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1. Abstract

In modern superscalar processor, branch misprediction penalty
becomes a critical factor in overall processor performance,
especially in deeply pipelined processors. The branch
misprediction penalties include branch resolution time and refill
the pipeline. A large number of aggressive schemes (e.g.
checkpoint scheme) are widely used in most of current
approaches to reduce the branch resolution time. However,
current recovery mechanisms still implicitly reduce the
Instruction Per Cycle (IPC) because the mispredicted instructions
saved in the front-end stages must be flushed, and then the
instructions from correct path are restarted from fetch stage.

In this paper, we propose a recovery mechanism, called
Recovery Critical Misprediction (RCM), to reduce the branch
misprediction penalty due to re-fill and flush. The mechanism
uses a Simplicity Trace Cache (STC) to trace mispredicted
instructions that are enough critical, and selectively forks a
second path from STC following a conditional branch instruction.
Upon a misprediction, the processor can immediately starts
issuing correct instructions from the alternate path. Experimental
results employing SPECint 2000 benchmark show that, using a
processor with RCM, IPC value is significantly improved by
10.7% on average compared with a conventional processor
without RCM.

2. Introduction

A deeper pipeline is widely used to reduce processor cycle
time for higher performance in the modern processors, it causes
another performance problem for branch misprediction. The
research proposed by E. Sprangle indicated that branch
mispredictions are the single largest contributor to performance
degradation in modern superscalar processors [1]. Two options
exist to solve this problem: increasing prediction accuracy [19]
[21] and speeding up the misprediction recovery process. Several
branch prediction mechanisms have been proposed [2] [3] and
used to alleviate the effect of branch penalty in processor
performance. On the other hand, modern processors provide
deeper pipeline (e.g. 14 stages in the IBM Power 4 [6] and 20
stages in the Pentium 4 [8]) to achieve a very high clock
frequency. As a result, the performance bottleneck in advanced
processor designs continually shifts toward the penalty due to the
misprediction recovery.

A large number of aggressive recovery schemes have been
widely used to reduce the mispredicted branch resolution time by
reducing the time of state restoration [24] ]25] [26] . It is because
that branch misprediction recovery requires stalling the front-end
of the processor to repair the architectural state. However, branch
misprediction still implicitly reduces the Instructions Per Cycle
(IPC) because the pipeline still must be flushed, and re-filled
with instructions from the correct path after the state is resolved.
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During the re-fill time, there is a zero-issue region where no
instructions issue, which is approximately equal to the time it
takes to re-fill the front-end pipeline (i.e., a number of clock
cycles equal to the front-end pipeline length).

To resolve the problem, a more jacobinical approach is
proposed to hide the re-fill time by executing multiple program
paths simultaneously [7] [13] [20]. By increasing the hardware
cost, the processor can fork a second path from both paths
following a conditional branch instruction. Then, the instructions
from wrong path are selectively flushed when the branch is
solved. There are still three factors that severely degrade
performance: 1) fetching from multiple path increases the burden
of fetch stage. The port of fetch stage must be double to
simultaneously fetch instructions from both paths following a
conditional branch instruction. 2) Miss hit rate of instruction
cache increases because the alternative path may not be in the
cache. 3) Forking a branch made for non-critical dependences
will not improve performance; even worse, if the current branch
prediction is correct, the unused instructions from alternative
path may severely degrade performance.

In this paper, we propose a new mechanism called Recovery
Critical Misprediction (RCM) to aim at minimizing the branch
misprediction penalty. The mechanism uses a Simplicity Trace
Cache (STC) to trace a few decoded instructions that are enough
criticality. Then during subsequent branch predictions, if STC is
hit, the instructions from alternative path are selectively fed to
the rename stage with predicted instructions at the same time,
and immediately provided to execution unit when the
misprediction occurred. Therefore, the processor does not need
to start fetching the correct path from fetch stage. RCM makes
the following contributions:

RCM reduce the misprediction penalty caused by re-fill and
flush. A small simplicity cache is used to save the decoded
instructions from the alternative path, and selectively uses these
instructions according to the confidence mechanism of the
branch:

1. RCM provides a critical mechanism to filter the
instructions. The critical mechanism ensures the STC to
select “good traces” for keeping, and avoid the non-
critical branch forking to degrade performance.

2. RCM efficiently reduces the burden of fetch process that is
big bottleneck in modern processor. The instructions
from alternative path are directly provided by STC at
rename stage, and recessively reduce the instructions
cache miss rate due to fetching instructions from
alternative path. (Although some dual fetch port
techniques are used to resolve the above problem, it is
difficult to apply it in embedded processor [13] [22]

[23])
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Figure 1 Branch Misprediction per 1000

Experiment results using SPECint2000 benchmark show that
average IPC improvement is 10.7% compared with a processor
without RCM.

The remainder of this paper is organized as follows. Section 3
presents the motivation of our proposal and related work. Section
4 analyzes the contributors to the branch misprediction penalty.
Section 5 introduces the critical path prediction. The detailed
design of RCM is described in section 6. Section 7 describes our
experimental evaluation and discusses RCM performance.
Finally, Section 8 summarizes the main conclusions of this work.

3. Background and Related Work

As the trend of utilizing deeper pipeline reduces processor
cycle time from high performance, the branch mispredictions are
a significant hinder to performance. The overall performance
penalty due to branch mispredictions is the product of the branch
misprediction rate and the branch misprediction recovery. A very
large body of research has been targeted at improving branch
prediction rate [2] [19] [21]). Currently, more and more
researches begin to tend to reduce the branch misprediction
penalty. There are two major ways of reducing the branch
misprediction penalty. One way is speeding up misprediction
solution time. For example, MIPS R10000 [4] using the
retirement map technique, and Alpha 21264 [5] employing the
Global Checkpoints to resolve misprediction within very few
cycles. The other is that reducing the misprediction penalty due
to re-fill and flush. Commonly, the processor executes multiple
program paths simultaneously to hide the re-fill time (e.g. the
IBM 3168 and 3033 mainframes could fetch instructions from
both paths [28]).

Early researches propose dual fetch/decode mechanisms in a
very simple pipelined processors [15] [23] to reduce the penalty
due to misprediction. On the other hand, a special-purpose cache
called Misprediction Recovery Cache is proposed to achieve the
same purpose for an in-order CISC pipeline [29]. A more
aggressive approach is proposed in [20], where a selective dual
path execution (SDPE) allows executing instructions on both
branch paths when there is a relatively high likelihood that the
prediction will be wrong. All of those either need high hardware
cost to support or are only suitable for simple pipeline and CISC.

In [7], a Dual path Instruction Processing (DPIP) fetches,
decodes, and renames, but it does not execute instructions from
the alternative path for low confidence predicted branch at the
same time as the predicted path is being processed. This method
reduces the re-fill penalty, and achieves a good trade-off between
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performance and complexity. Although DPIP employs the
confidence mechanism to improve the usage of the instructions
from alternative path, the performance would be decreased
because the non-critical branch instructions with low-confidence
are forked, and dual fetch mechanism increases the burden of
fetch stage. Especially, an embedded processor cannot afford
excessively complicated fetch architecture design.

4. Branch Misprediction Penalty Analysis

This section analyzes the branch misprediction penalty. The
branch misprediction penalty is defined as the number of cycles
lost due to a mispredicted branch. At first we have evaluated
mispredictions per 1000 instructions for the SPECint 2000
benchmarks (details regarding the experimental setup are given
in section 7). The results are shown in Figure 1. Based on the
further analysis proposed by Eyerman [27], the sources of
performance loss due to branch mispredictions are divided into
five components:

1. The frontend pipeline re-fill time. It is the latency between
the time that the branch misprediction is discovered and
the time that the first instruction is fetched, decoded,
renamed, and issued to instruction window. The pipeline
re-fill time is a fixed value.

2. Drain time. This is the resolution time to drain incorrect
instructions from the Reorder Buffer (ROB). The drain
time strongly dependences on the program’s inherent
ILP. Programs with low ILP tend to have a large drain
times, conversely, programs with high ILP tend to have
a shorter drain times.

3. Window-fill penalty. This is the performance loss because
there is a zero-issue region where no instructions issue
until the instructions from correct path has been issued
into instructions window.

4. Non-unit latencies. This is the performance loss due to the
functional unit mix. The non-unit latencies are
proportional to instruction execution latencies

5. Short D-cache misses. This is a factor easy to be neglected.
An ideal L1/L2 D-cache is assumed. Actually, the
branch misprediction penalty is affected by the miss rate
of L1 or L2 cache.

Benefiting from above analysis, the main contributors of
misprediction branch penalty are simply divided into two
categories. One is inherent constraint of processor (e.g., frontend
pipeline length, latency of each execution unit, latency of miss
cache etc.). The other is average critical path, which is more
complex. Branch mispredictions do not occur in isolation; they
interact with other miss events. The penalty for a particular
branch misprediction often depends on the preceding miss event
(conversely, it can affect the next miss event). For example, the
misprediction penalty is hidden under the long D-cache miss
penalty if the mispredicted branch is not fed by the long D-cache
miss. On the other hand, we could potentially speed up the
program more by caching the instructions that are critical.
Therefore, we would rather only optimize the branch, following
which there are more the critical instructions.
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Our proposal mainly targets at hiding the latency of re-fill and
flush simultaneously, considering the effect of critical path. The
key is what is critical for a branch misprediction recovery
(described in section 5).

5. Critical Paths Mechanism

The RCM is efficient in terms of power and access time due to
small size of STC employed in it, but suffers from low utilization
of the memory space. Critical path mechanism is used to increase
its effectiveness despite the limited size. Critical path mechanism
tells processor which branch is enough critical to decide whether
the branch needs to keep. Based on Brian Fields and Ras Bodik's
work [9] on criticality, we can easily know which instruction is
from critical path.

5.1 Defining Criticality

How to exactly define the critical path through a program
depends very much on the context in which criticality is being
used. A static critical prediction, which commonly employs
compilers for improving instruction scheduling, is only involved
in inherent program bottlenecks. The critical path using a static
critical prediction is constant throughout execution, it can
frequently change in a dynamically-scheduled context: when no
micro-architectural events occur, the longest dataflow chain will
be critical, but cache misses and branch mispredictions can
elongate otherwise short dataflow chains, making them critical.
In general, execution in a dynamic machine comprises a number
of potentially-critical paths, their interplay being determined by
events at runtime.

Though other studies have acknowledged the complexity of
such interactions, Fields et al. were the first to tackle them
directly and to characterize them precisely. The critical path
prediction defines criticality is a function of a program’s
dynamic dataflow patterns and their interaction with the
underlying micro-architecture. Our work focuses on this
approach. Based on the critical paths and critical nodes, we
further present the idea of Critical Trace Length.

5.2 Critical Paths and Critical Nodes

According to the research proposed by Brian Fields and Ras
Bodikm, dependence graph model (shown in Figure 2) divide an
instruction into several parts corresponding to the different stages
that an instruction goes through in a processor pipeline. The
dependence graph model is determined by how many and what
stages are chosen in this division. For our purposes, the most
basic model was used, which divides an instruction into three
(entry into the out-of-order window (dispatch), execution at a
functional unit (execute), and exit from the out-of-order window
(commit)). Each part is then considered as a node in a graph; so
each instruction consists of three nodes and a program is a graph
with number of nodes equal to three times the number of
instructions executed. Dependencies exist between different
nodes. For instance, obviously all the commit nodes of the
instructions will depend on the execute nodes of the same
instructions, and the execute nodes will depend on the decode
nodes. All the decode nodes and commit nodes will depend on
the previous ones if we issue in order and have a reorder buffer.
Furthermore, if there are data dependencies between the
instructions, a decode node or a execute node may depend on a
previous execute node.

123

Figure 2 Dependence graph model. The graph
models a sequence of 9 consecutive instructions (from il
to 19) in a program. The ROB is 4-entries. Instruction i7,

a mispredicted branch, Induces an E-D edge to
Instruction i8 to reflect the constraint that correct path
Instructions cannot be dispatched into the window until
a misprediction is resolved. The critical path through
this code sequence is highlighted with the thicker
dependence edges. All edges are labeled with their
latencies.

With the dependency graph constructed, we can determine
whether or not an edge is critical. An edge is defined to be non-
critical if the overall run time stays the same while we reduce the
weight on that edge. An edge is defined to be critical if it is not a
non-critical edge. The critical path of a program is formed by
following the edges that are critical.

A node is defined to be critical if it is part of the critical path.
This notation is useful because we can use the technique of token
passing along last arriving edges proposed in [1] to try to
estimate the critical path. Obviously, an edge is not part of the
critical path if it is not the last arriving edge of a node; we can
decrease the weight of such edges and there would not be any
performance gain because the node still has to stall until the last
edge arrives. If we trace through all the last-arriving edges, we
form an estimate of the actual critical path. Of course, this path
may not be entirely correct, but this is a simple way to
approximate the critical path. The estimation using last arriving
edges can be relatively easily computed by hardware.

It is notion that branch mispredictions do not occur in
isolation; they interact with other miss events. The penalty for a
particular branch misprediction often depends on the preceding
miss event. So whether the branch instruction is in critical path is
the important parameter. If the branch instruction is in critical
path, processor would fork the instructions following the branch
instruction. Conversely, even if a non-critical branch is forked
performance cannot be improved. For example, if the
mispredicted branch is not fed by the long D-cache miss that the
mispredicted branch immediately follows, and in this case the
misprediction penalty is hidden under the long D-cache miss
penalty that usually much larger than misprediction penalty.

5.3 Critical Trace Lengths

More critical-nodes after a branch mean more room for
exploiting. So we tend to fork a second path that has more
critical-nodes. The total number of critical node after a branch is
defined as critical trace length. Figure 3 shows the average
critical trace lengths for the SPECint 2000 benchmarks—details
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regarding the experimental setup are given in section 7. Based on
the idea of criticality, the longer critical trace length has more
room for exploiting. A long critical trace means that we could
potentially speed up the program more by caching the
instructions that are critical. Depending on how many
instructions we store in our cache, it is possible to remove all the
latency of the front-end pipeline for each instruction in the cache.
Unfortunately it seems that many of the benchmarks exhibit
extremely poor variance. So we still need to add threshold for
filter of STC. The threshold value is measurable standard of
critical degree. If the critical trace length is larger than the
threshold value, it means the critical trace is sufficiently
important to need to be saved in STC. In contrary, the critical
trace cannot be saved in STC due to lacking criticality.

Introducing the critical trace lengths can ensure the usage of STC.

5.4 Computing Critical Trace Lengths

Using the lengths of critical trace in any structure in an actual
microprocessor would require an efficient hardware structure to
compute the lengths of these chains. A first requirement is that
the base architecture must include a criticality predictor, such as
the one described in [9] based on token passing along last-
arriving edges.

Once the criticality for each node can be predicted, there is a
counter for each branch, at most one counter per Reorder-Buffer
entry, which is incremented on each instruction that is critical
nodes. The information in this counter must then be retained
somewhere. Section 6.2 describes how we decided to retain the
information in these counters.

6. Misprediction Recovery Cache

In this section, we introduce the RCM. At first, recovery trace
is a.critical trace saved in STC. RCM uses STC that is similar to
traditional trace cache [10]. STC will be discussed in section
6.1.The operation of RCM will be explained in section 6.2.
Recovery policy is discussed in section 6.3.

6.1 STC

‘We propose using a small simplicity trace cache with decoded
instructions to reduce the branch misprediction penalty. Figure 4
shows that an STC is added into a basic out-of-order pipeline.
Trace buffer takes input from the Decode stage of the processor
and keeps a buffer of the current trace. This buffer stops taking
input, and computes the critical trace length according to critical
path prediction when it becomes full, or when its data is written
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into the trace filter. The length of critical trace is compared with
threshold value to decide whether the critical trace is enough
critical to be written into STC at the trace filter. The branch
misprediction also triggers a lookup in the STC to see whether
the recovery path of current misprediction is in the cache. If it is
(meanwhile, it is low-confidence), then the trace is used as the
input to the Rename stage by using distribution approach that the
instructions are catch from the prediction path and the recovery
path according to time interleaving. In essence, STC is a
simplified trace cache. Most design issues of trace cache [10]
[11] can be utilized by the STC. Two points different from a
traditional trace cache should be paid attention: 1) Adding
critical evaluation mechanism: STC latches instructions from
decode stage, instead of fetch stage, and uses trace buffer that
employs critical mechanism to compute critical trace lengths,

and uses trace filter to catch the critical trace with enough critical.

Benefiting from critical path analysis and recovery policy, STC
does not need to consider complex state detection and
management for multiple branches or other speculation
techniques (discussed in section 6.3), so STC architecture is
simple. 2) Adding branch confidence mechanism: the branch
confidence mechanism prevents the high-confidence recovery
trace from entering pipeline, thus increases the ILP of front-end
pipeline, which will be discussed in 6.3.2.

6.2 RCM Operation

RCM allows two paths of branch entering the pipeline (rename
stage and instruction window) simultaneously. But the
instructions from recovery path are not executed until a
prediction miss, and the pipeline only need to discard an invalid
path after the branch is resolved. The issue windows cannot be
drained because both paths following a conditional branch have
been fetched. In essence, the approach converts control
dependencies into data dependencies to reduce the misprediction
penalty. If the STC is hit, and the current branch is low-
confidence, the decoded instructions from the both path would be
renamed and dispatched simultaneous, but considering power
and efficiency, the instructions from recovery path are not
executed until the branch is resolved. If the prediction is correct,
the instructions from recovery path must be discarded.
Conversely, predicted path must be discarded, and the recovery
path holding in issue window will be issued into execution unit.
It is noted that the false data dependencies are introduced due to
converting control dependencies into data dependencies.

Register
Map Table i »

Register
Map Table 2

Trace L Htar
ithreshold)

Figure 4 MRC Architecture

(5 153



FIT2009 (55 8 BIBHRABZERII #—5 L)

6.3 Recovery policy

Ideally, we would like to create the recovery path exactly at
every branch, so that all branch mispredictions are avoided.
Actually, three factors prevent performance improving according
to this approach: 1) excessive instructions from recovery path
reduce the ILP of the front-end pipeline. 2) Introducing excessive
recovery path may make the hardware very complex and difficult
to rename. 3) Forking the non-critical trace would not help
performance improvement.

The critical path mechanism discussed in section 5 is used to
tradeoff the trace criticality to help improving the usage of RCM.
Then, we introduce other mechanism to improve the performance
of RCM.

6.3.1 Branch Forking Policies

Delayed Forked Branches (DFB) scheme is used to reduce the
cost of hardware [7]. DFB will prevent the second branch from
forking a new path. The idea is to save the processor current
states when the second low confidence branch is encountered.
After the resolution of the current forked branch, the delayed
branch can be forked using the previously saved state. To
simplify the mechanism, only the first low-confidence branch
fetched by the predicted path can be delayed. For this purpose,
RCM also uses two Register Map Table/Free-list structures for
the main path and other two for the alternative path, as Figure 4
shows. Based on the branch forking policies and critical
mechanism, RCM truncates the recovery path when it encounter
a branch that is both low-confidence and non-critical.

6.3.2 Branch Confidence Mechanism

We propose to selectively use recovery path to avoid
excessive invalid instructions entering pipeline. In reality, we
would always like the branch prediction is correct, so we limit
the high-confidence branches from recovery path to create the
checkpoint and recovery path. It is noted that RMC masks the
low-confidence branches which related recovery path has be
catch from STC to create checkpoint because the low-confidence
branches have created recovery path.

A branch confidence mechanism sorts conditional branch
predictions into low and high confidence sets based on previous
predictability. Branch confidence mechanisms were already
studied in depth in [12]. Here we exploit a simple effective
confidence mechanism. The confidence mechanism consists of a
table of resetting 4-bit counters, and is indexed by the XOR of a
Brach PC and a global branch history register (GBHR). Correct
predictions increment the counter and a misprediction resets the
counter to zero. For checkpoint, a value of 15 signals high
confidence which the remaining values signal low confidence.
For RMC, a value of 3 signals high confidence which the
remaining values signal low confidence.

6.3.3 Renaming Mechanism

RCM allows instructions from both paths to coexist in the
Rename stage and instruction window. RCM duplicates the
rename map table for shadowing current state, which is already
done in some practical processor such as the MIPS R10000 using
decoupled architecture [22]. This method stores a shadow copy
of the register map as it exists when a conditional branch is

predicted. Rolling back to the branch in the case of a
misprediction involves replacing the current register map with
the appropriate shadow map. After a forked branch is resolved,
the register map for the incorrect path can be discarded. The
register map for the correct path must be placed into the current
register map for the predicted path, which is used when only one
path is being executed. RCM also uses two register maps, one for
each path. The reorder buffer (ROB) and the load/store queue
structures are also duplicated. When a second path (i.e. recovery
path) is forked, the current register map is copied into the forked
register map. Thus, the maps used for each path are the same at
the point of the branch fork. As instructions are renamed on each
path, different physical registers are mapped to the instructions
on each path, and the separate maps are used. It ensures fast state
recovery.

7. Experimental Results

7.1 Simulation Methodology

The performance numbers presented below are based on an
extended version of the sim-outorder simulator from the
SimpleScalar tools set 3.0 [14] that was augmented with a
detailed model of the trace cache that includes recovery, along
with the simulation of the proposed RCM mechanism and with a
critical path predictor using the configuration same as research
[9] to achieve accurate prediction rate. The structure of the traces
within the RCM is similar to other works [10]. Based on critical
mechanism and confidence scheme, a trace is terminated if it
reaches the first critical branch node which low-confidence. Each
instruction in STC takes up 8 bytes since decoding instructions
expands them into a less dense encoding, more conducive to use
by the processor's data path. An aggressive prediction [19] is
used in our simulation to verify the performance of RCM. Table
1 summarizes the base parameters of a basic processor and
configuration of critical predictor.

All the SPEC CPU2000 integer benchmarks were used. All
SPEC applications use the reference inputs. In order to reduce
simulation time, we used the Simpoint [16} to choose
representative samples of over 300 million instructions [17]. We
compiled the SPECint CPU2000 benchmarks for the Alpha
21264/Unix using SPEC Peak compiler and link.

7.2 STC Design Space Exploration

Table 1 Configuration of the simulation

Fatch engine Up to Binstr.icycle. 128 Non-blocking t-Cache

L1071 { Cache 84KB 32Bvtelline 4-way set-associative, 2 cycies

L2 unified cache 512KB, 32Byt2 fine, 4-way set-associative, 10 cycles

Wan Memory 200 cycles

Branch prediction BK-entry gehare pradictor and SK-entry himodai, 16K selector.

2 branches per cycie

isaue/Decode/Commit Any Binstrioysie

Scheduter t-entry size L3Q

Front-end Recovery Feteh+ Decode + Rename =4 cycles

ait andd latency | 4lnt ALU{TAEE 1 Int Mol TWDI(2T0/15), 4 memeny {17t}

Criticai patn predicior 12Kb {16K

s " 8 bit hysteresis).
ingtructions for token propagaticn distance.
light simultanesusiy
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This section explores the design space of the STC. The basic
STC is that the number of trace entry is 16, and trace length is
specified to 32. The total size of STC is 4KB. The trace
replacement uses Least Recently Used (LRU). We attempt to
systematically vary the design search space for design via a
series of experiments and analyses. We simulated the trace cache
by reducing the branch misprediction penalty linearly with the
number of critical trace length, so we only focus on some
parameter of STC that is major effect for performance
improvement: including of cache size, critical trace length and
trace utilization.

7.2.1 Cache Size

To further increase the performance, the size of STC has to be
increased. There are two ways to increase the size of STC. One
is Increasing Trace Length (ITL). The other is Increasing Trace
Entry (ITE).

ITL means that more instructions can be recovered after a
misprediction. Figure 5 shows the improvement of the IPC with
different trace length (For example, B32 means there are 32
instructions in a recovery trace). Observing Figure 3, trace length
increases after certain degree, the performance enhancement
becomes slow. This is because that the overlengthy recovery

path is very rare. The recovery path can be truncated by the
critical branch with low-confidence.

Otherwise, ITE means how many recovery paths can be
written into the STC. Figure 6 shows the improvement of the IPC
with the different trace sets (16sets means 16 trace entries can be
kept in STC). In the same condition, the ITL more easily lead to
waste of cache size than the ITE. But more the number of trace
need more tag bit, practical performance comparison of the two
methods are shown in Figure 7. By comparing the two
performance index of STC (including speedup, and effective rate
of recovery path), we can find that the ITL is better than the ITE
on each index.

7.2.2 Critical Trace Length

Improving the usage of STC is a major purpose of our research,
and the threshold value is the key factor for the performance of
STC. The Threshold Value (TV) of trace filter determines
whether the recovery path has enough criticality to be kept into
STC. Commonly, long critical trace is better since there is more
room for exploiting. The performance improvement from
decreasing critical path latencies is much larger than from
decreasing non-critical latencies. Any non-critical instructions
may not benefit from early scheduler. On the other hand,
excessive TV is also not appropriate. The trace paths are
excessively limited by large threshold because the trace length
must larger than TV. Figure 8 shows the performance using the
various thresholds for per trace length. It is very obvious that the
IPC cannot be improved if the trace length smaller than TV, and
achieves the best performance near where the trace length is 2
times of TV. Then, the performance is diminished because the
low-critical paths are imported.

7.2.3 Trace Utilization Rate

The Trace Utilization Rate (TUR) is defined to be the number
of times the system finds the trace in the trace cache per a trace
build. It is note this definition does not require that the traces are
unique; i.e., if a trace is replaced and built again, we count it as
two different traces. Also, the length of the trace does not affect
the utilization of the trace. In figure 9 the trace utilization
breakdown is presented for 8-entries traces and 16-traces trace
caches respectively. In both configurations the majority of traces
that are written into the trace cache are not used prior their
eviction from it (TUR=0). Moreover, only 10% of the writes
results with more than 2 hits (TUR>2) for the 8-traces trace
cache and 20% for the 16-traces trace cache. We propose the
STC that a trace can contain up to 32 instructions, 16 entries can
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Figure 9 Trace utilization rate breakdown
for a 8-entries trace cache and 16-entries
trace cache

be access, and the threshold value is 16. The total trace size is
4KB, which achieve a high performance with small cache size.

7.3 RCM Performance

Figure 10 shows the IPC obtained by RCM for per
benchmarks as well as the harmonic mean. Four different
experiments performed are:

1) Using the retirement map table (RMAP) [18], the
traditional state-reconstructing method.

2) Dual Path Instructions Processing (DPIP) [20]. Based on
the table 1, we model the DPIP. At the same time, we have made
the corresponding expansion for each stage of SimpleScalar
pipeline in order to implement double program paths
simultaneously.

3) RCM our proposed recovery mechanism.

4) IN_TRACE (INFINITE TRACE), in which a trace is made
for every branch instruction, and assumes infinite resource.

As can be seen from Figure 10, RCM outperforms the other

recovery mechanism arcs all benchmarks. RCM perform nearly

as well as IN. TRACE.

The performance improvement compared with traditional
processor comes from reducing the frond-end re-fill and flush
latency. Comparing with the DPIP, The major contribution is
that RCM prevent the instructions from non-critical path from
entering the pipeline. Instead of forking the branch that is low-
confidence, RCM only allows the branch that is low-confidence
and enough critical can be forked a second path. Especially,
miss-hit for fetching an alternative path (that actually is not
critical) from the instruction cache, the penalty is horrible. In
additional, the decoded instructions from the STC also implicitly
reduce the burden of feich stage that is just big bottleneck for
modern processor. In all, average IPC improvement achieves
10.7% on RCM compared with a conventional processor without
RCM, and 4.6% improvement for DPIP,
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7.4 Performance analysis

RCM over dual path mechanism can achieve high
performance by preventing forked low-confidence prediction
without enough criticality. Here, we also model the same critical
predictor for DPIP to evaluate proportion of low-confidence
prediction without enough critical in Figure 11. The figure shows
the breakdown of instruction critical length for low-confidence
prediction. Forking an alternative path on non-critical path or the
critical path with its length less than TV can degrade
performance even if the low-confidence prediction achieves
success.

7.5 Instruction Window Size

This section studies the performance variation of the three
approaches (the IN_TRACE model is removed) when the
instruction window size and the reorder buffer size increase.
Figure 12 shows the harmonic mean IPC when the instruction
window size varies from 32 to 256. To focus the performance
study on the RCM exclusively, the physical register file size is
kept idealized in this group of experiments. As shown in Figure
12, all three models obtain performance improvement due to an
increased instruction window size. However, the strides of the
improvement are not equal. As can be seen, the performance gap
between DPIP and RCM becomes larger as instruction window
size increases. It is because that the ROB size is also the resource
arbitration of the critical path predictor that is more exact
following the ROB size increasing.

7.6 Effects of Pipeline Depth

Finally, we evaluated the effect of pipeline depth on the
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performance of the each model. Figure 13 shows the average IPC
for total pipeline of 6, 14, 20 stages. We can also see the strides
of the improvement are not equal. For 6 stages, RCM obtains an
average improvement of 9.8% over RMAP, but for 20 stages the
obtained improvement are 26%. It is because the pipeline re-fill
and flush are hidden. Further, the RCM uses the decoded
instructions to increase the ILP of fetch stage and decode stage.

8. Conclusions

We proposed a recovery critical misprediction mechanism. It
can reduce the latency of branch misprediction by hiding the re-
fill penalty, reducing the burden of fetch process, and preventing
the non-critical alternative instruction from entering pipeline by
using critical path prediction. Different from previous double
path methods, RCM need not to double the port to fetch
alternative path (instead by rename stage that it is not
performance bottleneck for data path), so reduce the complexity
of hardware to achieve a higher frequency. The STC is a small
simplicity cache (total size is 2KB/4KB). For some practical
processor (32 KB L1 I-cache for MIPS R10000 [4] and 64KB L1
I-cache for Alpha 21264 [5]), the size of STC is satisfied. STC
with small size increases the performance of processors, and the
architecture of STC is greatly simplified comparing with
common trace cache. According to our simulation results, RCM
achieves a performance improvement by reducing the
misprediction penalty. Using RCM, average IPC improvement
achieves 10.7% up over the traditional recovery mechanism.
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