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Abstract

This paper presents a constant-space data structure
for the farthest-point Voronoi diagram for a set of
n points in the plane, which supports various op-
erations using only a constant number of words of
O(log n) bits and a read-only array to store the given
point set. We show that the supported operations
can be executed in O(n) time.This is an extension
of our previous results [1, 2, 3, 4].

1 Introduction

Recent progress in computer systems has provided
programmers with unlimited amount of work stor-
age for their programs. Nowadays there are plenty of
space-inefficient programs which use too much stor-
age and become too slow if sufficiently large memory
is not available. We believe that there is high de-
mand for space-efficient algorithms.

In this paper we assume that a point set is given
on a read-only array. Thus, no permutation or rear-
rangement on an input array is allowed. Why do we
insist on the read-only property? Given a point set,
we may want to have several different data struc-
tures. If we reorder input points for a data structure,
then we have to reorder them for another one. For
example, a good ordering for closest-point Voronoi
diagram may be different from one for farthest-point
Voronoi diagram. In fact, a problem of finding the
minimum-width annulus for a set of points in the
plane can be solved using both of the Voronoi dia-
grams.

In this paper we introduce a new idea called a
constant-space data structure. We just compute and
maintain a constant number of words of O(log n)
bits for a set of n points, and thus it takes work
space of O(1) words (of O(log n) bits). We pre-
pare a collection of algorithms for supporting the
imaginary data structure. All the operations on the
target data structure are supported, but they may
be slow. In this paper we propose a constant-space
data structure for a farthest-point Voronoi diagram

∗School of Information Science, JAIST, Japan, {t-asano,
matsu.cona}@jaist.ac.jp

FV (S) for a point set S in the plane. It is usually
described using a doubly-connected edge list, which
can be computed in O(n log n) time for n points. It
supports the following operations
(1) to enumerate all Voronoi vertices,
(2) to enumerate all directed Voronoi edges,
(3) to determine whether a specified point is on the
convex hull, and
(4) to follow the boundary of the Voronoi region for
a point on the convex hull if we specify the point.

Once the doubly-connected edge list is con-
structed for a given set S of n points in O(n log n)
time using O(n) work space, we can enumerate all
vertices in O(1) time per vertex. In the constant-
space data structure, with no preprocessing time we
can enumerate all Voronoi vertices in O(n) time per
each vertex. It is just the same for Voronoi edges.
Following the boundary of a Voronoi region is also
done in O(n) time per step.

2 Constant-space Data Struc-
ture

We propose a constant-space data structure for sup-
porting a farthest-point Voronoi diagram FV (S) for
a set S of n points in the plane. For simplicity we as-
sume that given points are in general positions, that
is no four points of S are cocircular and thus every
vertex of FV (S) is incident to exactly three Voronoi
edges. This restriction will be removed later. A di-
agram is defined by Voronoi regions and Voronoi
edges. A Voronoi region FV R(pi) for a point pi ∈ S
is the region such that the point pi is farthest among
the point set S from any point in the region. Each
Voronoi region is known to be an infinite polygo-
nal region, whose boundary consists of two infinite
edges and (possibly no) finite edges with two end-
points. In this paper we orient Voronoi edges on
the boundary of a Voronoi region FV R(pi) so that
the Voronoi region for the point pi lies to their left.
Each Voronoi edge lies between two Voronoi regions.
So, by E(pi, pj) we denote a Voronoi edge between
two Voronoi regions FV R(pi) and FV R(pj) with
FV R(pi) to its left (and FV R(pj) to its right).
Thus, the oppositely directed edge, called the twin
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edge, is denoted by E(pj , pi). By our assumption
exactly three Voronoi edges meet at each endpoint
of Voronoi edges, which defines a Voronoi vertex.
Thus, we can assume that each Voronoi vertex is
characterized by three points from an input points
such as V (pi, pj , pk).

It is well known that only those points of an in-
put point set on its convex hull have their Voronoi
regions [5, 7].

An example of a farthest-point Voronoi diagram
is shown in Figure 1. In the figure, the leftmost
point among the input points is denoted by p1 and
other input points on the convex hull are denoted
by p2, . . . , p5 in the counter-clockwise order. The
Voronoi region FV R(p1) for the point p1 is shad-
owed in the figure.

p1

p2 p3

p4

p5

FV R(p1)

FV R(p2)

FV R(p3)

FV R(p4)
FV R(p5)

E(p1, p2)

E(p1, p5)

E(p1, p3)

E(p1, p4)

V (p1, p4, p5)

V (p1, p3, p4) V (p1, p2, p3)

Figure 1: Farthest-point Voronoi diagram. Vertices
on the convex hull are {p1, . . . , p5}. FV R(pi) and
E(pi, pj) are the Voronoi region for point pi and
Voronoi edge for two points pi and pj , respectively.

A farthest-point Voronoi diagram is defined by
Voronoi vertices, Voronoi edges which are either di-
rected rays or directed line segments, and Voronoi
regions which are infinite regions. It is common to
use a doubly-connected edge list (DCEL in short)
to represent a farthest-point Voronoi diagram. The
DCEL consists of three collections of records [5].

Vertex record: A vertex record of a vertex v
stores the coordinates of v and a pointer
IncidentEdge(v) to a directed edge outgoing of
v.

Face record: A face record of a face f stores
a pointer FirstVoronoiEdge(f) to the first
Voronoi edge on the boundary of the face f ,
which is a ray from the infinity.

Edge record: An edge record of a Voronoi edge
e stores a pointer NextVoronoiEdge(e) to the
next Voronoi edge on the same boundary and a
pointer IncidentFace(e) to the face to its left.

We support these functions, IncidentEdge(v),
FirstVoronoiEdge(f), NextVoronoiEdge(e), and
IncidentFace(e) by providing the following func-
tions.

FirstExtremePoint(S) returns the leftmost ex-
treme point (more exactly, the index of the
point) in a set S of points.

CounterClockwiseNextExtremePoint(pi)
returns the index of the extreme point next to
pi in a counter-clockwise order on the convex
hull.

FrontEndpointOfVoronoiEdge(E(pi, pj))
returns the index k of the point pk of S
that determines the front (terminating) end-
point V (pi, pj , pk) of a directed Voronoi edge
E(pi, pj).

BackEndpointOfVoronoiEdge(E(pi, pj))
returns the index k of the point pk of S
that determines the back (starting) end-
point V (pi, pj , pk) of a directed Voronoi edge
E(pi, pj).

NextVoronoiEdge(E(pi, pj), V (pi, pj , pk))
returns the next Voronoi edge E(pi, pk) of
E(pi, pj) on the Voronoi region FV R(pi) which
starts at the Voronoi vertex V (pi, pj , pk), more
exactly the two indices i and k.

ExtremePoint(pi) returns TRUE if and only if
the point pi is on the convex hull.

3 Algorithms for Supporting
the Operations

Our constant-space data structure first computes
the centroid c of the input point set in advance by
computing the average x and y coordinates of all
given points, and keeps it in the data structure. It
is well known that the centroid always lies in the
interior of the convex hull for the point set.

The operations listed above can be implemented
in linear time using only O(1) work space as follows:

FirstExtremePoint(S): The leftmost point in a
point set S must be on the convex hull of S
since the left half plane defined by the vertical
line through the leftmost point is empty (i.e.,
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no point of S is contained there). It is easy to
find the leftmost point in S in O(n) time using
O(1) work space.

CounterClockwiseNextExtremePoint(pi):
Let pi ∈ S be an extreme point on the convex
hull of S. We define a ray emanating from
the point pi in the opposite direction to the
centroid c (refer to Figure 2). Then, we rotate
the ray in the counter-clockwise order until it
encounters a point of S, which is the point
required. This is an intuitive description of an
algorithm. Formally, we find the next extreme
point pj as follows. The point pj must satisfy
the following two properties:
(1) (c, pi, pj) is clockwisely oriented since pj

must be to the left of the directed line −→cpi, and
(2) for any other point pk ∈ S\{pi, pj} with
the property (1) the three points pk, pi, pj are
ordered clockwisely since pj lies to the left of
−−→pkpi to minimize the angle with the ray from
pi (see Figure 2). Thus, it can be computed in
O(n) time using O(1) work space.

FrontEndpointOfVoronoiEdge(E(pi, pj)):
Each Voronoi edge E(pi, pj) is associated with
one or two enclosing circles, whose centers are
the endpoints of the edge. Due to our orien-
tation, the front endpoint of a Voronoi edge
E(pi, pj) is determined by a point of S lying to
the left of −−→pipj . For each such point pk (such
that (pi, pj , pk) is counter-clockwisely ordered)
we compute the center of the circle through
pi, pj , and pk. This is a kind of mapping of
a point of S into one on the perpendicular
bisector of pi and pj . The center point giving
the front endpoint must give an enclosing circle
as stated above. Thus, the center point must
be farthest from the center point of pi and
pj . Thus, it can be computed in O(n) time
using O(1) work space. See Figure 3. It shows
how to find such a point. Given a Voronoi
edge E(p1, p3), extreme points of S lying to
the left of the directed line −−→p1p3 are p4 and
p5. Since p4 corresponds to a larger circle, the
front endpoint of the edge is determined by
p4 together with p1 and p3 in this example.
It should be noted that the last Voronoi edge
on the boundary of a Voronoi region when
we traverse it counterclockwisely has its front
endpoint at infinity and thus its front endpoint
is undefined.

BackEndpointOfVoronoiEdge(E(pi, pj)): This
is just symmetric to the case of the front
endpoint. Thus, the first Voronoi edge on the

boundary of a Voronoi region has no back
endpoint.

NextVoronoiEdge(E(pi, pj), V (pi, pj , pk)): Once
Voronoi edge E(pi, pj) and its front endpoint
V (pi, pj , pk) are known (more exactly, three
indices i, j, and k are known), the next Voronoi
edge is E(pi, pk). Thus, it is done in O(1) time.

ExtremePoint(pi) We can easily compute the line
Li that is perpendicular to the ray from the
centroid c toward pi. If one of the half plane
contains no point of S except pi on the bound-
ary, then the point pi is on the convex hull by
the definition of the convex hull. Otherwise, it
is an interior point. See Figure 4. This is done
in O(n) time.

In addition, given a Voronoi edge E(pi, pj) and
its front endpoint V (pi, pj , pk), we know the three
Voronoi edges E(pj , pi), E(pi, pk) and E(pk, pj) are
outgoing edges from the Voronoi vertex V (pi, pj , pk)
ordered in a clockwise way around the vertex. Thus,
the data structure above behaves like a doubly-
connected edge list.

pi

c

pj

pk

Figure 2: Finding the counter-clockwise next ex-
treme point using a ray from pi and the centroid
c.

4 How to Cope with Degen-
eracies

We have assumed that given points are in general
positions, that is, (1) no three points are on a line
or (2) no four points are on a circle. In this section
we will show how to cope with degeneracies on given
points.

FIT2011（第 10 回情報科学技術フォーラム）

Copyright © 2011 by Information Processing Society of Japan and
The Instiute of Electronics, Information and Communication Engineers
All rights reserved.

 25

(第1分冊)



p1

p2 p3

p4

p5

FV R(p1)

FV R(p2)

FV R(p3)

E(p1, p3)

V (p1, p3, p4)
V (p1, p2, p3)

Figure 3: Finding the front endpoint of a Voronoi
edge which is determined by a point of S lying to
the left of the directed line p1p3. Points lying to the
directed line p1p3 are p4 and p5. The center point of
the circle defined by (p1, p3, p4) is farther than that
defined by (p1, p3, p5), and thus the front endpoint of
the directed Voronoi edge E(p1, p3) is the Voronoi
vertex V (p1, p3, p4). On the other hand, only one
point p2 lies to the directed line p3p1, and thus that
of E(p3, p1) is V (p3, p1, p2) = V (p1, p2, p3).

pi

c

pj

Li

Lj

Figure 4: Deciding whether a given point is on the
convex hull. The point pi is on the convex hull
shown by dotted lines since one of the half plane
defined by the line Li is empty. The point pj is not
so since none of the half planes is empty.

4.1 Degeneracy Caused by Collinear
Points

Figure 5 shows an example of a degeneracy caused
by collinear points in which four points lie on the
convex hull of a given point set.

c

pi

pj

pk

pj

Figure 5: Degeneracy caused by collinear points.

Suppose three points from an input point set S
lie on a line and one of the half plane defined by
the line is empty, that is, it contains no point of S.
If three points pa, pb, and pc are arranged in this
order on the line, the middle point pb never con-
tributes to the farthest-point Voronoi diagram for
S, in other words, pb has no its own Voronoi region,
for any circle touching pb never includes both of pa

and pc, and the point pa (resp., pc) lying outside the
circle is farther from the center of the circle than
the other point pc (resp., pa). This means that we
can neglect those intermediate points on the convex
hull edges, which are not convex hull vertices. All
these observations lead to the following algorithm
for CounterClockwiseNextExtremePoint(pi):

CounterClockwiseNextExtremePoint(pi)
for each point pk ∈ S\{pi} do

if (c, pi, pk) is counter-clockwise then
break;

for each point pj , j = k + 1, . . . , n do
if (c, pi, pj) is counter-clockwise then

if (pk, pi, pj) is counter-clockwise
then pk = pj ;

else if (pk, pi, pj) is collinear and (c, pk, pj)
is counter-clockwise then pk = pj ;

return pk.

4.2 Degeneracy Caused by Cocircu-
lar Points

Figure 6 shows another type of degeneracy, which is
caused by cocircular points. In the figure five points
p1, . . . , p5 on the convex hull lie on a circle.

Suppose we are about to examine a convex hull
edge (p1, p2). We first find a Voronoi edge E(p1, p2),
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c
p1

p2
p3

p4

p5

FV R(p1)

FV R(p2)
FV R(p3)

FV R(p4)

FV R(p5)

E(p1, p2)

E(p1, p5)

Figure 6: Degeneracy caused by cocircular points.

which is a ray from the infinity, as shown in the
figure. To compute its front endpoint we examine
all the points lying to the left of the directed line
from p1 to p2 to find one whose corresponding cir-
cle center is farthest from the middle point of p1

and p2. In this case the three points p3, p4 and p5

all give the same circle center since they are cocir-
cular. Note that all those points must be extreme
points. What we want is the point closest to p2 in
the clockwise order on the convex hull. Thus, if we
find two candidate extreme points pa and pb to de-
fine the front endpoint of a Voronoi edge E(pi, pj)
and the four points pa, pb, pi and pj are cocircular,
then we check the orientation of (pi, pa, pb). We
choose pa if it is counter-clockwise, and choose pb

otherwise. This extra condition leads to a correct
ordering of those cocircular points. In the example
of Figure 6, the front endpoint of E(p1, p2) is de-
fined by p3, and thus the next Voronoi edge should
be E(p1, p3). Its front endpoint is defined by p4

and thus the following edge should be E(p1, p4). In
the same manner the Voronoi edge E(p1, p4) is fol-
lowed by E(p1, p5). So, we have an edge sequence
E(p1, p2), E(p1, p3), E(p1, p4), E(p1, p5). Here note
that the Voronoi edges E(p1, p3) and E(p1, p4) are
degenerated edges, that is, their two endpoints co-
incide.

5 Applications of the Data
Structure

Using the Constant-Space Data Structure for
Farthest-Point Voronoi Diagram, we can of course
draw the diagram for any given set of n points in
O(n2) time using only O(1) work space given as Al-
gorithm 1 below.

A constant-work-space algorithm for drawing

the farthest-point Voronoi diagram
Input: A set S = {p1, . . . , pn} of n points.
Output: Voronoi edges and Voronoi vertices of the

farthest-point Voronoi diagram of the set S.
Algorithm{

pi = FirstExtremePoint(S).
i0 = i.
repeat{

pj = CounterClockwiseNextExtremePoint(pi).
pk = FrontEndpointOfVoronoiEdge(pi, pj).
Report the first Voronoi edge E(pi, pj) ema-
nating from the Voronoi vertex V (pi, pj , pk).
repeat{

pj = pk.
pk = FrontEndpointOfVoronoiEdge(pi, pj).
if(pk is undefined) then exit the loop.
Report the Voronoi edge (segment) E(pi, pj)
(pair of indices i and j in practice) and the
Voronoi vertex V (pi, pj , pk) together with
its coordinates and three indices.

}(forever)
} until(i = i0)
Report the last Voronoi edge (ray) E(pi, pj)
emanating from the last Voronoi vertex.
pi = CounterClockwiseNextExtremePoint(pi).

}

We can also compute the smallest enclosing circle
of the points set by enumerating all the Voronoi ver-
tices and Voronoi edges in O(n2) time. The smallest
enclosing circle for a point set S is defined either by
three points associated with a Voronoi vertex or by
a diametral pair of extreme points. In the former
case the point must appear as a Voronoi diagram
of the farthest-point Voronoi diagram. In the lat-
ter case, the diametral pair of points must appear
as one associated with a Voronoi edge. Thus, if we
enumerate all Voronoi vertices and Voronoi edges,
we can find the center of the smallest enclosing cir-
cle. Since there are O(n) Voronoi vertices and edges,
the algorithm runs in O(n2) time.

Another application is to the smallest annulus of
a point set. Given a set S of n points in the plane,
two co-centric circles are called an annulus of S if
all the points of S lie between the two circles. See
Figure 7. The width of an annulus is the difference
of the two radii.

There are two cases to determine the center of the
smallest-width annulus. In one case one of the cir-
cles is determined by three points and the other by
a single point. In the other case both of them are
determined by two points. The center in the lat-
ter case is given as an intersection of two Voronoi
edges, one from the closest-point Voronoi diagram
and the other from the farthest-point Voronoi dia-
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gram of S [6]. An algorithm for enumerating all the
edges of the closest-point Voronoi diagram in O(n2)
time using O(1) work space is available [4]. Thus, a
straightforward algorithm is to enumerate all edges
of the farthest-point Voronoi diagram for each edge
in the closest-point Voronoi diagram and to check
intersection of those edges from different Voronoi
diagrams. This algorithm runs in O(n4) time and
O(1) work space.

Figure 7: The minimum-width annulus for a set of
points. The closest-point and farthest point Voronoi
diagrams are drawn in solid and dotted lines, respec-
tively, in the figure.

6 Concluding Remarks

We have presented a constant-space data structure
for the farthest-point Voronoi diagram, which is a
collection of algorithms to execute all of operations
associated with the diagram as efficiently as possi-
ble using only constant work space. A number of
problems are left open. One of them is to establish
some trade-off between running time and amount
of work space. Given work space of O(s), how fast
can we compute a farthest-point Voronoi diagram?
It is not known whether we can establish time com-
plexity such as O(n2/s) or O(n2/s log n). To answer
this question we need to devise a data structure us-
ing O(s) space with s = o(n). One typical question
is how fast can we draw a farthest-point Voronoi di-
agram for a set of n point in the plane using O(

√
n)

work space.
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