FIT2009 (55 8 MIBHRBFRIM I —5 L)

A-025

Finding Reconfigurations between List Edge-Colorings of a Graph

Takehiro Ito*
Tohoku University

1 Introduction

Reconfiguration problems arise when we wish to find a
step-by-step transformation between two feasible solu-
tions of a problem such that all intermediate results are
also feasible. Recently, Ito et al. [5] proposed a framework
of reconfiguration problems, and gave complexity and ap-
proximability results for reconfiguration problems derived
from several well-known problems, such as INDEPENDENT
SET, CLIQUE, MATCHING, etc. In this paper, we study a
reconfiguration problem for list edge-colorings of a graph.

An (ordinary) edge-coloring of a graph G is an as-
signment of colors from a color set C to each edge of G
so that every two adjacent edges receive different colors.
In list edge-coloring, each edge e of G has a set L(e) of
colors, called the list of e. Then, an edge-coloring f of G
is called an L-edge-coloring of G if f(e) € L(e) for each
edge e, where f(e) denotes the color assigned to e by f.
Fig. 1 illustrates three L-edge-colorings of the same graph
with the same list L; the color assigned to each edge is
surrounded by a box in the list. Clearly, an edge-coloring
is an L-edge-coloring for which L(e) is the same color set
C for every edge e of G, and hence list edge-coloring is a
generalization of edge-coloring.

Suppose now that we are given two L-edge-colorings
of a graph G (e.g., the ones in Fig. 1(a) and (c)), and we
are asked whether we can transform one into the other
via L-edge-colorings of G such that each differs from the
previous one in only one edge color assignment. We call
this problem the LIST EDGE-COLORING RECONFIGURATION
problem. For the particular instance of Fig. 1, the answer
is “yes,” as illustrated in Fig. 1, where the edge whose
color assignment was changed from the previous one is de-
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Fig. 1: A sequence of L-edge-colorings of a graph.
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picted by a thick line. One can imagine a variety of prac-
tical scenarios where an edge-coloring (e.g., representing
a feasible schedule) needs to be changed (to use a newly
found better solution or to satisfy new side constraints)
by individual color changes (preventing the need for any
coordination) while maintaining feasibility (so that noth-
ing breaks during the transformation). Reconfiguration
problems are also interesting in general because they pro-
vide a new perspective and deeper understanding of the
solution space and of heuristics that navigate that space.

Reconfiguration problems have been studied exten-
sively in recent literature [1, 2, 3, 4, 5], in particular for
(ordinary) vertex-colorings. For a positive integer k, a k-
vertez-coloring of a graph is an assignment of colors from
{c1,c2,...,ck} to each vertex so that every two adjacent
vertices receive different colors. Then, the k-VERTEX-
COLORING RECONFIGURATION problem is defined analo-
gously. Bonsma and Cereceda [1] proved that k-VERTEX-
COLORING RECONFIGURATION is PSPACE-complete for
k > 4, while Cereceda et al. [2] proved that k-VERTEX-
COLORING RECONFIGURATION is solvable in polynomial
time for 1 < k < 3. Edge-coloring in a graph G can
be reduced to vertex-coloring in the “line graph” of G.
However, by this reduction, we can solve only a few in-
stances of LIST EDGE-COLORING RECONFIGURATION; all
edges e of G must have the same list L(e) = C of size
|C| < 3 although any edge-coloring of G requires at least
A(G) colors, where A(G) is the maximum degree of G.
Furthermore, the reduction does not work the other way,
so we do not obtain any complexity results.

In this paper, we give two results for LIST EDGE-
COLORING RECONFIGURATION. The first is to show that
the problem is PSPACE-complete, even for planar graphs
of maximum degree 3 and just six colors. The second
is to give a sufficient condition for which there exists
a transformation between any two L-edge-colorings of a
tree. Specifically, for a tree T, we prove that any two
L-edge-colorings of T' can be transformed into each other
if |L(e)| > max{d(v),d(w)} + 1 for each edge e = vw of
T, where d(v) and d(w) are the degrees of the endpoints
v and w of e, respectively. Our proof for the sufficient
condition yields a polynomial-time algorithm that finds a
transformation between given two L-edge-colorings of T
via O(n?) intermediate L-edge-colorings, where n is the
number of vertices in T'.

We remark that our sufficient condition is best pos-
sible in some sense. Consider a star Ki1,,—1 in which each
edge e has the same list L(e) = C of size |C| = n ~ 1.
Then, |L(e)| = max{d(v), d(w)} for all edges e = vw, and
it is easy to see that there is no transformation between
any two L-edge-colorings of the star.
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2 PSPACE-completeness

We first introduce some terms and define the problem
more formally. In the Introduction, we have defined an
L-edge-coloring of a graph G = (V, F) with a list L. We
say that two L-edge-colorings f and f' of G are adjacent
if [{e€ E: f(e) # f'(e)}| =1, that is, f’ can be obtained
from f by changing the color assignment of a single edge
e; the edge e is said to be recolored between f and f'. A
reconfiguration sequence between two L-edge-colorings fo
and f; of G is a sequence of L-edge-colorings fo, f1,..., fi
of G such that f;_1 and f; are adjacent for i = 1,2,...,¢t.
We also say that two L-edge-colorings f and f’ are con-
nected if there exists a reconfiguration sequence between
f and f'. Clearly, any two adjacent L-edge-colorings are
connected. Then, the LIST EDGE-COLORING RECONFIG-
URATION problem is to determine whether given two L-
edge-colorings of a graph G are connected. The length
of a reconfiguration sequence is the number of L-edge-
colorings in the sequence, and hence the length of the
reconfiguration sequence in Fig. 1 is 3.
We have the following theorem.

Theorem 1 LIST EDGE-COLORING RECONFIGURATION %s
PSPACE-complete for planar graphs of mazimum degree
3 whose lists are chosen from siz colors.

As a proof of Theorem 1, we give a reduction from Non-
deterministic Constraint Logic (NCL) [4]. However, we
omit the details due to the page limitation.

3 Trees

Since LIST EDGE-COLORING RECONFIGURATION is
PSPACE-complete, it is very unlikely that the problem
can be solved in polynomial time for general graphs.
However, in this section, we give a sufficient condition for
which any two L-edge-colorings of a tree T are connected;
our sufficient condition can be checked in polynomial
time. Moreover, our proof yields a polynomial-time
algorithm that finds a reconfiguration sequence of length
O(n®) between given two L-edge-colorings, where n is
the number of vertices in 7.

Theorem 2 For a tree T with n vertices, any two L-
edge-colorings f and f' of T are connected if |L(e)| >
max{d(v), d(w)}+1 for each edge e = vw of T. Moreover,
there is a reconfiguration sequence of length O(n?) between

fand f.

Since A(T) > max{d(v),d(w)} for all edges vw of
a tree T', Theorem 2 immediately implies the following
sufficient condition for which any two (ordinary) edge-
colorings of T' are connected. Note that, for a positive
integer k, a k-edge-coloring of a tree T is an L-edge-
coloring of T for which all edges e have the same list
L(e> = {cla C2y... ,Ck}~
Corollary 1 For a tree T with n vertices, any two k-
edge-colorings f and f' of T are connected if k > A(T) +
1. Moreover, there is a reconfiguration sequence of length
O(n?) between f and f'.
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It is obvious that the sufficient condition of Corollary 1 is
also best possible in some sense; consider a star Ki -1
in the Introduction. '

As a proof of Theorem 2, we give a polynomial-time
algorithm that finds a reconfiguration sequence of length
O(n?) between given two L-edge-colorings fo and f; of a
tree T if our sufficient condition holds. However, due to
the page limitation, we only give an outline of our algo-
rithm.

By the breadth-first search starting from an arbitrary
vertex r of degree 1, we order all edges e1,e2,...,en_1 of
a tree T. At the ith step, 1 < ¢ < n — 1, the algorithm
recolors e; from the current color to its target color f;(e;),
as follows. From the current L-edge-coloring f, we first
obtain an L-edge-coloring f' of T such that

(i) there is no edge which is adjacent with e; and is
colored with fi(e;); and
(ii) there exists a reconfiguration sequence between f
and f’ in which none of the edges ey, e3,...,€e;-1 is
recolored.
Then, we recolor e; to fi(e;). Therefore, e; is never recol-
ored after the ith step, while e; may be recolored before
the ith step even if e; is colored with f;(e;). We can show
that every edge of T' can be recolored in such a way, and
hence we eventually obtain the target L-edge-coloring f;.
Since the algorithm recolors each edge e; with j > i at
most once in the ith step, we can recolor e; by recoloring
at most n — 7 edges. Our algorithm thus finds a reconfig-
uration sequence of total length 3 7~ (n — i) = O(n?).
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