in order to realize an appropriate fault tolerant tech-
nique, detection and avoidance must be considered
simultaneously.

3.Previous Research

This section describes our previous research[1][2] on
FPGA testing. First, we explain the easily testable
routing architecture, and the test configurations for
SB level detection is then introduced.

3.1.Easily testable routing architecture

Although most FPGAs have complex structures to
achieve high programmability, this structure makes
testing difficult. Thus, we proposed a simple and gen-
uine regular FPGA structure, as shown in Fig. 2. In
this architecture, all tiles have the same structure,
unlike the traditional island-style FPGA architecture,
which is composed of several types of different tiles.
We also implement aligners to simplify the connec-
tions of wire segments. Moreover, we prepared test
pattern generators (TPGs) and output response ana-
lyzers (ORAs) in IOBs and LBs to perform testing
effectively, as shown in Fig. 3. As such, only five
test configurations can completely test the routing re-
sources for manufacturing test.

CLK FF

・・・・・・・・Result

(b) Test Pattern Generator (TPG)

(c) Output Response Analyzer (ORA)

R
o

u
tin

g
 tra

c
k
s

TPG ・
・
・

IOB ORA

W
W: Channel Width(a) IOB

・
・
・

I/O Pin

I/O Pin

Figure 3: IOB structure for testing.

3.2.Configurations for global track testing

The configuration patterns are generated using the
regularity of the Wilton-type SB[8]. The Wilton-type
SB can be divided into three types of paths: (a) or-
thogonal, (b) clockwise, and (c) counterclockwise, as
shown in Fig. 4. The feature is that each path is tested
individually. For example, when all of the SBs are
configured as clockwise paths, the propagation paths
are formed as a single stroke path (see Fig. 5). In
this case, test signals enter from LBs or IOBs, and all
clockwise paths are tested completely. The other two
path types can also be tested in the same manner.
These configurations achieved 100% of fault coverage
for global interconnections.

4.Fault Detection

In this section, we define the fault model, and pro-
pose a fault detection technique and additional con-
figurations for test.

4.1.Fault model

The stuck-at fault[9] is a logical fault model that has
been used successfully for decades. A stuck-at fault
affects the state of logic signals on lines in a logic
circuit, including primary inputs, primary outputs,
internal gate inputs and outputs. A stuck-at fault
transforms the correct value on the faulty signal line

FIT2012（第 11 回情報科学技術フォーラム）

Copyright © 2012 by
The Instiute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 334

(第1分冊)

Wilton type SB

0

1

2

3

0 1 2 3

(a) Orthogonal (b) Clockwise (c) Counterclockwise

M

M

: Configuration memory bits

Figure 4: Three types of SB configurations.

from TPG

in IOB

to ORA

in IOB

CB

SB

SB

TPGORALB

CB

CB

SB path

quad line path

SB

SB

connection

with single line

Figure 5: Configuration for clockwise paths.

to appear to be stuck at a constant logic value, either
a logic 0 or logic 1, referred to as stuck-at-0(SA0) or
stuck-at-1(SA1), respectively, as shown in Fig. 6. In
this paper, we employ stuck-at model as a fault model.

4.2.Novel detection technique

The configurations of our previous research attempt
to detect SB level defection. However, these configu-
rations cannot specify the genuine defect points. For
example, even if a fault exists in only one SB, these
configurations cannot specify the fault, as shown in
Fig. 7(a). Moreover, because all of the candidates are
judged as faults, and we cannot use seven SBs in the
results. Therefore, we prepare additional test configu-
rations for different test paths, as shown in Fig. 7(b),
and identify the location of the SB level or multi-
plexer level defect by margining both of (a) and (b),
as shown in Fig. 7(c) or 7(d).

Stuck-at-0 (SA0)

Stuck-at-1 (SA1)

Figure 6: Stuck-at fault model.

4.3.Additional configurations

We propose two additional test paths, as shown in
Fig. 8. The first is the combination of the right-up
path and the orthogonal path. Second combines the
left-up path and the orthogonal path. Fig. 9 shows all
of the SBs configured to the right-up and orthogonal
paths. The SBs configured to the right-up path and
the orthogonal path are aligned alternately. In this
configuration, we enter the toggle signals from the
TPGs in IOBs to cover the entire device. Finally,
these signals arrive at the ORAs in the IOBs. All of
the paths can be tested simultaneously because they
do not interfere with each other.
Moreover, we can shift one row of the configuration

bits using a shift-configuration technique[2], as shown
in Fig. 10. By shifting the configuration bits, the
SBs configured to the right-up path are re-positioned
on the orthogonal path, and the SBs configured to
the orthogonal path are re-positioned to the right-
up path. Although these paths change slightly com-
pared to Fig. 9 patterns, we can obtain accuracy en-
hancement for multiplexer level detection. The shift-
configuration time is very short compared to the en-
tire configuration time. Therefore, this method im-
proves the detect precision and the test time. The
merged left-up and orthogonal test path is tested in
the same manner as the merged right-up and orthog-
onal path.

5.Fault Avoidance

In order to avoid the defected point in tile level or
multiplexer level, we incorporate the fault avoidance
function into the placement and routing tools based
on VPR5.0[3].

5.1.Placement

In the case of tile level avoidance, we cannot use
the LB in the faulty tile. Thus, we need to avoid
such LBs in the placement process. Fig. 11 shows the
pseudo-code of the placement having the fault avoid-
ance function. This placement algorithm is changed
on VPlacer[10], main differences are lines 5 and 14. In

FIT2012（第 11 回情報科学技術フォーラム）

Copyright © 2012 by
The Instiute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 335

(第1分冊)

(a) Clockwise path

(b) Additional path (d) The result of multiplexer-

level detection

(c) The result of tile-level detection

: defect-candidate SB : fault point

Figure 7: Combining the paths to specify the faulty
point.

these steps, we check whether selected LBs are defect
blocks. If defect blocks are used, placement will be
re-attempted until no defect block is selected. Note
that lines 5 and 14 are not executed in multiplexer
level avoidance.

5.2.Routing

In the cases of tile level and multiplexer level avoid-
ance, we need to avoid defect multiplexers and con-
nected wires. Therefore, we modify the pathfinder
routing algorithm[10], as shown in Fig. 12. In line
21, we determine whether the selected node, such as
a multiplexer or a wire, is defective.

6.Evaluation

First, we evaluate the novel detection technique in
terms of test time and detection precision compared
to the previous test technique[1]. Next, we avoid the
faulty points using the modified placement and rout-
ing tools. In order to clear affection of fault avoidance,
circuit performance and recovery time are evaluated.
Finally, we discuss the granularity of detection by con-
sidering the trade-off between test time, performance,
and recovery time.

(a) right-up and orthogonal

(b) left-up and orthogonal

Figure 8: Additional test paths.

toggle signal

from the IOB

error check

in the IOB

TPG

IOB

ORA

IOB

Figure 9: Test configuration for right-up and orthog-
onal paths.

6.1.Evaluation condition

Target device for this evaluation is shown table 1.
The device is a homogeneous FPGA[1] (see Fig. 2),
which consists of 16×16 LBs, each of which has four
6-LUTs. We design this FPGA architecture using
Verilog-HDL and synthesize a gate level netlist with
Synopsys Design Compiler Y-2006.06-SP6-2 by using
a 65-nm CMOS standard cell library. Next, to per-
form fault detection, we execute a logic simulation
using Cadence NC-Verilog 06.20-s004. In this study,
toggle coverage is introduced as fault coverage for
detecting stuck-at faults. Moreover, we implement
MCNC benchmark circuits using ABC mapper[11]
and T-VPack[10] CAD tools and modified placement
and routing tools to clarify the performance. The
specification of imulation machine is composed of an

FIT2012（第 11 回情報科学技術フォーラム）

Copyright © 2012 by
The Instiute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 336

(第1分冊)

shifting

configuration bits

TPG

IOB

ORA IOB

Figure 10: Shifted test configuration.

1: program fault avoidable placement algorithm
2: /*S: Solution, T: Temperature, C: Cost, Rlimit: Range limiter */
3:
4: /*Initial placement*/
5: while(UsingDefectBlock(S) == True)
6: {/* Fault check */
7: S = RandomPlacement();
8: }
9: T = InitialTemperature();
10: Rlimit = InitialRlimit();
11:
12: while(ExitCriterion() == False) { /* Outer loop */
13: while(InnerLoopCriterion() == False) { /* Inner loop */
14: while(UsingDefectBlock(Snew) == True) {
15: /* Fault check */
16: Snew = GenerateViaMove(S, Rlimit);
17: }
18: ∆C = Cost(Snew)·Cost(S);
19: r = random(0, 1);

20: if(r < e−δC/T) {
21: S = Snew;
22: }
23: } /* End of Inner loop */
24: T = UpdateTmp();
25: Rlimit = UpdateRlimit();
26: } /* End of Outer loop */

Figure 11: Pseudo-code in fault avoidable placement

Intel Xeon X5680 3.30-GHz processor and 48 GBytes
of memory. In this evaluation, we assume that only
one multiplexer in global interconnects has fault.

6.2.Fault detection

The results of fault detection are shown in Table 2.
Note that we show both the worst and best cases for
the number of detected fault tiles and/or multiplexers
because they depend on the route of the test path and
the ability of ORAs. For example, when test path is
long, the test signal passed through more tiles and/or
multiplexers than the case of shorter test paths. As a
result, the previous test technique[1] required five con-
figurations and 798,992 clock cycles to achieve 100%
fault coverage of global interconnects. However, the

1: program fault avoidable routing algorithm
2: /*RT: Routing tree, Crit: Criticality of the net,
3; p: present congestion cost
4: /*h: historical congestion */
5: Crit(i, j) = 1; /* for all nets i and sinks j */
6: while(overused resources exist) { /* Illegal routing? */
7: for(each net i) {
8: rip-up routing tree RT(i) and update affected p(n) values;
9: RT(i) = NetSource(i);
10: for(each sink j of net(i) in decreasing Crit(i, j) order) {
11: PathCost(n) = Crit(i,j)·delay(n) for n in RT(i);
12: PriorityQueue = Addtree(RT(i), PathCost(n));
13: while(sink(i, j) not found) {
14: m = LowestCost(PriorityQueue);
15: for(all fanout nodes n of node m) {
16: PathCost(n) = Cost(n) + PathCost(m);
17: PriorityQueue = Addnode(PathCost(n));
18: }
19: }
20: for(all nodes n in path from RT(i) to sink(i, j)) {
21: if(defect node(n) == False)
22: { /* check whether fault node */
23: Update(p(n));
24: RT(i) = Addnode(n);
25: }
26: }
27: }
28: }
29: for(all nodes n)
30: Update(h(n));
31: for(all nets i and sinks j)
32: timing analysis and update(Crit(i, j));
33: } /* End of one routing iteration */

Figure 12: Pseudo-code in fault avoidable routing

Table 1: Target device for evaluation.
Item Value

array size 16 × 16
logic element 6-LUT× 4
of LB inputs 12
SB Wilton (Fs = 3)
CB normal (Fc = 0.5)
of single lines 8/channel
of quad lines 40/channel
of I/O pins 128
of configuration bits 136,896

precision of the fault detection is low: 44 tiles at worst
and 4 tiles at best. In contrast, the proposed tech-
nique can reduce the number of fault candidate tiles
to 7 at worst and 1 at best, but the cost of test time
increased by 40.5%. The number of fault candidate
multiplexers decreased to approximately 10% by us-
ing additional test configurations.

6.3.Fault avoidance

In this evaluation, we injected a single stuck-at fault
into the multiplexer in the SB. Note that we prepared
two samples faulty FPGAs(samples 1 and 2), which
have single faults in different locations. The faulty
points are determined randomly to fair comparison.
The fault information for each FPGA is shown in Ta-
ble 3. For example, for a single stuck-at fault, 23 tiles
and 78 multiplexers were regarded as fault candidate
resources by the previous test method in sample1. On

FIT2012（第 11 回情報科学技術フォーラム）

Copyright © 2012 by
The Instiute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 337

(第1分冊)

Table 2: Results of detection.

Previous Proposed

of normal configurations 5 6
of shift-configurations – 2
test time (clock cycle) 798,992 1,122,970
time increase – +40.5%

of fault tiles (worst) 44 7
of fault tiles (best) 4 1
of fault multiplexers (worst) 144 14
of fault multiplexers (best) 12 1

Table 3: Candidates of deteced faulty point.
Previous Proposed

Level Tile MUX Tile MUX

sample1 23 78 2 6

sample2 25 48 2 2

MUX: multiplexer

the other hand, the fault resources were two tiles and
six multiplexers in the proposed method.
In order to discuss the effect of precision of fault de-

tection, we implemented benchmark circuits in which
(1) no fault occurs, (2) the faulty tiles are detected by
the previous test method[1], and (3) the faulty tiles
are detected by the proposed method. Table 4 shows
the critical path delays in three cases. As a result, the
delay of the proposed method was increased by 2%
compared to the no-fault FPGA, but improved 4%
compared to the previous method. Further, the pre-
vious method failed to implement all benchmarks in
the sample-2 because many candidates of faulty tiles
exist. On the other hand, implementation was suc-
cessful for all benchmarks using the proposed method.
Fig. 13 shows example of implementation with ex4p
benchmark: (A) is the result of no fault, (B) previ-
ous method and (C) proposed method. In this ex-
ample, there are two faults at upper left area of the
tile array. Hence, the circuit was avoided this area
in Figs. 13(B) and(C). Note that, Fig. 13(B) failed
to routing because of the large number of faulty can-
didate tiles. Similarly, Table 5 shows the delays of
multiplexer level avoidance. Using additional config-
urations, the delays of the proposed method were ap-
proximately the same as the no-fault FPGA.
The recovery times are shown in Table 6. The time

of multiplexer level avoidance was far shorter than
that of tile level one. The recovery time of tile level is
82% shorter than one of multiplexer level on average.

(A) Result of no-fault FPGA (B) Result of previous method.

(Routing Failed)

(C) Result of proposed method.

(Routing succeeded)

Two fault-candidate tiles

23 fault-candidate tiles

Figure 13: Result of ex4p benchmark circuit.

6.4.Discussion

From Tables 4 and 5, the success ratio of recovery
is quite different between the tile level and the multi-
plexer level. Furthermore, previous method[1] failed
to implement all of the circuits for the sample-2 fault,
even if the number of faulty tiles is slightly different
from sample-1. Most of the failed cases in sample-2
are placement failures. In contrast, although sample-1
has 30 more defect multiplexers than sample-2, all of
the benchmarks were succeeded. These results indi-
cate that the main cause of failure is excess avoidance
of LBs. Hence, global interconnect faults should be
avoided at the multiplexer level.
In terms of avoidance time, multiplexer level avoid-

ance provides better results than tile level avoidance.
Moreover, the proposed detection technique can iden-
tify the defect multiplexers with high precision in a
short time. Consequently, multiplexer level fault tol-
erance is preferable to tile level fault tolerance in
terms of fault detection and avoidance time, suc-
cess ratio of recovery, and circuit performance for the
faults of global interconnect.

7.Conclusion

In this study, we proposed a fault detection tech-
nique for the global interconnect and developed place-
ment and routing tools to avoid faulty points in vari-

FIT2012（第 11 回情報科学技術フォーラム）

Copyright © 2012 by
The Instiute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 338

(第1分冊)

Table 4: Delays of tile avoidance [nsec]

circuit fault type no fault Previous Proposed

C6288 sample-1 96.7 93.2 93.5
sample-2 96.7 N/A 100.3

cordic sample-1 103.4 97.9 91.7
sample-2 103.4 N/A 111.4

ex4p sample-1 46.4 N/A 45.7
sample-2 46.4 N/A 49.1

vg2 sample-1 39.3 42.2 41.5
sample-2 39.3 N/A 40.2

N/A: Implementation failed.

Table 5: Delays of multiplexer avoidance [nsec]

circuit fault type no fault Previous Proposed

C6288 sample-1 96.7 97.0 96.7
sample-2 96.7 9.66 96.2

cordic sample-1 103.4 98.4 103.4
sample-2 103.4 102.2 93.9

ex4p sample-1 46.4 46.8 46.3
sample-2 46.4 46.7 47.4

vg2 sample-1 39.3 38.7 39.3
sample-2 39.3 42.4 41.1

ous granularities. In the proposed technique, we real-
ized high-precision fault detection with only six test
configurations. As a result, the success ratio of fault
avoidance is improved compared to previous study[1].
Moreover, the performance degradation caused by
faults is very slight in multiplexer level avoidance. At
present, we are in the process of developing a detec-
tion and avoidance method for other circuit blocks,
including LBs, CBs, and IOBs.

参考文献

[1] K. Inoue, H. Yosho, M. Amagasaki, M. Iida, and
T. Sueyoshi, “An Easily Testable Routing Archi-
tecture and Efficient Test Technique ,” in Pro-
ceedings of the 21th International Conference on
Field Programmable Logic and Applications, Sep.
2011, pp. 291–294.

[2] K. Inoue, M. Koga, M. Iida, M. Amagasaki,
Y. Ichida, M. Saji, J. Iida, and T. Sueyoshi, “An
easily testable routing architecture and proto-
type chip,” IEICE Transactions on Information
and Systems, vol. E95-D, pp. 303–313, Feb. 2012.

Table 6: Avoidance time[sec]

circuit Tile MUX
(re-place&routing) (re-routing only)

C6288 4.25 0.94

cordic 3.60 0.87

ex4p 3.28 0.38

vg2 1.12 0.15

[3] J. Luu, I. Kuon, P. Jamieson, T. Campbell,
A. Ye, W. Fang, and J. Rose, “Vpr 5.0: Fpga cad
and architecture exploration tools with single-
driver routing, heterogeneity and process scal-
ing,” in Proceeding of the ACM/SIGDA inter-
national symposium on Field programmable gate
arrays, Feb. 2009, pp. 133–142.

[4] J. Cheatham, J. Emmert, and S. Baumgart, “A
survey of fault tolerant methodologies for fp-
gas,” ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 11, no. 2,
pp. 501–533, 2006.

[5] S. Durand and C. Piguet, “Fpga with self-repair
capabilities,” in Proceedings of the ACM Inter-
national Workshop on FPGAs, 1994.

[6] N. Howard, A. Tyrrell, and N. Allinson, “The
yield enhancement of field-programmable gate
arrays,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 2, no. 1, pp. 115–123,
1994.

[7] V. Lakamraju and R. Tessier, “Tolerating opera-
tional faults in cluster-based fpgas,” in Proceed-
ings of the ACM/SIGDA international sympo-
sium on Field programmable gate arrays, 2000,
pp. 187–194.

[8] G. G. Lemieux and D. M. Lewis., “Analyti-
cal framework for switch block design,” in Pro-
ceedings of International Conference on Field-
Programmable Logic and Applications(FPL),
2002, pp. 122–131.

[9] M. A. B. M. Abramovici and A. D. Friedman,
Digital Systems Testing and Testable Design.
Wiley Interscience, 1993.

[10] V. Betz, J. Rose, and A. Marquardt, Architecture
and CAD for deep-submicron FPGAs. Kluwer
Academic, 1999.

[11] “ABC: A System for Sequential Synthe-
sis and Verification.” [Online]. Available:
http://www.eecs.berkeley.edu/ alanmi/abc/

FIT2012（第 11 回情報科学技術フォーラム）

Copyright © 2012 by
The Instiute of Electronics, Information and Communication Engineers and
Information Processing Society of Japan All rights reserved.

 339

(第1分冊)

