M-028

画像認識手法を用いた車載型前方監視システム An Onboard Safety Observation System by Image Recognition Method 鵜飼 正人[†] 長峯 望[†] 那須 ボクダン友幸[†]

Masato Ukai[†] Nozomi Nagamine[†] Bogdan Tomoyuki Nassu[†]

1. はじめに

踏切事故やホーム転落事故に見られるように,鉄道交 通における安全・安心の確保が急務となっている.安全 な列車運行を確保するためには,線路内の障害物を事前 に検知し,障害物との衝突や列車脱線を防ぐ必要がある. 筆者らは,鉄道用安全監視システムの基盤技術として, 横方向の分解能が高い光学センサによる画像認識技術の 研究を進めている.検出したレールをもとに,線路内障 害物を検知する画像認識アルゴリズム,及び鉄道特有の 超遠方監視のための車載用カメラ雲台について検討した.

2. レール検出アルゴリズム

ITS (高度道路交通システム)における道路の白線認 識は,緩やかに曲率が変化する縦方向の線成分を抽出す るという点では,鉄道におけるレール検出と類似すると ころがある.ただ,多くの白線認識手法が提案されてい るものの,天候や日照状況,線の輻輳や遮蔽問題など, 未解決の課題も残されている.またこれらの手法の多く は,特定の条件(例えば,グレーの色をした路面にペイ ントされた白い線)を仮定したモデルベースのアプロー チであり,これらの仮定が鉄道環境では必ずしも成立し ないという課題がある.

レール検出^[1]は,線路内障害物の存在位置を特定する 意味で,重要なタスクである.レールはカメラ近傍では 比較的強いエッジが観測され,しかもその曲率は緩くほ とんど直線的であること,カメラからの距離が遠くなる につれてその間隔が狭くなるという特徴を有する.そこ でレールを,短い直線と曲線セグメントを連結した線成 分として表現するようなアルゴリズムを検討した.図1 に,近傍から遠方領域に向けて行われるレール抽出処理 例を示す.近傍領域処理で特定したレールテンプレート の左右レールの終端部を中心に、当該テンプレートのレ ールの曲率を考慮して、次候補のレール線分を左右それ ぞれ数本発生させる.その中から、レール画像と最もマ ッチングする候補が選択される.遠方にゆくほど探索領 域を細かく分割しながら、次領域のレールを繰り返し抽 出する.レール検出アルゴリズムを実際の線路映像に適 用した結果を図 2 に示す.雨天や逆光、ポイント通過 時など、複雑な環境状況下でも、ほぼ良好にレールを検 出することができた.

3. 障害物検知アルゴリズム

3.1 障害物検知プログラムの構成

障害物検知プログラムの仕様として、人間大以上の物 体を検知することを目標とした.単一の画像処理アルゴ リズムだけで障害物を完全に検知することは困難なので、

A. 近傍領域のレール検出結果と探索領域の分割
B. 次探索領域への線路投影結果
C. 次探索領域のレール候補(9方向)
D. マッチングの結果選択されたレール候補
図 1 分割領域に対する繰り返し抽出処理

(a) 雨天 (ワイパー有り)

(b) 夕陽(逆光)図 2 レール検出結果

(c) 雪天時のポイント

†(公財)鉄道総合技術研究所, RTRI

図 3 に示すように、それぞれ特徴的な処理を行う5つ のサブモジュールを用意し、各モジュールを並列的に動 作させ、各モジュールの出力結果をもとに、総合判定モ ジュールで最終的に障害物を判定する手法を検討した.

3.2 レールの連続性検定モジュール

本モジュールでは、2本のレールが遠方まで途切れず に抽出できているかを検定する.2章で述べたレール検 出により、最も遠くまで抽出された左右レールの座標位 置が得られるので、この値を検定すると共に、レールの 連続性指標を算出し、途切れの有無を判定する.連続性 指標として、隣接する画像差に着目した.レールを覆う 小さな矩形の検査領域を設定し、隣接する領域の画像の 違いを数値化する.まず、矩形領域の画像差 d(i)を下記 のように対応する輝度値の差として定義した.

$$d(i) = \sum_{w} \sum_{h} \left| I_i(w, h) - I_{i+1}(w, h) \right|$$
(1)

Iは輝度値, i は矩形の識別子, w, h は矩形範囲の相 対的な位置を表す. d(i) と平均値の差を標準偏差で正規 化した値を標準化データとし、当該データが、設定した しきい値を超えた場合にレールの連続性が途切れたと判 断する.途切れがあった場合は障害物が存在する可能性 があると判定する.標準化データの計算は左右レールそ れぞれについて行った.大体の障害物は、エッジが左右 の組で検出されるので、検出する障害物の大きさの範囲 を設定し、その範囲に収まる2つのエッジの組の位置を 障害物として判定した.検出する障害物の大きさの範囲 は任意に設定できるようにした.また,遠方になるほど 障害物のみかけの大きさは小さくなるので、この点を考 慮して設定できるようにした. さらに, 設定したフレー ム数連続して判定した場合のみ、障害物の可能性ありと 最終的に判定した.なお、矩形の高さ(縦方向の分割 数)と幅は任意に設定できるようにした.

3.3 物体特徴点の抽出&追跡モジュール

本モジュールでは、レール近傍でSIFT特徴に基づく特 徴点を抽出し、隣接フレームにかけて当該特徴点を障害 物とみなして追跡する. 障害物が時間的に連続して検出 される場合には高い評価値を出力する.特徴点を抽出す るアルゴリズムを以下に示す.

① DoG (Difference of Gaussian) 処理

座標 $u,v o 2 次元入力画像 I(u,v) を、標準偏差 <math>\sigma o k$ 倍毎異なるスケールのガウシアンフィルタ $G(u,v,k^{"}\sigma)$ で 平滑化を行い、次式で平滑化画像 $L(u,v,k^{"}\sigma)$ を求める.

 $L(u,v,k^{n}\sigma) = I(u,v) * G(u,v,k^{n}\sigma)$ (2) 平滑化画像の差より, DoG 画像 $D(u,v,k^{n}\sigma)$ を得る.

 $D(u,v,k^{n}\sigma) = L(u,v,k^{n}\sigma) - L(u,v,k^{n-1}\sigma)$ (3)

② DoG 画像による極値検出

DoG 画像の σ と空間に対する近傍画素の中から, 極値 を求め,特徴点の候補地点とする.

③ ラプラシアンによる特徴点の絞込み

特徴点の内,レールなどの直線的な形状によるものを 取り除くため,下式のように u, v, σ についてのラプラシ アンの2乗をとり,閾値 *th*以上の画素を特徴点とする.

$$(D_{uu} + D_{vv} + D_{\sigma\sigma})^2 > th$$
 (4)
この値が大きい位置を障害物候補地点とする.

3.4 背景輝度の平均値&分散検定モジュール

本モジュールでは、背景である軌道面の輝度の平均値 と分散を計測し、さらに動的に更新しながら保持する. その際、輝度が大きく異なる箇所は障害物の可能性あり として検出する. 画面内のある位置における画素値を $\mathbf{v} = (v_{R}, v_{G}, v_{R})$ とするとき、

色相ベクトル
$$\mathbf{v}_{cl} = \left(\frac{v_R}{|\mathbf{v}|}, \frac{v_G}{|\mathbf{v}|}, \frac{v_B}{|\mathbf{v}|}\right)$$

明度 $v_{bl} = |\mathbf{v}|$

を特徴量とする.背景データとして,色相平均ベクトルと,|内積値-1|の平均及び明度平均と標準偏差を動的に 更新しながら保持する.ある時点における背景画面との

差の算出は、対象画素値の値 $\mathbf{v} = (v_R, v_G, v_B)$ について

$$dif_{1} = \alpha \frac{|v_{cl}a_{cl}-1|}{d} + (1-\alpha)\frac{v_{bl}-a_{bl}}{d}$$
(5)

を計算することで求める(a は色相ベクトルと明度の差 の重みづけパラメータ).この画素が障害物かどうかを 判定するために,背景との差についての閾値を定めて

$$dif_1 > thr_1$$

の判定により行う.背景は列車の移動と天候の変化など に適応するために更新する.

$$\mathbf{a}_{cl} = \left((1 - r_{cl,a})a_R + r_{cl,a}\frac{v_R}{|\mathbf{v}|}, (1 - r_{cl,a})a_G + r_{cl,a}\frac{v_G}{|\mathbf{v}|}, (1 - r_{cl,a})a_B + r_{cl,a}\frac{v_B}{|\mathbf{v}|} \right)$$
$$a_{bl} = (1 - r_{bl,a})a_{bl} + r_{bl,a}v_{bl}$$
(6)

$$a_{bl} = (1 - r_{bl,a})a_{bl} + r_{bl,a}v_{bl}$$
(7)

$$a_{bl} = (1 - r_{bl,a})a_{bl} + r_{bl,a}v_{bl}$$
(8)

 $r_{cl,a}$, $r_{cl,a}$, $r_{cl,a}$, $r_{cl,a}$ は更新速度を表す. 各値は上限, 下限値を定め, その値を超えない範囲で更新する.

背景画像 入力画像 障害物画像(グレー以外の部分) 図4 背景(軌道面)輝度の平均値&分散検定による障害物検出結果

図5 改良アルゴリズムによる障害物検出結果

本アルゴリズムによる障害物の抽出結果を図 4 に示 す.障害物を正しく検出できているが、日なたと日陰の 境界部分での誤検出もみられる.瞬間的な変化を前景と みなす本アルゴリズムの性質上、この誤検出は想定され るものであるが、車載カメラで撮影される画像という特 徴を利用した改善策を検討した.車両の進行に伴って、 日なたから日陰の変化は水平方向の狭い幅の領域に対し てほぼ全体的な変化として現れる.このことから Δh の 幅の層の背景条件として、

・前景判定された画素数が大多数である

・前景判定された画素位置のモーメントに偏りがない ことによって層全体の変化の有無を判定する.この結果, 対象画素を含む層で変化が無い場合に障害物と判定した.改良後の障害物検出結果を図5に示す.

3.5 物体のエッジ&テクスチャ解析モジュール

本モジュールでは物体のエッジや絵柄(テクスチャ) を解析することで障害物を検出する.対象画像を適当な 数のピクセルを含むグリッドに分割する.グリッド内に 含まれる複数画素に対するテクスチャ解析により特徴量 を抽出する.テクスチャは画素の明度ヒストグラムを解 析することで特徴量を得る.ヒストグラムはグリッド内 画素の明度の度数分布をとり,これを画素数で割って正 規化する.ヒストグラムの特徴量として,コントラス ト,分散,エネルギー,エントロピーの4つの特徴量に ついて,背景(軌道面)輝度の平均値&分散検定モジュ ールと同様背景データを作成し,特徴量の差によって障 害物と背景のエッジを検出し,障害物を判定した.誤検 出を減らすため,本モジュールは,グリッド単位で,時 間的に連続して障害物と判定した場合にだけ,最終的な 出力を出すようにした.現時点ではしきい値の設定は試 行錯誤的に行っており,最適化は今後の課題であるが, 本モジュールの特徴に応じた障害物検出ができているこ とを確認した.

3.6 オプティカルフロー特異値検出モジュール

線路消失点近傍を中心にオプティカルフローを計測 し、列車の移動に伴う放射状のフロー成分を動的に更新 しながら保持する.このデータと比較して、フローの方 向と値が大きく異なる画素を障害物の可能性ありと判定 する.アルゴリズムの特徴から、基本的に本モジュール は移動障害物に強く反応するモジュールである.検出結 果の一例を図6に示す.検知精度の向上を図るため、検 出した障害物の面積が一定値以下の場合は誤検出とみな して除外するように、さらに他のモジュールと同様に、 時間的に連続して障害物と判定した場合にだけ、最終的 な出力を出すようにした.

図6 オプティカルフローによる障害物検出結果

3.7 総合判定モジュール

本モジュールは前述のモジュールとは異なり,各モジ ュールの出力結果を入力データとして障害物の総合評価 を行い,最終的に障害物の存在判定を行う.総合判定モ

図7 判定結果の可視化による結果解析

表1 判定結果の可視化による結果解析

モジュール名	重み w
レールの連続性検定モジュール	0.6
物体特徴点の抽出&追跡モジュール	0.4
背景輝度の平均値&分散検定モジュール	0.4
物体のエッジ解析モジュール	0.6
物体のテクスチャ解析モジュール	0.6
オプティカルフロー特異値検出モジュール	1.0

図8 視野目標となる広角カメラのレール消失点

ジュールでは画面を M×N のセルに分割し,各セルが障 害物に該当するかどうかを判定する.あるセルについ て,モジュール i =1~n についての障害物判定結果を xi とおく. xi は 0 から 1 の値をとり,"0"は障害物でない, "1"は障害物であるとする.その間の値によって障害物の 確度を表す.x1 から xn までの値を用いた障害物の総合評 価 v は各モジュールの加重和 $v = \sum_{i=1}^{n} w_i x_i$ である.この 値を閾値処理して最終的な出力とした.

判定結果をデバッグするために、各モジュールの出力 値を星形の放射状の線に対応させ、視覚的に確認できる ようにした. さらに線幅は出力値の大きさに対応させ た.線路内に置かれた段ボール箱を検知した例を図7に 示す. このケースでは、エッジ解析モジュールと特徴点 抽出&追跡モジュールが強く反応したことがわかる.

様々な状況で模擬障害物による検知実験を行い,適切 な重みの設定について検討した.実験結果から,モジュ ールの種類にかかわらず2つ以上のモジュールが障害物 と判定した場所は,かなりの確度で障害物を正しく検知 していた.オプティカルフローモジュールは転落中の物 体といった動くものを精度よく検出するが,他のモジュ ールはほとんど反応しなかった.このことから,オプテ ィカルフローモジュールについては,他のモジュールが 障害物として判定していなくても,当該モジュールが発 火した場合は,移動障害物として判定することとした. 誤検出時のモジュールの組み合わせを調べたところ,特 徴点抽出モジュールと背景輝度モジュールの2つが反応 したケースが比較的多く見られた.このことから,この 両モジュールの感度を抑えるために,重みを低めに設定 図9 車載用カメラ雲台と光学画像センサ

した. その他の組み合わせについては, 2つ以上のモジ ュールが発火した場合は, 障害物と最終判定するように 重みを調整した. 以上の解析結果を踏まえ, 各モジュー ルの重みを表1のように設定した.

3.8 視野制御を可能とする車載用カメラ雲台の開発

カーブや勾配区間においても望遠カメラの映像を適切 に維持するため、図 8 に示すような遠方のレール消失点 が、絶えず画面の中央付近に映るように、望遠カメラを 制御する手法を検討した. PC からの制御で、上下左右 方向に回転首振りができるパン/チルト雲台を製作した (図 9).防振対策として、ジャイロスタビライザをパン /チルトの各軸に装備している.所内走行試験などを通 して検証を行い、所定の性能を確認した.

4. まとめ

全天候型のレール検出,及び複数の認識モジュールを 相補的に組み合わせることで障害物認識性能の向上を図 る画像処理手法について検討した.今後は実障害物を用 いた実験により検出性能を評価すると共に,各モジュー ルの処理速度についても実用的な時間で実行できるよ う,処理並列や GPGPU の適用などについて検討してい く予定である.

参考文献

 Bogdan Tomoyuki Nassu, Masato Ukai, " Video-Based Track Extraction for Front-View Monitoring in Railways", 平成 22 年電気学会産業応 用部門大会, 平成 22 年 8 月

340 (第4分冊)