FIT2009 (5 8 BIBHRBIZRMT I+ —35L0)

C-024

An Auction based Resource Allocation Considering Multifaceted Utilities in
a Peer to Peer Environment

Chainan Satayapiwat* Kazuhiko Komatsu! Ryusuke Egawa'

Abstract

Recently, many market-based approaches have been stud-
ied as one of the promising alternatives in a resource allo-
cation problem. Especially, auction-based approaches are
widely chosen due to its distributed nature and its relatively
lower complexity. However, employing an auction to allo-
cate jobs is only suitable for homogeneous environments of
resources. This paper proposes an auction-based resource
allocation mechanism which enables resource allocation in
a heterogeneous environment while minimizing user’s in-
puts. Our preliminary results show that our resource allo-
cation mechanism improves the performance of important
jobs during high-loaded.

1 Introduction

Resource allocation is one of key challenges in design-
ing a computing platform over a peer-to-peer environment.
Many recent researchers have designed resource alloca-
tion mechanisms based on market-based techniques because
such mechanisms can encourage users to use resources
only when a submitted job is important during high-loaded.
Thus, the market-based resource allocation can reduce the
turnaround time required for high priority jobs. This is an
attractive property for resource sharing in a large-scale dis-
tributed peer-to-peer system where users assume to be self-
ish.

In general, auction protocols for resource allocation con-
sider only a price factor when matching jobs to resources.
However, we assume that resources in a peer-to-peer sys-
tem are heterogeneous. In such an environment, there are
two ways to create a market. One is to create one market
for each resource as shown in Figure 1-(a). The other is to
allow one market to trade multiple resources in Figure 1-
(b). In Figure 1-(a), each market trades only resources of
the same performance. To handle various resources, there
are many markets and this leads to inflexible resource allo-
cation. For example, when a user requires a resource satis-
fying some requirements, the user may not be able to decide
which market can provide such a resource, resulting in bids
at all the market. In Figure 1-(b), all the resources are traded
at the same market. As a result, the resource offered at the
lowest price might be too low performance for the price. In
other words, it might be wise to choose the next lowest price
offer which provides higher performance when the price is

*Graduate School of Information Sciences, Tohoku Uni-
versity

fCyberscience Center, Tohoku University

491

Hiroyuki Takizawa* Hiroaki Kobayashi'

Multiple markets for

multiple CPU speed ratings User's job requires

3.0 GHz market BID CPU LIGHz or more

2.9 GHz market Many matched results:
:) 3.0GHz at $50

[.IGHz market "29GHz at §11

1.0 GHz market | 1GH2 at $10

(a

One markets for all CPU speed ratings

3.0 GHz

29 v:GHz y BID User’s job requires
¢ market | e CPU L 1GH2 or more

LIGHz One matched result:

{0 GHz FLAGHZ ar $10

{b)

Figure 1: Problems in existing auction models. Star sign in-
dicates the chosen result.

not much different from the lowest one.

This work aims to overcome these problems by extending
our previous work [1], which is designed assuming a Grid
environment. This previous work provides a framework to
design a resource allocation mechanism, which considers
any numbers of criteria in making matching decision. A
user uses weighted values to inform the resource allocation
mechanism of his preference in the matched result, while a
provider uses the weighted values to inform the preference
in accepting each job. However, the proposed criteria as-
sume that users know an accurate job processing time and
providers can make advance reservation. These assump-
tions are valid in a Grid environment but not in a peer-to-
peer environment.

This work extends the previous work to make it suitable
for a peer-to-peer environment by changing the considered
criteria so that resource allocation can be free from the un-
realistic assumptions in a peer-to-peer environment such as
accurate estimation of processing times. Moreover, users
should not need to concern about the money management or
providing the utility function, which represents the relation-
ship between the completion time and user’s job valuation.
This work minimizes the user’s inputs required in submit-
ting a job and this makes the resource allocation transparent
from user’s standpoint.

2 Related Work

The major disadvantage of existing auction-based resource
allocation approaches is that the matching is done only by
considering the price. Thus, user’s matched resources are
guaranteed to be the cheapest ones but not the worthiest.

(3 145D

FIT2009 (55 8 EEHRMFRIT I —35 L)

General auction models, including their variations such as
SCDA [4], have this drawback.

Several approaches have been introduced to solve this
problem. CompuP2P[3] defines a market to trade only one
specific resource. If a resource has various speeds such
as CPU, which has many different capabilities, one mar-
ket handles trading of resources in a small range of speed.
However, the auction protocol may, again, match with a rel-
atively low performance resource which has the lowest price
in this range. In addition, the best capability of the resource
that the job can be matched to is the upper limited of re-
source capability in that market range but the next higher
market range may have a better resource offering at a lower
price. Moreover, the way to simultaneously deal with mul-
tiple criteria has not been established.

Another approach uses a utility function to represent the
relationship of completion time and user’s job valuation
[2]. By calculating the finished time and using the util-
ity function to maximize the user’s valuation, the alloca-
tion resuits have achieved a balance between the price and
the performance that a user desires. However, this requires
an accurately-estimated processing time to calculate the fin-
ished time of the job on the resource, even though the esti-
mation is difficult. In addition, a user has to define a utility
function, although its definition methodology is not estab-
lished yet.

3 Auction Protocol

3.1 Proposal Overview

Our approach uses the utility function to make a decision.
However, we avoid defining the price relationship with the
completion time because this requires knowing the esti-
mated processing time. Instead, our proposal considers re-
source performance and price in the decision. The final
awarding decision is based on the user’s utility value on
each offer. The utility value can be calculated using a util-
ity function. This utility function allows user to express the
importance of each criterion as weighted values.

This proposal assumes that an auctioneer, which is the
market where resources are traded, controls the auction and
acts in the middle between multiple users and multiple re-
source providers. Users send job’s weighted values and
minimum requirements to an auctioneer to start an auction.
Then, the auctioneer opens the auction by informing the
received data to every registered resource provider which
meets the minimum requirements. Using the provided in-
formation, each provider constructs an offer for this job and
sends it to the auctioneer. Finally, the auctioneer calculates
a utility value for each offer and awards the provider with
the highest utility value. This procedure is repeated when-
ever a new job is arrived at the auctioneer and hence there
will be only one job in each round of the auction.

(&

492

oy z P
Jobs Provided | User | ; Auctmneer " |
gheed percentagg 9' NG ‘ Mmlmum
[80% @ Actual weight values requirement
20% 0.2 Price 0.6 Price

{1} A user defines a price weight.
" {2} Using job’s provided weighted
percentage 1o calculate all weight values.

0.64 cpu][noo CPU
0.16 BW 256 Bw

(a) Job’s provided weighted percentage is available

wei’;”; d”;‘:‘:ﬁi‘;@é Userj 5 > | Auctioneer
- RS . Mlmmu i
Not provided y/ [©) \Tﬁwﬁ weeight values requirement
Not provided | Price 0.6 Price

{1} A user defines a price weight.
{2) Using job's provided weighted
percentage to caleulate all weight values.

04 CPU 1100 Cru
04 BW 256 BW

Figure 2: Example of a user’s submitted job and weighted

values calculation

3.2 Deriving weighted values

In this proposal, users consider three criteria which are (1)
a price criterion, (2) CPU criterion (available processing
cycles), and (3) BW criterion (an available network band-
width). However, other criteria, such as memory size, can
be introduced in a similar manner. Users start an auction by
providing job’s minimum requirements and job’s associated
weighted values of these three criteria. Although it is pos-
sible to leave the user to define these three weighted values,
this is not preferable. Hence, this proposal offers the ways
to eliminate a part of user’s inputs as follow.

1) Eliminating the price weighted value input: This pro-
posal introduces an algorithm to automatically decide the
price weighted value. This algorithm works by increasing
the price weighted value to improve performance when a
user has money over a threshold, while decreasing the price
weighted value to minimize the expense when money is
lower than the threshold. However, it allows users to ma-
nipulate the price weighted value by specified job as prior-
ity. This informs the system to overwrite the price weighted
value and maximum budget by not to consider the price fac-
tor.

2) Eliminating the CPU and BW weighted value inputs:
Each job should have its metadata which specifies job’s pro-
vided weighted percentages. These values are the percent-
age of actual weighted values, which directly influence the
resource allocation mechanism to offer resources in the pro-
portion of these values. It should be noted that job’s pro-
vided weighted percentages are not mandatory but accurate
values result in better proportion of resource performances
allocated to the job. If the job’s provided weighted per-
centages are not available for a job, the resource alloca-
tion mechanism automatically assigns weighted values by
spreading equally over all criteria. Figure 2 summarizes the
user-defined information.

3.3 Constructing an Offer to an Auctioneer

After the auctioneer received the job requirements and
the weighted values from a user, it opens the auction

1 731

FIT2009 (55 8 EIEHRBIFZRM I #—3 L)

by forwarding the job’s minimum requirements and job’s
weighted values to every registered resource provider.
Then, each provider has to construct the offer for this job
and sends it to the auctioneer.

Firstly, we propose a simple method to construct offers as
shown in Equation (1). M¢in; is the minimum requirement
on a criterion 7. Cj is a user’s criterion weighted value in
criterion <. k is an offer’s resource modifier which increases
additional proportion of resource performances.

Msz'zk
E‘?:l C]

For each offer, a based price is the price that is associated
to each resource offer. This is calculated based on the load
percentage of each resource with assumption that this job is
admitted. The based price increases slowly when the load is
low, while it increases aggressively when the load becomes
higher to avoid the resource providers from being overload.
Equation (2) shows the price calculation where Price; is the
based price in a criterion . Providers are free to decide its
minimum price ¢ and its weight on each factor §; to adjust
the price as needed. The result price is the price that will
charge the user over the usage time.

Of fer; = Min; +)

2
Price = a + Z Price;(3;.

=1

)

To sum up, the resource provider calculates offers with
different k values to generate offer candidates and the price
of each candidate using Equations (1) and (2), respectively.
Then, it calculates utility values for each offer to select the
best offer among these candidates. Finally, the offer with the
highest utility value is returned to the auctioneer. If there is
no populated offer satisfying the minimum requirement, the
provider does not need to reply to the auctioneer.

3.4 Matching at the Auctioneer

After all resource providers submit their offers to the auc-
tioneer, the auctioneer applies the user’s weighted values,
the offer’s price, and the offer’s resource performance to the
utility function (UF) to find the utility values. The utility
function is defined as follows. Given C; is a user’s crite-
rion weighted value in criterion % and P;; is a performance
perceived by a user’s job on criterion ¢ when allocate to
provider j.

UF(Cy,Ca,...,Ch, Pij, Py, ..., Ppj) = Zcipij- 3

=1

P4, which ranges from O to 1, is modeled linearly in this
work. Value O represents an offer promising resources equal
to the minimum requirement and value 1 represents the best
offer performance, respectively.

493

Table 1: Nodes in the system

NodeID | CPU rating | Bandwidth rating
(MIPS) (MB/Sec)
0 1500 25
1 2000 100
2 2000 100
3 2500 50
4 3000 50

Table 2: Workload setup (jobSize in million instructions,
network Datasize in MB, mCPU in MIPS, and mBW in MB
per seconds)

Type | jobSize | network | mCPU | mBW | CPUw/
DataSize BWw

1 49500 720 1100 16 0.8/0.2
2 32985 990 733 22 0.5/0.5

3 19800 585 440 13 0.5/0.5
4 24750 1485 550 33 0.2/0.8

Finally, the provider with the highest utility value is
awarded. The auctioneer informs the result to both job’s
user and the auction’s winner about the result and the user
may start submitting the job for execution.

4 Performance Evaluation

4.1 Experimental Setup

To evaluate the effects of the proposed mechanism, this pa-
per evaluates the allocated resources’ performance offered
to the user for each set of weighted values. In addition,
this paper also evaluates the total turnaround time of jobs
and compares it to a standard round robin scheduler, which
assigns a job to the first resource provider that satisfies
job’s minimum requirements in the circular order. As the
market-based strategy, it should have an ability to improve
the turnaround time of the high-priority jobs during the high
load. Thus, this paper simulates a high-loaded period and
gives high priority to 50% of jobs. Then, the turnaround
time of priority jobs is measured and compared to the round
robin scheduler.

Node’s setups used in this simulation are shown in Table
1. The CPU performance is represented by the number of
million instructions per seconds and network bandwidth is
measured by the data size transferred per second. All nodes
are assumed to have the same architecture and only differ in
their CPU performance. Besides, this simulation assumes
that the communication does not occur in parallel with CPU
computation and there is no communication among nodes
listed in Table 1. Thus, we calculate the total processing
time of node ¢ using Equation (4).

networkDataSize
bandwidthRating

jobSize
CPU Rating

Time =

“

(% 151D

FIT2009 (558 EIREHMZEM 7+ —3 L)

‘When creating an offer, the offer’s resource modifiers are
0, 1, and 3 to populate offers with approximately 1, 2, and
4 times higher than original minimum requirement in each
criterion. To calculate the price, we assume the minimum
price « is O and pricing factor’s weight 3 is 1 for every fac-
tor. This means that the provider values the importance to
all resource equally.

A workload contains 40 jobs with four types of jobs
as shown in Table 2. mCPU and mBW are the mini-
mum requirements, and CPUw and BWw are job’s provided
weighted percentages associated to each job type. Each job
type is generated evenly throughout the simulation with 10
seconds time interval between each job. To examine the pri-
ority job’s behavior in a high-loaded period, we reduce this
interval to 2 seconds per job during last 20 jobs and assign
priority to even number jobs.

4.2 Experimental result and discussion

Figure 3 shows the average resource performance allocated
to each job type, compared to its minimum requirement.
These results show that weighted percentage values can pro-
vide a good approximation of the resource performance re-
quested by a user. This means that these percentages can be
adjusted to achieve the anticipated performance gains when
additional resources are available. In addition, the jobs with
lower requirements tend to have higher percentage of re-
sources because it is easier for the resource provider to com-
mit and allocate an offer with a high offer’s resource modi-
fier.

Table 3 shows the average turnaround time. The results
show that our scheduler performs slightly worse than the
round robin scheduler only if we average the turnaround
times for all jobs from the beginning to the end of simu-
lation. However, the strength of the market-based resource
scheduler is its ability to limit a low priority job from enter-
ing the system. This provides more available resources to
jobs with high priority. During the highly loaded period, the
priority jobs achieve around 20% improvement compared to
the round robin strategy. This improvement is because the
low priority jobs have a lower budget threshold and higher
price weighted value. This reflects that the users do not
value these jobs and they are not worth to execute at the
high load time and hence the priority jobs gains more avail-
able resources.

180%
160%
1209 o i

120% ' "

100% &
Jobr type 1 Joby type 2 Jobtype 3 Job type 4

£ Average allocated CPU <+ Average allocated BW

Increase percentage

Figure 3: Effect of weighted values to allocated resource per-
formance for each job type

494

Table 3: Average turnaround time (seconds)

Type Round robin | Our scheduler
All time / All jobs 46.73 48.80
High load / All jobs 61.35 68.90
High load / Pri. jobs 53.60 4220

5 Conclusions and Future Works

This paper has proposed a new auction-based resource allo-
cation mechanism for peer-to-peer environments. Instead of
matching resources to jobs regarding the price, we include
the resource performance of the offers in making decision.
In this way, our proposal allows a user’s jobs to obtain a
matched resource which is both low price and high perfor-
mance. Furthermore, this proposal eliminates the need of
estimated processing time which is difficult to be accurately
predicted. The experimental results show its ability to han-
dle high priority jobs in a highly-loaded system. In addition,
the experimental results also indicate that the allocated re-
source performance is closely related to the weighted value
given. As a future work, we will further compare the mech-
anism with other market-based schedulers.

References

[1] C.Satayapiwat, R. Egawa, H.Takizawa, H. Kobayashi.
A Utility-Based Double Auction Mechanism for Ef-
ficient Grid Resource Allocation. IEEE International
Symposium on Parallel and Distributed Processing
with Applications, pages.252-260, 2008.

[2] David E. Irwin, Laura E. Grit, and Jeffrey S. Chase.
Balancing risk and reward in a market-based task ser-
vice. Proceedings of the 13th IEEE International Sym-
posium on High Performance Distributed Computing,
pages 160-169, 2004.

[3] R. Gupta and A. Somani. Compup2p: An architecture
for sharing of computing resources in peer-to-peer net-
works with selfish nodes. Proceedings of the Second
Workshop on the Economics of Peer-to-Peer Systems,
2004.

[4] Z. Tan and J. R. Gurd. Market-based grid resource al-
location using a stable continuous double auction. Pro-
ceedings of the 8th IEEE/ACM International Confer-
ence on Grid Computing, pages 283-290, 2007.

(% 1 5

