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Prototype Implementation and Its Fundamental
Performance Evaluation of a Manycore-Aware OhHelp’ed

PIC Simulation Code

Hiroshi Nakashima1,a) Keisuke Kikura2,b) YoheiMiyake2,c)

Abstract: We are now developing a manycore-aware implementation of PIC simulation code based on EMSES, a
highly parallel production-level space-plasma simulator with the load-balancing library OhHelp. As a step of the de-
velopment, we implemented its prototype to confirm the effectiveness and efficiency of our manycore-aware techniques
such as cell coloring, on-the-fly particle sorting, and position-aware inter-process particle transfer. In this report we
summarize these issues and then present results of fundamental performance evaluation with various artificial settings
including those causing severe load imbalance among processes.

1. Introduction
We are now developing a manycore-aware implementation of

PIC (Particle-In-Cell) simulation code based on EMSES[1], a
highly parallel production-level space-plasma simulator with the
load-balancing library OhHelp[4], targeting processors of many
tens (or hundreds) of ordinary cores with a wide SIMD mecha-
nism such as Intel Xeon Phi. As the very first step of our develop-
ment, we have implemented a proof-of-concept single-node ver-
sion[3] with cell-coloring, strict particle-binning and field-array
scalarization for full exploitation of many cores and SIMD mech-
anism as summarized in Section 2, to have good single-processor
performance of the KNC (Knights Corner) version of Xeon Phi
which significantly surpasses that of ordinary Xeon Haswell.
However, this single-node implementation is obviously far

from our goal because a production level PIC simulator must be
capable of many billions of particles which a single node cannot
accommodate. Therefore, we have proceeded to the next step for
a prototype multi-node implementation with OhHelp as discussed
in this report. We consider the implementation as a prototype be-
cause, though its kernels for time-evolutional particle and elec-
tromagnetic field simulation are very realistic, we omit various
features required for a production level simulator, such as ini-
tial particle/field settings, (occasional) Poisson equation solving,
non-periodic boundary conditions, snapshot output, and so on.
However, since the key performance issues of manycore-aware
PIC simulators lie in the particle management mechanism, we
believe our prototyping is the essential step toward our ultimate
goal.
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In fact, as discussed in Section 3, we found a few critical im-
plementation issues on the management of both intra- and inter-
process particle motions. That is, we found that an optimization
to reduce the number of inter-process particle transfers causes
an artificial depletion of particle bins to make our strict bin-
ning unexpectedly costly. Another finding is that OhHelp’s load-
balancing mechanism sometimes allocate a small but congested
particle mass to a process in which a severe intra-process imbal-
ance occurs to add a significantly large cost to the binning. Our
work is of course not only to point out difficulties but also to find
reasonably efficient solutions for them as shown in the section.
The efficiency of our solutions and of the whole of our proto-

type implementation are evaluated in Section 4 with various arti-
ficial settings of particle distribution and motion. These evalua-
tions also revealed a performance bottleneck due to poor single-
core performance of the KNC version of Xeon Phi by which inter-
node MPI communication performance is limited and the optimal
per-processor number of processes is shifted higher than expected
and desired.
The evaluation also prompted us to improve our implemen-

tation as summarized in the concluding Section 5, in which we
show our to-do list toward the goal as well.

2. Basic Single-Node Implementation
In this section, we summarize manycore-aware issues of the

single-node PIC implementation we presented in [3]. The PIC
method is to simulate the motion of plasma particles being ions
and electrons by modeling them as a huge set of super-particles
moving in a large scale discretized electromagnetic field. In a PIC
simulation, the time evolution of the system is tracked by repeat-
ing the following three operations for each discrete time step.
Particle-push is to accelerate each particle by electric and

Lorentz force laws referring to the electric and magnetic
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Fig. 1 Particle-push and current-scatter.

fields E and B surrounding the particle. More specifically,
with the first-order shape function, the acceleration acting
on a particle p is determined by its position xp, velocity up,
mass mp, charge qp and the electromagnetic field vectors E
and B defined at the set of grid points δxp being the eight ver-
tices of the cubic cell in which the particle resides, as shown
in Figure 1. Then the particle moves to a new position xp
according to its updated velocity up.

Current-scatter is to calculate current density J summing up
the small currents caused by the motion of charged particles.
From the viewpoint of a particle p, this calculation is to add
the contribution of its motion to J at δ(xp − up) and δxp
corresponding to the cell in which the particle reside before
and after the motion respectively, according to the first-order
shape function again, as shown in Figure 1.

Field-solve is to update E and B with J using the leapfrog
method to solve Maxwell’s equations.

The fundamental problem in PIC implementation on manycore
processors lies in particle-push and current-scatter in which E, B
and J at the grid points δxp are accessed for each xp. That is, if
particles are ranked in a one-dimensional array (or a set of them)
in the order of processing but randomly in their positions, three-
dimensional field-arrays for E, B and J are accessed randomly
to make SIMD-vectorization of these hot-spot kernels ineffec-
tive, hard or even impossible. More importantly, even if particles
are sorted according to their resident cells (e.g., in lexicograph-
ical order of positions of cells) so that field-array components
accessed for contiguously ranked particles are common, SIMD-
vectorization will not work well unless our compiler recognizes
the fact of sorted conformation of particles and the commonality
of filed-array accesses.
To solve the problem, we devised two efficient and combined

implementation techniques; namely strict particle binning to rank
all particles in a cell in a portion of a structure-of-array (SOA)
type set of one-dimensional arrays for vector components of par-
ticle positions and velocities; and field-array scalarization to
cache all components of field-arrays commonly accessed by par-
ticles in the cell into a set of local scalar variables explicitly show-
ing the compiler that they are invariant in the loop scanning par-
ticles in the cell. More specifically, particles are stored in the set
of six one-dimensional arrays for positional and velocity vector
components, while cells are represented by an array-of-structure
(AOS) type three-dimensional arrays to keep the location and size
of each particle bin in the particle arrays. As shown in Figure 2,
particle bins are separated by a certain amount of gaps in order
to reduce the possibility of mutual collision of them, or particle
overflow in other words, due to the inter-cell transfer of particles.
With the conformation of cells and particles above, particle-
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Fig. 2 Cells and particle bins.
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Fig. 3 Moving a particle from a bin to another.

push and current-scatter are implemented by the following four
loops to scan particles in a cell, first three of which are enclosed
by a triple nest of cell scanning loops while the last one is in an-
other nest of cell scanning loops.
Loop-1 is for the first half of particle-push to update up for all p

in a cell c referring to 48 = 2 × 8 × 3 scalarized components
of E and B around c and common to all p. Since the arrays
for xp and up are accessed sequentially and the updates of up
are independent of each other, this loop is perfectly SIMD-
vectorized.

Loop-2 is for the first half of current-scatter to update 12 =
4 × 3*1 scalarized J’s components around the cell before the
motion of the particles in it, and then to update xp for the
second half of particle-push remembering the cell to which
p moves by an integer code −13 ≤ dp ≤ 13 corresponding
to {−1, 0, 1}3. Since the arrays for xp and up are accessed
sequentially again, this loop is perfectly SIMD-vectorized
thanks to vectorized accumulation of scalarized J ′s compo-
nents. After the completion of the loop, the scalarized J’s
components are written back to the array of J.

Loop-3 is to move each particle p whose moving code dp is not
for (0, 0, 0) from its original bin to another to keep the strict
binning by this on-the-fly sorting. As shown in Figure 3, a
particle moved from a cell (c1) to another (c2) is placed at
the tail of the destination bin (for c2), while the vacancy in
the source bin (for c1) is filled by the particle at the tail of
the bin itself. This sorting is efficient because its temporal
cost is proportional to the number of particles moving across
cell boundaries rather than that of whole simulated particles
thanks to the fact that particles in a bin may be ordered ar-
bitrarily, as far as we can find rooms for moving particles in
the gaps between bins.

*1 Not 24 = 8 × 3 because in our formulation a velocity vector compo-
nent, say x-component, contributes only to x-components of J’s vectors
at vertices of a cell surface.

c© 2016 Information Processing Society of Japan 2

Vol.2016-HPC-153 No.15
2016/3/2



IPSJ SIG Technical Report

Fig. 4 Cell coloring for conflict-free current-scatter and particle move.

Loop-4 is for the second half of current-scatter to update scalar-
ized J’s components around the cell after the motion of the
particles staying in or moving into it. As well as the Loop-
2, this loop is perfectly SIMD-vectorized and is followed by
the write-back of the scalarized J’s components.

Note that in ordinary implementations these four loops are fused
into one loop to minimize the number of accesses to particle com-
ponents, but we split them by the following reasons. Loop-2 is
split from Loop-1 to reduce register pressure caused by 48 com-
ponents of E and B in total which occupy at least 48/w vector reg-
isters of w double-precision floating-points (DPFP) for each even
with an ISA capable of register operand broadcast and/or broad-
cast instructions*2, and by 12 components of J which need 12
vector registers for vectorized accumulation. Loop-3 is split from
Loop-2 because the operation to move particles across cell bound-
aries is hardly SIMD-vectorizable and thus fusing these two in-
hibits the vectorization of Loop-2. Finally, Loop-4 is split from
others because, in order to SIMD-vectorize the loop with scalar-
ization, all particles must be in the bins corresponding to their
position after their move.
In addition, in order to have many threads, up to 240 in Xeon

Phi KNC, work on each of four loops above in parallel, we ap-
ply coloring to cell blocks. As shown in Figure 4, we assign a
cell block being a set of cells in the shape of cuboid to a thread
and then decompose the block D-dimensionally (D = 2 in the
figure) to have 2D sub-blocks giving 2D colors to each of them.
Then the cell scanning loop nest surrounding Loop-1, -2 and -3
and that surrounding Loop-4 are also colored so that at a time all
threads work on their own cells of a particular color and particles
in them with a barrier synchronization on color switching. Since
in current-scatter we update J’s components at the vertices of a
particular cell, it is obvious that updates made by a thread cannot
collide with those by other threads, if a sub-block has at least two
cells along each of decomposed axis. This conflict-free property
of the updates in Loop-2 and Loop-4 is also seen in moving par-
ticles across cell boundaries in Loop-3, because a particle may
travel to one of the cells adjacent to the cell in which the particle
resided to make the update of the destination bin conflict-free too.

3. Multi-Node Implementation
3.1 Baseline Implementation
Our multi-node implementation is based on EMSES[1] in

which the load-balancing library OhHelp[4] is used to decom-
pose the simulated space domain regularly but to assign up to two
decomposed subdomains, primary and secondary ones, to a pro-
cess so that processes whose primary subdomains have particles

*2 Xeon Phi KNC has a limited operand broadcast functionality to allow
four scalar DPFPs are in a vector register with a duplication.

more than per-subdomain average, or helpand processes in short,
are helped by other helper processes. One important feature of
EMSES is that each process has halo cells surrounding its pri-
mary and secondary subdomains to keep particles logically going
out from the subdomains from physically transferred to other pro-
cesses. That is, EMSES does not perform inter-process particle
transfer until some processes find their particles go out from their
halo cells, drastically reducing the frequency of inter-process
transfers and load-balance managements taken by OhHelp.
By this optimization with halo cells and OhHelp’s inherent

mechanism to keep good load-balancing, EMSES shows excel-
lent scalability. For example, our performance evaluation with
128-node/4096-core Cray XE6 given in [1] shows 70% and 66%
parallel efficiency, just 1-2% less than the 1-node/32-core effi-
ciency, for the settings with perfectly uniform distribution of par-
ticles and with extremely congested one in which all particles are
in 1/4096 of the whole space domain, respectively.

3.2 Intra-Process Particle Distribution
An important implementation issue of our OhHelp’ed multi-

node implementation is that OhHelp is unaware of particle posi-
tion when it takes care of inter-process particle transfer*3. More
precisely, OhHelp’s level-2 interface[2] assumes the following
properties.
( 1 ) Particles are stored in a one-dimensional AOS-type array,

while we use SOA-type arrays for six components.
( 2 ) Particles are packed in the array, while our arrays consist of

a set of particle bins separated by inter-bin gaps.
( 3 ) Particles which a process receives may be stored in any lo-

cations of the array*4, while we need to store them in corre-
sponding bins.

( 4 ) Particles which a process sends and their destination pro-
cesses may be chosen arbitrarily*5.

Since the first three properties are logically inconsistent with our
implementation, we have to abandon the easy way to rely on
OhHelp’s particle transfer mechanism. Therefore, we use level-1
interface*6 of OhHelp by which we are informed of the number of
particles to be sent and received to/from other specific processes
to keep good load-balancing, while we may (or must) design our
own particle transfer mechanism. In summary, we pick particles
to be sent, send/receive identifiers of cells to which the particles
belong to, send/receive each of components of particles, and then
stores received components into corresponding bins consulting
the received cell identifiers.
On the other hand, we may assume the fourth property in our

own mechanism to choose particles to be sent and their destina-
tion processes, because any choices are logically correct. Sup-
pose we have a set of particles P belonging to a subdomain n
which the process n takes care of as its primary subdomain while
another helper process m does as its secondary one. In this case,

*3 OhHelp has position-aware extensions for particle collision and SPH, but
they are incompatible with our aim.

*4 At the tail of the array, in fact.
*5 By a simple FCFS-like match-making with ordered set of particles and

that of recipients.
*6 Together with level-3 interface for inter-process communication of field

arrays.

c© 2016 Information Processing Society of Japan 3

Vol.2016-HPC-153 No.15
2016/3/2



IPSJ SIG Technical Report

10/5

10/7 20/7 30/7 40/7 50/7 60/7

20/5 30/5 40/5

6/7

6/10 × 3 ⇒ 2

4/5

3 − 2 ⇒ 1

4/7

5 − 2 ⇒ 3

3/5

4/10 × 5 ⇒ 2

1/7

2 − 1 ⇒ 1

1/5

4/10 × 2 ⇒ 1

prior(n)

N � (c)

prior(m)

N � (c)

I �

I �

particles
and cells

Fig. 5 Intra-process distribution of 10 particles in 3 cells for two processes
n and m such that |Pn | = 6 and |Pm | = 4.

OhHelp tells us the cardinality of two partitions of P, namely |Pn|
and |Pm| where Pn ∪ Pm = P and Pn ∩ Pm = ∅, while any confor-
mation of Pn and Pm is logically correct. For example, we may let
Pn and Pm have particles whose indices in the SOA-type arrays
are small and large, respectively.
However, such a simple partitioning of P must bring us severe

performance problems because it is inconsistent with our intra-
process decomposition of the subdomain n. That is, if |Pn| ≈ |Pm|
and particles in P are uniformly distributed in n or a slab nearby
its surface, the partitioning gives Pn and Pm particles residing
lower and upper half of n in some sense resulting in a thread-
level load imbalance because only a half of threads work on the
received particles. In addition, since the subdomain n is some-
what congested, it is expected that cells accommodating particles
P are also congested resulting in that the processes n and m have
unusually congested cells whose bins are easily overflown.
Therefore, we take more care about the partitioning so that Pn

and Pm have particles whose spatial distribution is similar to P
as much as possible. This intra-process uniform distribution is
accomplished as follows. Let P = {p0, . . . , p|P|−1} whose order
corresponds to the spatial distribution of particles in P, e.g., the
lexicographical order of cells accommodating the particles in the
subdomain n. Also let Ik where k ∈ {n,m} be the set of conceptual
indices of rational numbers, Ik = {(i · |P|)/(|Pk |+ 1) | 1 ≤ i ≤ |Pk |}.
Then we sort a set I = {(i, k) | i ∈ Ik, k ∈ {n,m}} to have as-
cending sequence I = {(i0, k0), . . . , (i|P|−1, k|P|−1)} by which we let
Pk = {p j | ( j, k) ∈ I}, as shown in the upper half of Figure 5.
For the real implementation, however, we devised the follow-

ing more efficient algorithm by which almost equivalent distri-
bution is accomplished without the sorting as exemplified in the
lower half of Figure 5.
( 1 ) Let prior(k) = |Pk |/(|Pk | + 1) and share(k) = |Pk |/|P| for

k ∈ {n,m}.
( 2 ) Visit all cells c such that π(c) ⊆ P, where π(c) is the set of

particles accommodated by c.
( 3 ) At each visit of c, assign Nk(c) = round(share(k) · |π(c)|)

particles to k = argmax{prior(k) | k ∈ {n,m}} and Nl(c) =
|π(c)| − Nk(c) particles to l = argmin{prior(l) | l ∈ {n,m}}.
Then let prior(k) ← prior(k) − (Nk(c)/(|Pk | + 1)) for k ∈
{n,m}.

( 4 ) Periodically update share(k) so that it approximates (|Pk | −
∑
Nk(c))/(|P| − ∑(Nn(c) + Nm(c))) where the summation is

for all c which we have already visited*7.
Note that the real implementation is of course capable with any
*7 This operation is not shown in Figure 5.
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Fig. 6 Shifting three sequences of particle bins, forward for two and back-
ward for one, by two (red and blue) threads.

number processes rather than two, and the prioritized assignment
is efficiently implemented with a heap structure for prior(·). Also
note that the periodical update in (4) is to avoid frequent floating-
point divisions which we would have to perform in each visit of
cells, while the update of prior(·) does not require a division be-
cause Nk(c)/(|Pk | + 1) is approximated by Nk(c) · (1/(|Pk | + 1))
with a sufficient accuracy.

3.3 Particle Overflow
3.3.1 Particle Bin Shift
On-the-fly sorting performed by Loop-3 shown in Section 2

may face particle overflow when the destination bin of a particle
does not have a gap between the bin following it. If it happens,
fundamentally we have to rearrange all bins, by resizing them
not only for enlarging the overflown bin but also to give all bins
sufficiently large gaps between them according to the number of
particles in them, and by an in-place shift of them according to
the resizing result.
Though the in-place bin-shift is anO(N) procedure whose tem-

poral cost is proportional to the number of particles which a pro-
cess accommodates, we need to make the cost as small as pos-
sible because at least its memory access cost is comparable with
particle-push and current-scatter. Therefore, we need to make the
shifting procedure multithreaded and SIMD-vectorizable. Our
bin-shift has the following two steps. First we find a sequence
of bins whose moving directions are coherent, i.e., forward to-
ward larger indices or backward toward smaller indices as shown
in Figure 6. Then second, for each sequence of bins having a co-
herent direction, we perform multithreaded shift assigning bins
in the sequence to threads so that each thread has as many bins
as possible with a constraint that the total particle count in the
bins does not exceed the size of a thread-local buffer through
which particles are shifted. That is; (a) we scan bins in a forward
(resp. backward) sequence descendingly (resp. ascendingly) as-
signing them to threads; (b) let all threads copy particles in their
bins into their buffers; (c) after a barrier synchronization, let all
threads make a copy again but this time from buffers to bins in
shifted locations; and repeat (a)–(c) until all bins in the sequence
are processed. Note that the copy from/to bins to/from buffers is
obviously SIMD-vectorizable, and shows a good access locality
with buffers of a size able to be accommodated in, e.g., secondary
caches because the shift amount is expected not so large.
3.3.2 Particle Bin Resizing
Prior to shifting bins, we have to resize particle bins enlarging

and shrinking inter-bin gaps to make the possibility that the over-
flow happens again and soon as small as possible. We determine
the bin size of a cell c, namely B(c) = |π(c)| + g(c) where g(c) is
the size of the gap following the particles in π(c), by two factors.
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One is the fixed constant gap g f to make g(c) ≥ g f regardless
|π(c)|*8. The other gap amount gv(c) is determined by |π(c)| to
let g(c) = gv(c) + g f exploiting the space preserved by enlarging
the size of SOA-type arrays Narray from its minimum requirement
Nmin by a margin factor. That is, with a given per-process aver-
age number of particles Nave and load-imbalance tolerance factor
αt ≥ 1, Nmin is defined as Nmin = αt · Nave, while Narray is deter-
mined by the margin factor αm ≥ 1 as Narray = αm ·Nmin+ |Cn| ·g f ,
where Cn is the set of all cells which a process n has. Since
the number of particles Nn which the process n accommodates
should satisfy Nn ≤ Nmin ≤ Narray, we have an unoccupied space
of Narray − Nn for gaps in total of all bins in n. More specifically,
we have Narray − Nn = ∑c∈Cn g(c) = |Cn| · g f +

∑
c∈Cn gv(c). There-

fore, what we can do for the reduction of overflow frequency is
to determine each gv(c) appropriately and according to |π(c)| with
the constraint

∑
c∈Cn gv(c) = Narray − Nn − |Cn| · g f = Mn.

Intuitively, it looks natural to make gv(c) proportional to |π(c)|,
i.e., gv(c) = (|π(c)|/Nn) · Mn because the more a bin has parti-
cles, the more quickly the population will grow to require a wider
gap. However, since this simple allocation is unaware of how
many particles a bin has had for past simulation steps, a cell can
suffer repetitive overflows if it has oscillating population of par-
ticles. Worse, such oscillation might be caused by halo-cells by
which we reduce the number of occurrences of inter-process par-
ticle transfers.
Suppose we have a steady eastbound stream of uniformly

distributed particles. Without halo-cells such a stream should
cause frequent inter-process particle transfers crossing eastern-
most boundary surface of subdomains, while per-cell particle
density would be kept stable because of the steadiness of the
stream and the uniformity of particle distribution. With halo-
cells, on the other hand, the frequency of inter-process transfers is
drastically reduced, but we have instability of particle populations
at halo-cells just outside the easternmost surface and ordinary
cells just inside the westernmost surface. That is, the particle pop-
ulation of a halo-cell ce at the easternmost surface should grow
steadily to cause repetitive overflows in which its bins become
larger and larger because of the growing |π(ce)|. On the other
hand, since the corresponding ordinary cell cw at the westernmost
surface does not have any incoming particles but has steadily out-
going ones, |π(cw)| steadily decreases to make its bin smaller and
smaller each time we have overflow at ce. Then we have a particle
going out from ce and thus the process accommodating it to make
ce empty by throwing all particles in it away to the east-neighbor
process, while cw suddenly receives many particles from the west-
neighbor to cause overflow of its bin. Therefore, cw’s bin should
be inflated again while ce’s should become deflated to minimum
size g f because |π(ce)| = 0. Then the story repeats again and
again with periodically overflow of ce during the steps without
inter-process transfer, and that of cw at the transfer.
To cope with such oscillatory repletion and depletion including

artificial ones which we see in ce and cw, we use the margin M not
only for enlarging repletive bins but also for keeping the size of
(temporarily) depletive bins as large as possible, as follows. We

*8 More precisely, for cells outside halo cells, their g(c) is always g f /2.

partition the set Cn into two subsets, C+n = {c | |π(c)| > B(c) − g f }
and C−n = {c | |π(c)| ≤ B(c) − g f }, i.e., according to the crit-
icality of the repletion level of bins. Then for c ∈ C+n we let
gv(c) = (|π|/Nn) · Mn to enlarge their bins including those over-
flown because such cells obviously in C+n . On the other hand, for
c ∈ C−n we let gv(c) as follows, where R(c) = B(c) − g f − |π(c)|.

gv(c) =
R(c)

∑
c∈C−n R(c)

·
∑
c∈C−n |π(c)|
Nn

· Mn

The equation above means that the space of (
∑
c∈C−n |π(c)|/Nn) ·Mn

remaining for c ∈ C−n is given to their bins proportional to the size
R(c) of their rooms in order to keep the room size as large as pos-
sible. Since this resizing is aware of the fact that a cell had been
replete somewhat remembered in its bin size and thus in R(c), in
the steady flow case the bins of ce and cw are kept sufficiently
large to avoid repetitive overflows providing Mn is sufficiently
large as well.
3.3.3 Overflow Buffering
Though the resizing shown in Section 3.3.2 is aware of the past,

it cannot be aware of the future of course. For example, if a small
but congested mass of particles moves along a way, the cells on
the way should suffer overflow due to the unusual denseness. Un-
fortunately, such a local congestion may occur even in the case
that the particle density is smoothly changed without any local
anomalies when we have a global deviation of the density, by an
artifact of OhHelp’s load-balancing mechanism.
That is, with the global deviation, OhHelp occasionally per-

forms the reassignment of secondary subdomains to reestablish
perfect balancing when the past assignment is unable to keep
good balancing due to the change of spatial conformation of the
deviation by, e.g., the move of the large mass with relatively high
density. This rebalancing could give a secondary subdomain m
with quite small number of particles to a process n when its pri-
mary subdomain is also congested. Then suppose the mass moves
to make the secondary subdomain denser and thus the load of the
process n heavier. This increase of the load, however, may be
suppressed in a short period due to the sufficiently heavy load of
n’s primary subdomain so that other processes also responsible
for the subdomain m receive more incoming particles. There-
fore, since the secondary subdomain m in the process n was quite
rarefied at the rebalancing, n has a small mass of artificial local
congestion due to a small number of inter-process transfers and
will suffer repetitive overflows caused by the move of the artificial
mass.
In order to avoid such a repetition caused by a small number of

particles overflown from bins, we keep them in thread-local over-
flow buffers instead of performing the bin rearrangement imme-
diately at each overflow. That is, overflown particles are stored in
the buffer and on them particle-push and current-scatter are per-
formed in a SIMD-unaware manner, i.e., with random accesses
to the array of E, B and J according to their positions. For ef-
ficiently multithreading the operations, however, we preserve the
conflict-free property of current-scatter and inter-cell transfer by
giving colors and sub-colors to the buffers. As shown in the left
half of Figure 7, each thread has 2D sets of colored buffers each
of which consists of 2D buffers with sub-colors (circled numbers
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Fig. 7 Colored overflow buffers of a thread and the correspondence of their
sub-colors and the direction of particle motions.

in the figure), one is large and others are small, where D is the
dimensionality of the cell block decomposition.
That is, a particle overflown from the bin of a cell of a color is

stored in one of the buffers of the same color. As for the choice
of sub-color of the destination buffer, it is determined as follows.
If the source and destination cells of the particle motion share a
color, the destination buffer is major one of sub-color 0 because
the move cannot conflict those made by other threads. Otherwise,
i.e., if the particle crosses a colored sub-block boundary, the des-
tination being major or one of minors is determined by the direc-
tion of the motion as shown in the right-half of the figure so that
moves made by multiple threads to a particular cell or cell sub-
block are conflict free. As for particle-push and current-scatter
for the particles in the buffers, their conflict-free multithreading
is easily implemented by performing them color-by-color with
barrier synchronizations on color switching.
Though the buffering will significantly reduce the frequency of

bin rearrangement, we need to perform them emptying all buffers
in the following cases.
• A particle overflown from a cell also causes overflow of its
destination buffer. If this happens, we have to suspend the
push operations of particles in the ordinary bins or buffers,
perform the bin rearrangement, and then resume the pushes.

• The cumulative number of particles processed in the buffers
exceeds a threshold, because SIMD-unaware particle-push
and current-scatter on particles in buffers are significantly
slower than their SIMD-aware counterparts on those in bins.
More specifically, we accumulate the per-buffer maximum
number of particles among all threads and sub-colors and,
if it exceeds a threshold θ being the double of the size of a
major buffer, the rearrangement takes place.

• Inter-process particle transfer takes place, because it is ex-
tremely tough to perform the position-aware transfer with
particles in the buffers whose positions are random. Simi-
larly, if it is known that particles incoming to a process cause
overflow, the rearrangement takes place as well prior to their
reception.

4. Performance Evaluation
4.1 Environment and Settings
We implemented the prototype with C99 and OpenMP 3.0,

compiled it by Intel Composer version 14.0.5 with -ipo and
-O3 options of optimization, and linked it with Cray MPI ver-

Table 1 (a) System domain size according to the number of nodes N, and
(b) subdomain size according to the number of per-node processes
P.

N system domain size
1 30 · 1 × 60 · 1 × 120 · 1 = 30 × 60 × 120
2 30 · 2 × 60 · 1 × 120 · 1 = 60 × 60 × 120
4 30 · 2 × 60 · 2 × 120 · 1 = 60 × 120 × 120
8 30 · 4 × 60 · 2 × 120 · 1 = 120 × 120 × 120
16 30 · 4 × 60 · 2 × 120 · 2 = 120 × 120 × 240
32 30 · 4 × 60 · 4 × 120 · 2 = 120 × 240 × 240

(a)
P subdomain size
1 30/1 × 60/1 × 120/1 = 30 × 60 × 120
2 30/1 × 60/1 × 120/2 = 30 × 60 × 60
3 30/1 × 60/1 × 120/3 = 30 × 60 × 40
4 30/1 × 60/2 × 120/2 = 30 × 30 × 60
5 30/1 × 60/1 × 120/5 = 30 × 60 × 24
6 30/1 × 60/2 × 120/3 = 30 × 30 × 40
10 30/1 × 60/2 × 120/5 = 30 × 30 × 24
12 30/1 × 60/2 × 120/6 = 30 × 30 × 20
15 30/1 × 60/3 × 120/5 = 30 × 20 × 24
20 30/1 × 60/4 × 120/5 = 30 × 15 × 24
30 30/2 × 60/3 × 120/5 = 15 × 20 × 24
60 30/2 × 60/3 × 120/10 = 15 × 20 × 12

(b)

sion 7.1.3. The prototype is run on up to 32 nodes of Cray X30,
whose node is comprised of a Intel Xeon Phi 5120D, whose
peak DPFP performance 1.01 TFlops is given by 60 cores of
1.053GHz, hosted by a Xeon E5-2670v2 (Ivy Bridge), in native-
mode to make all computations done only by Xeon Phi.
For the test simulations, we have two cases with artificial set-

tings of particle distribution namely uniform and congested ones.
In the latter case, particles are also uniformly distributed but in
a quadrant of the system domain, [0, S x/2) × [0, S y/2) × [0, S z)
at initial where S x, S y and S z are the sizes of the system domain
along three axes, to cause severe imbalance of particle distribu-
tion. In both cases, the following common settings are used.
• All particles of 128 × S x × S y × S z (i.e., average per-cell
density is 128) are partitioned into two species one of which
steadily travels to east and the other to west with common
velocity 1/64 in the system domain, whose boundaries are
fully periodic, in the simulation of 2000 time steps. Note that
categorizing particles into a few species saves the amount of
memory space required by particles because the mass mp
and charge qp are common for all p of a particular species,
as done in many of PIC simulators. Also note that the veloc-
ity 1/64 reflects the fact that in production-level simulation
with EMSES the per-cell and per-step number of incoming
(and thus outgoing) particles is 1–2% of the total number,
while it is 1.56% to have 2 = 128× (1/64) particles crossing
a cell-boundary on average in this setting.

• To each node, a fixed size cuboid grids of 30 × 60 × 120
is allocated. Then using this unit cuboid as the build-
ing block, N-node weak-scaling simulations such that N ∈
{1, 2, 4, 8, 16, 32} are carried out for system domains of S x ×
S y × S z = 30Nx × 60Ny × 120Nz where Nx ·Ny ·Nz = N so as
to minimize the sum S x +S y +S z and to make S x ≤ S y ≤ S z
for tie break, to have domain size shown in Table 1(a). With
the per-cell average density of 128, we have nearly 1 billion
particles in 32-node executions, or 0.88 × 109 of them more
accurately.
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Fig. 8 Performance of uniform case with best process/hyper-threading con-
figuration (blue) and fixed one with P = 12 and H = 2 (red).

• The cuboid for a node is decomposed for P intra-node pro-
cesses such that P is one of 12 divisors of the core count 60
to have one of 12 process configurations Px×Py×Pz = P and
per-process cuboids of sx× sy× sz = 30/Px×60/Py×120/Pz
to be given to processes as their primary subdomains, as
shown in Table 1(b). In addition to the cells in the cuboid,
each process has two types of halo cells surrounding its pri-
mary and secondary subdomains; inner ones just outside the
cuboid to keep particles going out from subdomains in mul-
tiple time-steps; and outer ones just outside the inner halo
cells by which particles are temporarily accommodated be-
cause the intrusion of a particle to such a cell triggers inter-
process particle transfer at the end of a time-step.

• The subdomain cuboid for a process is decomposed for T×H
threads such that T × P = 60 and H ∈ {1, 2, 3, 4} for hyper-
threading. The decomposition is 2-dimensional and is ap-
plied to yz-plane so that threads have beams and form an
array of Ty × Tz = T × H so as to minimize sy/Ty + sz/Tz
and then to minimize Ty + Tz for tie break*9. Note that both
inner and outer halo cells are given to threads whose beams
have surfaces being those of a subdomain cuboid as well.

• Other configuration parameters are set as follows; load im-
balance tolerance factor αt = 1.1; the margin factor of par-
ticle arrays αm = 1.2; fixed constant gap between two bins
g f = 8; the size of thread-local buffer for bin shift is 8192;
the size of major overflow buffers is (αm · Nmin)/(16 · T · H)
while that of minor ones is (αm · Nmin)/(128 · T · H).

4.2 Uniform Case
Figure 8 shows the performance of the uniform case in terms

of the number of particles processed (e.g., pushed) in one second.
The blue line in the chart is for the best performance with each
node count among 12 × 4 = 48 combinations of P and H (shown
in the chart), while the red line almost overlapping the blue one is
for the fixed configuration of P = 12 and H = 2 by which we have
at least 91.6% (N = 1) of the best performance. The fact that
both curves (almost lines) have slopes slightly gentle compared
with the ideal line means that the parallel efficiency gradually

*9 If we still have ties, they are broken by choosing the minimum Ty.
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Fig. 9 16-node performance of uniform case with all 12 × 4 = 48 configu-
rations of P and H.

decreases as the node count N increases resulting in the perfor-
mance approximately proportional to N0.91 rather than N, prob-
ably because of the slow global all-reduce on an integer due to
long latency caused by the host processor interposed in the phys-
ical communication path. Nevertheless, the best 32-node perfor-
mance 8.15 × 109 particles/sec achieved by 1920 small cores of
1.053GHz surpasses 7.81 × 109 which EMSES on 64-node Cray
XE6 managed to perform with 2048 big cores of 2.5GHz[1].
It could be surprising that the best configurations shown in the

chart have large P up to its maximum 60 (N ∈ {2, 4}) and small
H = 2 for all node counts except for N = 1. This observation is
also supported by the nearly-optimal fixed configuration whose
P = 12 is larger than T · H = 8. That is, it looks that we need
some large number of per-node processes though it incurs over-
head of intra-node inter-process communication which should be
significantly larger than that of intra-node/process inter-thread
communication. Note that in this uniform case, per-thread and
per-process load are almost perfectly balanced to make the result
more surprising.
These surprising tendencies are also confirmed by a more

detailed 16-node performance chart shown in Figure 9 for all
12 × 4 = 48 configurations of P and H. From this chart, we
clearly see that the performance superiority of hyper-threading
degree H is in the order 2 → 1 → 3 → 4, while our one-node
single-process implementation given in [3] showed us a different
order 3 → 2 → 1 → 4 with a significant outperformance of
H = 3 over H = 2. As for the per-node process count, we see a
clear peak at P = 12 (and a mysterious valley at P = 6) in the case
of H = 2, while other cases show a gradual up-slope to P = 5 and
a plateau in P ≥ 5 if we ignore mysterious peaks at P = 4 in the
cases of H = 3 and H = 4.
In order to find the reason why we need some many processes

in a node, we measured 16-node performance of H = 2 again
but with two extremely artificial settings. That is, the blue line of
Figure 10 is for the setting that velocity of all particles is 0 to let
them stay in their initial position. The other setting for the light-
brown line of the figure is logically incorrect because we inhibit
the inter-process communication of arrays for E, B and J, while
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Fig. 10 16-node performance of uniform case with all 12 configurations of
P and H = 2 together with extremely artificial settings to let par-
ticles stay and to omit inter-process communications of E, B and
J.

particles travels exactly same as the original setting*10 and thus
inter-process transfers take place. These two evaluations reveal
the reason why we have the optimal process count P = 12. First,
the setting to let particles stay does not show much difference
from the original though the elimination of inter-cell and inter-
process particle transfers seem to give some advantage over the
original.
Second and much more importantly, the elimination of inter-

process communication of field-arrays makes the performance
almost equal to the best performance of original setting almost
regardless of per-node process counts. The reason why we have
this result is explained as follows. For P < 10, inter-node com-
munications are performed by less than ten processes and thus ten
low-performance cores which are insufficient to fill the inter-node
communication bandwidth and thus to mitigate the long latency
due to the host processor, while at least ten processes at each
surface of the cuboid for a node work on the communication in
the cases of P = 10 and P = 12. For P > 12, on the other
hand, we have a significantly large amount of inter-process but
intra-node communications to consume the memory bandwidth
at the communication, in addition to the smaller size of trans-
ferred data to make it tougher to mitigate the effect of long la-
tency. Therefore, it is expected that the next-generation hostless
Knights Landing (KNL) version will make a large improvement
of the performance with a fewer number of per-node processes
with which inter-process communication overhead will be greatly
reduced.
On the other hand the reason why H = 2 is the best and H = 3

is inferior to not only H = 2 but also H = 1 is still mysterious,
because the elimination of field-array communications does not
improve the best performance 1.84×109 so much though the per-
formance becomes less dependent on per-node process count to
result in the range 1.63× 109 – 1.88× 109. A further investigation
of this phenomenon and of the fact the parallel efficiency of exe-

*10 Since the setting of steady travel with a constant velocity is achieved by
making Lorentz force exerting on any particles is 0, inhibiting the inter-
process communication resulting in incorrect E, B and J does not affect
the particle motion.
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Fig. 11 Performance of congested case with best process/hyper-threading
configuration (blue) and fixed one with P = 12 and H = 2 (red) to-
gether with the performance of uniform and best-configuration case
(dashed blue).

cutions with H = 3 rapidly decreases as node count increases is
left as our future work.

4.3 Congested Case
Figure 11, 12 and 13 show performance numbers of the con-

gested case corresponding to those shown in Figure 8, 9 and 10
respectively for the uniform case, some of which are given in the
charts by dash lines. That is, we present Figure 11 for the per-
formance with the best and nearly-optimal fixed configurations
of per-node process count P = 12 and hyper-threading degree
H = 2, Figure 12 for 16-node performance with all possible com-
binations of P and H, and Figure 13 for that with H = 2 and the
settings to let particles stay at their initial positions and to elimi-
nate inter-processes communications of field-arrays.
From Figure 11, the best configuration is given by P = 12 and

H = 2 again, except for the cases of N = 1 and N = 16 for which
the nearly-optimal configuration gives 91.9% and 99.1% of the
best respectively. The other observation from the figure is that
the performance slope for N ≥ 2 is a little bit gentler than that in
the uniform case to result in the performance approximately pro-
portional to N0.84 probably due to the all-reduce on J discussed
later.
More clearly, the absolute performance is significantly lower

than that in the uniform case, about the half, except for the
single-node case. That is, though the best 32-node peformance
3.84 × 109 particles/sec still surpasses 3.73 × 109 of the 32-node
execution of EMSES on Cray XE6 with a similar congested for-
mation, the advantage over the predecessor is greatly reduced.
Figure 12 also shows this degradation, while the performance su-
periority order of hyper-threading degrees H is the same as the
uniform case, i.e., 2 → 1 → 3 → 4 but peaks and valleys
in the chart are less distinctive. There are various reasons that
a congested-case simulation is less efficient than a uniform-case
one as follows.
( 1 ) Though OhHelp tries to keep good load balancing, the toler-

ance factor αt = 1.1 makes a process loaded more heavily,
up to 10%, than the processes in the uniform case.

( 2 ) Each process must perform field-solve twice for its primary
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Fig. 12 16-node performance of congested case with all 12×4 = 48 config-
urations of P and H together with the performance of uniform case
with H = 2 (dashed red).
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Fig. 13 16-node performance of congested (solid) and uniform (dashed)
cases with all 12 configurations of P and H = 2 together with
extremely artificial settings to let particles stay and to omit inter-
process communications of E, B and J.

and secondary subdomains, and the helpand process must
broadcast E, B and J at the boundary of its primary subdo-
main obtained from neighbors to its helper processes work-
ing on the subdomain as their secondary ones.

( 3 ) For J, in addition to the boundary communication, the hel-
pand and helper of a subdomain must perform all-reduce
summation for the whole of the subdomain.

( 4 ) Since in our setting the mass of the congested particles has a
solid surface perpendicular to its moving direction, the par-
ticle density of the cells in front of the surface should steeply
increase to cause frequent particle overflow.

Note that the reasons (1)–(3) are common to all OhHelp’ed sim-
ulations including our EMSES, whose congested-case perfor-
mance is merely about 5% inferior to uniform-case[1]. There-
fore, first suspect is the reason (4), i.e., frequent overflow by
which in 1092 time-steps out of 2000 at least one process per-
forms the costly particle bin rearrangement in the simulation of
N = 16, P = 12 and H = 2, though our overflow buffering tries
to reduce the frequency of the rearrangements.
In fact, the blue solid line labeled “stay” in Figure 13 is clearly

0% 20% 40% 60% 80% 100%

fundamental all-reduce

boundary field comm. misc.

bin

rearrange

Fig. 14 Hypothetical break-down of 16-node execution with P = 12 and
H = 2.

above the red solid line of the moving case and the gap between
them is clearly wider than the corresponding gap between the
dashed blue and red lines for the uniform case. For example,
in the case of P = 12, moving the mass increases the simulation
time by about 30% whose major part is almost surely brought by
the bin rearrangement done a little bit more frequently than every
two time-steps.
However, the other overhead of inter-process communications

is equally or little bit more heavily affects the performance as we
observe from the gap between the brown solid line labeled “no
field comm.” and the red solid line. Since the gap is also wider
than that between corresponding dashed lines around the point of
P = 12 to bring an overhead less than 3%, we are almost sure that
it is caused by the all-reduce summation of J (3), by which we
incur another 26% overhead. Since this amount is much larger
than the 3.2% overhead we incurred in the execution of EMSES
on Cray XE6[1], it should be also charged to the poor single-core
MPI performance of Xeon Phi and the host processor on the com-
munication path. In addition, it is believed that this overhead is
the reason why we have the parallel performance proportional to
N0.84 because the all-reduce communication incurs longer latency
as the node count increases.
In summary, the execution time of the congested case with

N = 16, P = 12 and H = 2 can be hypothetically broken down
based on the results of various runs of different settings as shown
in Figure 14. In the chart, “fundamental” means the part for the
executions required for any distribution of particles, while other
portions are caused by the severe imbalance of particle distribu-
tion with the mass having solid surfaces. This chart strongly sug-
gests that we will have much better performance with the hostless
configuration of KNL, and with typical formations of imbalanced
particle distribution expectedly without any solid surfaces of con-
gested particle masses even when they exist.

5. Conclusions
In this report, we showed major implementation issues to have

the prototype of manycore-aware OhHelp’ed PIC simulators from
the proof-of-concept single-node baseline presented in [3]. The
issues include the way to keep thread-level good load balance by
distributing particles transferred from a process to another as uni-
formly as possible in the recipient’s subdomain. The other impor-
tant issue is to manage particle bins and particles overflown from
them to reduce the overhead of our on-the-fly particle sorting as
much as possible.
From our performance evaluations on Cray XC30 equipped

with Xeon Phi 5120D using two artificial settings of particle dis-
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tribution and their motion, we confirmed our sophisticated imple-
mentation techniques work well especially in the uniform case
though we need an unexpectedly large number of processes on
a node due to the poor MPI performance of the KNC version of
Xeon Phi and its hosted configuration. This poorness also de-
graded the congested-case performance much more than what we
experienced in our previous work with Cray XE6[1], though the
parallel performance with respect to the same node count still sur-
passes that of the predecessor.
Starting from the prototype implementation and its perfor-

mance, we will go forward to the design of a production-level
simulator with the following fairly long to-do list. First, we
have to examine the appropriateness of various implementation
parameters some of which we decided fairly intuitively. Simi-
lar intuitive decisions also may be hidden in our implementation
methodologies such as AOS/SOA-choice of data structures some
of which could have to be reversed for better performance of, e.g.,
inter-process communications.
Second, though we believe our sophistications in the imple-

mentation should earn some good reward in terms of the perfor-
mance, the superiority of them over simpler implementations has
not been evaluated thoroughly though we have found the neces-
sity of some of them during our development. Therefore, we have
to evaluate the effectiveness of them with test cases not only ar-
tificial ones shown in this report but also more realistic ones. In
these evaluations, of course we should use a KNL-based system
which we will have in near future.
Third, though we may expect that the KNL version of Xeon Phi

will improve the MPI performance significantly, we need to ex-
plore the possibility of improvement in the implementation side
especially for the all-reduce on J in imbalanced cases. Since we
represent J by SOA-type arrays for three components for the sake
of performance of SIMD-vectorized field-solve, we need an all-
reduce communication for each component and thus three times
in total. In addition, in order to make the reduction done in many
communicator for families of helpands and their helpers in paral-
lel as much as possible, we repeat the three all-reduce communi-
cations twice with a red-black coloring of the families. Therefore
we have six serialized all-reduce communications, but the serial-
ization is logically unnecessary to give us the opportunity to use
the asynchronous all-reduce introduced in MPI 3.0 to hide the
latency of each communication.
Finally, in the development of the production version perhaps

with FORTRAN, we will have to avoid to recode the prototype
completely but to reuse as a large portion of it as possible. A
promising way to do that is to encapsulate complicated functions
in the prototype into a kind of library, which perhaps can be a
extended part of OhHelp itself. Since more than 70% of 2622 C
source lines of the prototype is not for the kernel operations of
PIC simulation, splitting them from the kernel using our domain
specific programming framework should greatly help the devel-
opment.
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