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1. Introduction

Recently, there are increasing research interests in FTV [1]
that offers arbitrary views of 3D scene. View synthesis is
important for prediction-based Multiview Video Coding (MVC)
and novel view display in FTV and other multiview imaging
application, such as 3DTV [2]. Generally, two original images,
which come from left and right sides respectively, are defined as
the references to generate the intermediate view using their depth
maps. Depth maps are obtained off-line by stereo matching with
energy optimization technologies [3]. Unfortunately, current
stereo-based depth estimation works are prone to generate errors
especially at textureless and boundary areas. Boundary errors
produce noticeable artifacts while smooth errors degrade the
overall PSNR of the generated view.

In many view synthesis methods, the straightforward
interpolation without any error correction was used to generate
the virtual view. Depth maps were projected to the virtual view,
followed by backward mapping the reference views. Mori et al.
[4] assumed that depth estimation was faithful to provide high-
quality depth maps. Median and bilateral filters were used to
smooth the projected depth maps before the backward projection.
Only random noises of depth maps were suppressed by naive
filters, while large depth errors still generated significant
synthesis errors. Lee and Ho [S5] proposed the Boundary Noise
Removal (BNR) procedure to reduce the artifacts in the
background. They detected occlusion holes by projecting depth
maps and defined noise areas around occlusions. However,
artifacts in the foreground were not eliminated and depth errors
of smooth areas were ignored. Besides that, occlusion detection
was not reliable since depth maps were erroneous. In [6], Yang et
al. proposed systematic reliability reasoning for the boundary
artifacts reduction. Although most visible artifacts of their
generated virtual views were successfully eliminated, the binary
reliability reasoning in [6] also ignored smooth areas, thus
degraded PSNR values of virtual views.

We find that view synthesis errors in the smooth areas are
symmetric for the two references. This property can be employed
to compensate projected references by each other. The projected
left reference can be automatically compensated by the projected
right reference and vice versa. For the boundary areas, our cross-
check based reliability reasoning assigns each projected pixel a
reliability value, which adaptively blends the pixel intensity and
avoids artifacts. Furthermore, our proposed continuous reliability
can also suppress the noise on smooth areas. Finally, both
smooth synthesis noise and boundary artifacts are reduced in our
reliability based view synthesis framework.

The rest of this paper is organized as follows. In Sec. 2, we
introduce the systematic error analysis for the view synthesis
using depth maps. Our reliability based view synthesis algorithm
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is proposed in Sec. 3. We demonstrate experimental evaluations
in Sec. 4. Sec. 5 concludes the paper.

2. Error analysis

2.1 The synthesis error of smooth areas

We start to present our idea by analyzing the synthesis error
for smooth areas. Generally, there are two symmetric input
references: 11 , Iz and their depth maps D: and Dk, from left
side and right side, respectively.

Using those two references and their depth maps, we can
generate two projected views for the virtual intermediate
viewpoint:

1. : Projected I: using D

1> : Projected Ir using Dk

Those two projected views are considered as two observations
and will be blended or averaged to generate the final virtual view.
Unfortunately, the independence between [J; and Dr leads to
independent synthesis errors in I: and /2 . This means that,
simply blending or averaging them can not suppress the natural
synthesis errors except random noise. In order to efficiently
compensate these errors, we introduce other two projected views
as additional observations:

I5: Projected Iz using D

14 : Projected I: using Dk

We can see J1, I2, Is and 14 are the complete four
combinations of two reference views with two depth maps.

The natural image can be considered as piece-wise continuous
[7]. Since depth errors in smooth areas are usually small, the
simplified piece-wise linear model is also suitable for our error
analysis on local smooth parts of the virtual view. The four
observations on the smooth areca of synthesized view are
simulated in Fig. 1. Note that we do not distinguish depth and
disparity. Depth maps are projected to the virtual viewpoint.
Here we assume D is smaller than Dk . Thus, we can obtain
three different error patterns (Fig. 1(a)-(c)) dependent on the
ground truth depth. The backward projection is utilized to
synthesize each pixel on the center view. In order to clarify the
presentation, the projected pixels of references are mapped to the
coordinate of virtual viewpoint. In Fig. 1(a), both D: and Dr
are larger than the ground truth. In Fig. 1(b), both Dr and Dk
are smaller than the ground truth. In Fig. 1(c), the ground truth
is larger than D: and smaller than Dk . If Di is larger
than Dk , we can obtain other three symmetric patterns.
Therefore, we can include complete depth error cases for smooth
areas.

It is interesting to see that for all depth error patterns in Fig. 1,
observation errors have the symmetric property. I1and s are
always symmetrically distributed beside the ground truth pixel.
Similarly, /2 and /s are also symmetric to each other. On the
other hand, /1 and /> are not always symmetrically located,
unless Dr and Dr are exactly same, which is not the usual case.
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Fig. 1 Simulation of smooth errors

Besides that, from Fig. 1(c) we find that the blending of
Tiand I may even generate worse synthesized view than the
original observation. For example, since IiandI:in Fig. 1(c)
are asymmetric located in the same side of ground truth pixel, the
average of them will cause larger synthesis error than I
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contrast, the blending or averaging of /1, I, Isand I+ can
compensate those errors automatically, by their symmetry
property. As shown in Fig. 1, the average of these four
observations should be the accurate value of ideal ground truth
pixel (black dot in the middle line), as long as the linear surface
assumption is true. We find that state-of-the-art depth estimation
[8] usually generates piece-wise linear depth maps for local
smooth areas. Thus, our error compensation with four
observations is reasonable. The simulation of error cases when
D, islarger than Dr is similar to Fig. 1.

2.2 The synthesis error of boundary areas

Now we consider boundary synthesis errors, which are visible
artifacts and would significantly degrade the virtual view quality.
The challenge is that the real synthesis error is between the
projected reference and the unknown virtual view, which should
be properly inferred. Here we follow [6] and use the reference
cross-check to approximate the boundary synthesis error. The
cross-check is carried out as following steps:

Step 1. The left (right) reference I ( Ix ) is projected to the right
(left) viewpoint, using Dr (Dk).

Step 2. The intensity difference between the projected 1z (Ir )
and original Iz ( 11 ) are computed.

Step 3. The cross-check differences € and €r are projected
back to the virtual viewpoint. »

The cross-check example for left reference is shown in Fig. 2.
We can see the boundary foreground pixels in the left reference
have incorrect disparities (background disparity). Two of the
foreground pixels are wrongly projected to the background area
of the center view, thus artifact happens. The cross-check can
successfully detect four erroneous projections, including the two
real artifacts pixels. Although this cross-check enlarges the
erroneous candidates, it can be considered as a minimum
coverage for view interpolation. This means that we avoid to
project artifacts pixels and their neighbor pixels. We find that
the artifacts from references also compensate each other [6]. For
example, the artifacts areas detected in left reference will not
happen in right reference, and vice versa. Thus, we can
compensate boundary artifacts by adaptively blending left and
right references using reliability. The cross-check errors are used
to formulate our reliability for view synthesis, which will be
presented in next section.

reference cross-check

Dashed line: cross-check detection. White circle: foreground pix.
Solid line: correct pixel projection. Black circle: background pix.

Fig. 2 Simulation of boundary errors
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3. Reliable view synthesis

We have analyzed potential synthesis errors for both smooth
areas and boundaries. However, those two kinds of errors should
be properly combined to automatically suppress errors in our
view synthesis framework. The main problem is how to
adaptively synthesize each pixel. Our basic idea is to assign each
pixel a reliability value, which is the weight for blending each
pixel from each observation. In other words, reliability is the
factor that determines how much contribution each observation
pixel has. One important advantage is that the reliability can
automatically integrate smooth error compensation and boundary
artifacts reduction. For smooth areas, all pixels from
observations will have comparable reliability values. Around
boundaries, reliable observation pixels have large reliability
values and dominate the blending. The occlusion holes will be
considered as the most unreliable areas and should not be
blended at all. Thus, we can quantify reliability by the cross
check errors €1 and €r , which are the approximate versions of
real synthesis errors.

We define that the reliability for each non-occluded pixel of
references should be inverse proportional to the corresponding
cross-check error. This definition heuristically matches the truth
that large synthesis errors should have small weight or reliability
in the interpolation. For occluded pixels, we define their
reliability as zero. Thus, for each pixel P in the virtual view,
we have reliability values V1, , 2, , ¥3p and 74, , for its
corresponding pixels in observations 11, f2, Isand I4,
respectively.

-

21 non—occl(D,)
ro=9e.,+t (1)
0 occl(D,)
—71— non—occl(Dy)
P2, =19 €p, t1 2)
0 occl(Dy)
21 non—occl(D, & D)
ri, =4, +t 3)
occl(D, | Dy)
non—occl(D, & D,)
;»Uzje,ipﬂ EUTRT @y
0 occl(D, | Dy)

Where €1, and €rp are the cross-check errors for the particular
synthesized pixel P . The tuning parameter is used to control
the adaptivity of the reliability. For example, when [ is large, the
cross-check error can be ignored and all reliability values tend to
be constant. In contrast, if  is zero, the reliability will be highly
spatial varying.

Note that observations s and 14 contain both occlusions
and disocclusions. Thus their valid areas should not be occluded
in either left or right depth maps.
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After the reliability computation, we can obtain the reliable
view synthesis result for the intermediate virtual pixel fp :

f _ rlp]lp+r2p12p+r3p13p+r4p 4p
’ Vip+Fap+FiptFap
Where 11, , 125, Ispand 14, are the corresponding pixels
of P in observations I, 1., Isand 1., respectively.

From (5), we can see our view synthesis algorithm is the pixel-
wise weighted view blending. The reliability will automatically
benefit correct projected pixels while preventing wrongly
projected ones and compensating errors.

Finally, for the residual holes which can not be synthesized

from either left or right references, we utilize inpainting [9] to fill
them.

®)

4. Experimental evaluations

The proposed method will be evaluated on two standard
MPEG video sequences [10]. The first one is the “Champagne
Tower” (Fig. 3) with 200 temporal frames. The view size of each
single frame is 1280 x 960. “Champagne Tower” is a challenging
sequence for view synthesis. Due to the sharp contrast between
different object colors, boundary depth errors would generate
visible artifacts. The textureless background and foreground also
cause depth errors in smooth arecas and add noise in the
observations. Another test sequence is the “Book arrival” (Fig. 3)
with 100 temporal frames. Each single frame has the size of 1024
x 768. For both two sequences, we utilize MPEG depth
estimation reference software [11] to generate corresponding
depth maps. The depth estimation is based on stereo matching
using graph cuts [8]. Thus, depth errors on the textureless smooth
areas and boundaries are inevitable.

All frames are well calibrated and rectified. We use left and
right references and their depth maps to generate the center view.
The tuning parameter £ is heuristically set to be 160. The depth
maps used in our experiments are shown in Fig. 3. Since human
eyes are much more sensitive to the changes of luminance than
chrominance, we compute the reliability in luminance channel
for each pixel of observations. The improvements of the
proposed method are measured by the comparisons against the

Fig. 3 Left references (top) and the depth maps
(bottom). From left to right: Champagne Tower
and Book Arrival
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Fig. 4 Local synthesis results for “Champagne”
(top) and “Book” (bottom). From left to right:

ground truth, synthesis without reliability, BNR,
binary reliability method and proposed method

Champagne Tower

[==no refiability -~ BNR ~-bin - proposed

PSNR{dB)

1 1t 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201
Frame

Book Arrival

[m no reliability -+ BNR - bin proposed

1 6 11 16 21 26 31 36 41 46 51 5 61 66 71 76 81 86 91 96 101
Frame

Fig. 5 PSNR comparisons

view synthesis without reliability [12], view synthesis with BNR
[5], view synthesis with binary reliability [6] and the ground
truth. We magnify the local areas for visual purpose. Fig. 4
shows the comparisons of different view synthesis results. We
can see the proposed method generates the fewest artifacts in
comparison to other methods.
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We find that both binary reliability based view synthesis and
our proposed method can significantly reduce the artifacts
around boundaries (red circles). However, our method still
generates fewer artifacts in smooth areas. The objective PSNR
comparisons are also illustrated in Fig. 5. It is clear that the
proposed method consistently outperforms all other methods on
all test frames.

5. Conclusions

In this paper, we introduce a new reliability based view
synthesis method which automatically suppresses the synthesis
errors for FTV. The proposed reliability is quantitively estimated
based on the reference cross-check, which gives each pixel an
individual weight for the view synthesis. We demonstrate our
experimental results on MPEG sequences and show the
outperformance of our method both at subjective artifacts
suppression and objective PSNR improvement.
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