
Electronic Preprint for Journal of Information Processing Vol.24 No.2

Invited Paper

Cloud Computing - Current Status and Future Directions

Yukio Tsuruoka1,a)

Received: September 2, 2015, Accepted: November 6, 2015

Abstract: Cloud computing is a modern form of advanced information system that has developed with the prolif-
eration of the Internet, broadband access networks and high-speed processors, and it is continuing to spread. Cloud
computing enables users to use IT resources, such as processors and storage, through the network, by simply paying a
fee and without needing to own servers. Running costs are reduced because resources can be used on-demand only as
needed. Since hardware provisioning is not necessary, software development and launching new services can be done
quickly. Cloud computing also drives innovation in information systems. For example, cloud computing has made it
easy to build cluster systems using virtual machines, which has led to the development of scalable data stores such as
object storage and key-value stores. Cloud computing also led to the development of software defined networks and
software defined storage, to respond rapidly to the requirements of users and applications. In this paper, the benefits
of cloud computing are reviewed and technologies supporting it and new technologies arising from it are outlined.
Directions for cloud computing in the future are also discussed.

Keywords: cloud computing, virtualization, large-scale data processing

1. Introduction

Cloud computing refers to forms of information system usage
in which data and software are placed on servers on a network
and are accessed through the network from clients. It is a modern
form of information system that has developed in an environment
with increasing network and processor speed and proliferation
of the Internet and it is continuing to spread. Cloud computing
brings a variety of benefits for enterprises and other organiza-
tions. For example, they can use cloud computing to rent virtual
machines and storage rather than having their own servers and
other equipment. In addition to not incurring equipment costs,
running costs can also be reduced because resources are only used
when they are needed and payment is by usage. Development
and testing are accelerated because new servers can be set up and
storage capacity can be allocated rapidly, so time-to-market can
be reduced [1].

Cloud computing also drives information system innovation.
With the spread of cloud computing, new ways of using informa-
tion systems and new demand have arisen, and this has resulted in
new technologies. For example, it has become easy to build clus-
ter systems using virtual machines, which has resulted in develop-
ment of scalable data stores such as object storage and key-value
stores. Technologies such as software defined networks (SDN)
and software defined storage (SDS) have also arisen, enabling
hardware resources such as processors, storage and networks to
be centrally managed and dynamically allocated and configured
through software. This enables rapid response to resource re-
quirements from users and applications.

This paper describes the technologies underlying cloud com-

1 Nippon Telegraph and Telephone Corporation, Musashino, Tokyo 180–
8585, Japan

a) tsuruoka.yukio@lab.ntt.co.jp

puting. It is organized as follows. The benefits of cloud com-
puting are summarized in Section 2, and usage models are de-
scribed in Section 3, virtualization of OS environments is dis-
cussed in Section 4, storage in Section 5, networks in Section 6,
high-availability technologies in Section 7, security in Section 8,
open-source cloud platforms in Section 9, applications in Sec-
tion 10, and conclusions and future directions are discussed in
Section 11.

2. Benefits of Cloud

Virtualization [2] is a central technology of cloud computing.
Section 2, discusses the benefits of cloud computing brought
through virtualization. Virtualization refers to the realization of
virtual machines (VM) on top of a bare-metal (physical) machine
(BM). A VM is compatible with a BM, so it can execute almost
all machine code that can run on the BM, including the OS. VMs
are implemented using system software called a virtual machine
monitor or hypervisor. The hypervisor runs on the BM, and the
OS runs on a VM administered by the hypervisor. Below, in-
stances of BM are referred to as nodes. Cloud computing has
the following benefits due to the properties of the hypervisor and
VMs.

Scalability: Cloud computing is a distributed system consisting
of resources in units of VMs, so workloads that are too large to
be handled by a single node can be handled by simply allocating
more nodes to them. This scale-out approach can be implemented
at lower cost than scale-up approaches, which would need to re-
place nodes with higher performance nodes. A single framework
can handle tasks of various sizes, provided parallel processing is
possible for the tasks. Large-scale data processing using clusters
is discussed in Subsection 10.2.

Server consolidation: With conventional BM-based systems,
individual servers had to provide resources sufficient to handle

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

the maximum expected workload well. This is larger than the
usual workload, so the overall utilization rate is lower. By placing
servers on VMs, the number of BMs can be reduced by gathering
the VMs on fewer BMs.

Utility computing (multi-tenancy): The hypervisor is able to
run multiple VMs on a single BM. Individual VMs are isolated
from each other, and cannot access the resources of other VMs.
This allows individual VMs to be leased to different users. Users
do not own the equipment, so the work of purchasing equipment
(devices), installing it, and maintaining it is not required, and ini-
tial costs are low.

Elasticity: Utility computing enables users to use resources
from a resource pool on-demand. Fees are paid according to the
quantity used. In this way fluctuating demand can be handled
without wasted investment.

Manageability: VM state refers to a set of data including pro-
cessor registers, memory, storage content, I/O device state and
other information. The hypervisor expresses and manages this
state information as data. A snapshot of a VM image can be
obtained by simply copying this data. Managing VMs as data
enables multiple VM images to be managed together, to be man-
aged centrally, and for such management to be automated. This
can reduce administration tasks and cost.

Agility: Since VMs are managed as data, provisioning and con-
figuration of new VMs can be done instantly, by simply copying
a template (a VM image) and modifying the data. Compared to
BM installations, which require purchasing and installing hard-
ware and configuring each device separately, this is remarkably
quick. Servers can be set up easily, accelerating software devel-
opment, testing, and service start up.

High-availability (HA), fault-tolerance (FT): HA systems can
be built by having the hypervisor take periodic snapshots of VMs
and send them to a backup node, so that recovery can be done
quickly when a fault occurs. This is discussed in detail in Sec-
tion 7. By storing VM snapshots at a remote location, business
continuity and disaster recovery can be assured when disasters
occur.

Monitoring and control: The hypervisor runs with a higher
privilege than the VMs, so it can monitor and control them. For
example, it can monitor network I/O of VMs to detect malware
infection from the outside or spread of malware from a VM to
other machines. It can also isolate infected VMs to prevent dam-
age from spreading. These issues are discussed in detail in Sec-
tion 8.

3. Usage Models

Clouds can be classified as either public, private, or hybrid,
according to how they are used.

With public clouds, cloud service providers (CSPs) provide IT
resources as a service to users such as enterprises or develop-
ers. Users hire resources whenever and however much they need,
paying according to the amount used. Public clouds can be fur-
ther classified as infrastructure-as-a-service (IaaS), platform-as-
a-service (PaaS), or software-as-a-service (SaaS) (Fig. 1).

With IaaS, VMs that users use from a remote site are provided.
Users do not need to maintain hardware, but they are responsible

Fig. 1 Usage models of public clouds.

for administration of code on the VM, including OS and applica-
tions. Typical OS environments can also be provided and used as
a base.

With PaaS, functionality needed for building an application is
provided as a service. Examples include databases, identity man-
agement, and data analytics platforms. Users use these functions
through APIs. Users do not need to maintain hardware or the OS
environment, but must build and maintain their application them-
selves.

With SaaS, a conventional customized system or package soft-
ware application is provided as a service. The user can outsource
management of hardware, OS environment and application to the
SaaS provider.

The proportion of administration handled by the provider in-
creases in order from IaaS to PaaS and SaaS, so the added value
of the services increases accordingly, but conversely, the degree
of freedom for the user decreases. Some SaaS and PaaS pro-
vide auto-scale functions that automatically allocate and release
resources according to processing requirements.

By using public clouds, enterprises no longer need to own
servers. The cost of servers and costs associated with installing
them are not incurred, reducing CAPEX. Running costs (OPEX),
including power consumed by equipment and air conditioning as
well as personnel for operation and maintenance of equipment,
are also not incurred. Through rapid server provisioning, service
providers can reduce the time from service development to its re-
lease. Since fees are charged according to amount used, projects
can start small and be expanded proactively, in accordance with
risks. Public clouds can be particularly helpful for startups and
small and medium-sized businesses (SMBs) that are launching
new businesses.

With a private cloud, an enterprise or organization has its own
equipment. The role taken by the provider with a public cloud
is handled by an internal organization such as the information
systems department. Enterprises that already have many server
assets can reduce the number of servers through server consol-
idation, thereby reducing OPEX. Some of the other benefits of
public clouds also apply, but not those due to not owning the
equipment. Reasons that enterprises may choose to use a private
cloud include handling of information that cannot be managed
externally, or that network access latency cannot be tolerated. In
some cases, private clouds are used temporarily during the tran-
sition from using on-premises systems to a public cloud. By first
moving servers to VMs, they can later be moved to the public

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

cloud easily due to the portability of VMs.
Public and private clouds each have their areas of application

and are used accordingly. When public and private clouds are
linked and used together, it is called a hybrid cloud. Interclouds,
when multiple clouds are interconnected, have also been pro-
posed [3].

Public clouds first appeared in 2006 when Amazon began pro-
viding its Amazon Web Services (AWS) [4]. Initially, the SQS
message queue service and S3 object storage service were of-
fered, and the EC2 IaaS was added later. As of 2015, AWS has
increased to include 46 *1 services.

AWS provides services in 11 regions around the world as of
2015, and each region is independent. Users select regions to re-
ceive services and each region has multiple availability zones. An
availability zone is a physically separate data center. When there
is a fault such as a power outage at the data-center level, resources
from a different availability zone can be available.

4. Realizing Virtual OS Environment

To realize a cloud, multiple OSs must be able to run indepen-
dently in parallel on a single BM. Such virtual OS environments
can be implemented using VMs, as discussed earlier, or using
containers (Fig. 2). Both VMs and containers provide indepen-
dent OS environments to each user. However, while a VM can run
any OS, containers must all run the same OS environment. Con-
versely, containers are more lightweight than VMs. Overviews of
VMs and containers are given below, assuming an x86 architec-
ture.

4.1 Virtual Machines
Virtualization technology was implemented in 1966 in the IBM

Fig. 2 Types of virtual OS environment.

*1 The number of services in the Tokyo region.

360 mainframe. At the time, it was used for sharing high cost
mainframes. The hypervisor for the commodity x86 architec-
ture [5] of today came about as follows. In 1999, VMware Inc.
commercialized their VMware Workstation [6]. In 2003, Xen [7],
developed at Cambridge University, was released as open-source
software. In 2006, KVM [8] developed as an extension of Linux,
became a standard feature of Linux. In 2008, Microsoft’s Hyper-
V hypervisor was incorporated into the Windows Server OS.
4.1.1 Realizing Virtual Machines

A BM has resources including processors, memory, and I/O de-
vices. Typically, processors have control registers and privilege
levels for managing these resources. Control registers regulate
access to resources. Privilege levels are states of the processor,
and the instructions that can be executed are restricted in states
with lower privilege. For example, the x86 architecture supports
four levels. Level 0 is the highest, and level 3 is the lowest. Con-
trol registers are accessed by executing instructions, but those in-
structions can only be executed at a high privilege level. In a non-
virtualized environment, the OS kernel normally runs at level 0,
and user programs run at level 3. This enables the OS to manage
system resources while preventing user programs from accessing
system resources directly.

In virtualized environments, the hypervisor must guarantee that
the OS runs on the VM as though on a BM, while limiting the OS
privileges to within the VM. In other words, it must prevent a
VM from accessing resources of another VM.

To do this, when an OS executes instructions to perform device
I/O or change system state, the hypervisor must reinterpret them
as relating to the virtual machine in order to execute them. The
hypervisor must run with higher privileges than the OS in order
to capture instructions executed by the OS, but the OS must run
at a high privilege level, or in an equivalent manner.

In 1974, Popek and Goldberg clarified sufficient conditions that
an instruction set architecture (ISA) must satisfy to implement
virtual machines [9]. This is that sensitive instructions must be
included among the privileged instructions. Here, sensitive in-
structions are the set of instructions that change system state, and
privileged instructions are those that generate an exception when
executed from an unprivileged level. For example, an instruc-
tion that writes to a control register is sensitive, and a privileged
instruction can only be executed at the privileged level (Level 0).

Robin et al. studied the x86 architecture at the time, and as
a result showed that there were several sensitive non-privileged
instructions. In other words, that the sufficient conditions from
Popek et al. were not satisfied [10]. VMware Workstation fills
in that gap using binary translation [11], [12], which dynamically
changes code in memory. Sensitive non-privileged instructions
in the kernel code are substituted with privileged instructions and
emulated safely by the hypervisor.
4.1.2 Types of Virtualization

Hypervisors are classified into two types. Type-1 hypervisors
run directly on the BM. As such, they require I/O drivers, as do
OSs. VMware ESXi and Xen are examples of type-1 hypervi-
sors. Instead of having its own I/O drivers, Xen has a special VM
called Domain 0 and it uses Linux drivers that run on this VM.

Type-2 hypervisors run on a host OS that runs on the BM.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

Guest OSs are then run under management by the hypervisor. A
benefit for users is that it is easy to install over an existing OS
environment. VMware Workstation and Parallels Desktop are ex-
amples of type-2 hypervisors.

The code that guarantees the secure isolation of VM environ-
ments is called the trusted computing base (TCB) [13]. For type-
1, the TCB is only the hypervisor, while for type-2, the host OS
is included in the TCB in addition to the hypervisor. Type-1 hy-
pervisors have a smaller TCB and are considered to have less
possibility for introduction of vulnerabilities.

VM implementations can be classified as either full virtualiza-
tion (FV) or paravirtualization (PV).

FV provides an application binary interface (ABI) that is es-
sentially equivalent to a BM, so that a guest OS can be run as is,
without modifying the code. The behavior of the BM is virtual-
ized strictly, which requires much more code.

With PV, the guest OS calls the hypervisor code instead of exe-
cuting sensitive instructions when performing I/O. Such calls are
called hypercalls. PV has the benefits of a simple interface be-
tween guest OS and hypervisor and low virtualization overhead.
On the other hand, the OS must be modified to using hypercalls.
This prevents use of an OS that does not have source code avail-
able.

The initial release of Xen only supported PV. Xen 3.0 in 2005
added support for FV using hardware support for virtualization,
which is described below.
4.1.3 Reducing the Overhead of Virtualization

To implement FV, sensitive instructions, memory, mother
board, interrupts, timers, and I/O processing must be virtualized.

Earlier, virtualization of sensitive instructions had to be done
by emulation using binary translation, but in 2005 Intel imple-
mented the VT-x [14] processor with hardware support for vir-
tualization and able to execute some of them in hardware. VT-x
adds operating modes to the processor and extends the ISA to sat-
isfy the sufficiency conditions from Popek et al. A context switch
occurs when switching modes, but the associated overhead has
been reduced with improvements in successive processor gener-
ations. In 2006, AMD implemented similar functionality with
AMD-V. VT-x and AMD-V are not compatible, so the hyper-
visor must absorb any differences using an abstraction layer in
software.

For memory virtualization, normally the OS manages mem-
ory by mapping logical addresses to physical addresses through
an MMU and page table. The hypervisor must convert accesses
to the MMU or page table by the guest OS on the VM to the
corresponding VM process. An MMU is emulated. The hyper-
visor also has a copy of the guest OS page table (shadow page
table) and performs conversions between it and the system page
table. Changes to the guest OS page table are reflected in the
system page table, and page access information is written back to
the guest OS. In the second generation of VT-x implemented in
2008, Extended Page Tables (EPT) [5] was introduced, extending
address transformation methods to make memory virtualization
easier and faster. AMD has also implemented Nested Page Tables
(NPT), which are similar to EPT. In virtualization environments,
an OS is run for each VM on the BM, so memory usage is tight.

By allowing pages to be shared among VMs, the total amount of
memory used can be reduced [15].

Virtualization of mother board functions, interrupts, timers,
and I/O processing have all been implemented using software em-
ulation, by QEMU [16] for instance. Hardware support has been
added for virtualization of I/O processing, making implementa-
tion easier and faster. Both AMD and Intel have implemented
their own functionality extending their hardware platforms (pro-
cessors, chipsets, BIOS, etc.) so that I/O devices can be accessed
directly from a guest OS. These are called AMD-Vi [17] and Intel
VT-d [18] respectively. Implementation of I/O virtualization has
also become easier as I/O devices have added virtualization func-
tions that provide separate functions for multiple guest OSs. The
PIC-SIG industry organization has created the SR-IOV specifica-
tion [19] for I/O virtualization of PCI devices for this purpose.

CPU time is allocated to each VM by the hypervisor scheduler,
and then further allocated to processes by the guest OSs on the
VMs.

Generally, PV has less overhead and is faster than FV that
is based on emulation. However, for sensitive instructions and
memory virtualization, FV is faster than PV because it utilizes
hardware support. PVH, which combines hardware support with
PV was introduced in Xen 4.5.

Normally, I/O processing incurs overhead due to interrupt
virtualization. This is because a context switch occurs when
the hypervisor temporarily receives interrupts intended for the
guest OS. Gordon and Amit have proposed Exit-Less Interrupts
(ELI) [20], which enable a guest OS to process interrupts directly.
ELI increases throughput and latency by a factor of 1.3 to 1.6,
and performance on I/O intensive workloads has been shown to
achieve 97% to 100% of BM performance.

Unikernel [21] is another technology for reducing overhead in
virtualization environments. Unikernel is an approach which gen-
erates a small OS environment for a specific application, includ-
ing only functionality specifically required by that application.
Examples include MirageOS [22], ClickOS [23], [24], HaLVM,
Clive, LING, Rump kernels, and OSv.

4.2 Containers
Containers provide OS-level virtualization, which uses OS fea-

tures to create multiple isolated OS environments [25]. In contrast
with VMs, there is only one OS, so each OS environment is the
same version of the OS. Early implementations include jail [26],
which was introduced into FreeBSD 4.0 in 2000, Virtuozzo [27],
which was commercialized for Linux by Parallels Inc. *2 in 2002,
and Solaris Containers [28] in 2004. Initially, containers were not
a Linux kernel feature, so they had to be merged into the ker-
nel when a new version of the kernel was released. To avoid
such merge tasks, Parallels released the core of Virtuozzo as the
open-source OpenVZ [29] in 2005, contributing to development
of the Linux kernel. Functionalities needed to implement con-
tainers were incorporated into kernel versions 2.6.15 to 2.6.26,
making implementation easy. Linux Containers (LXC) [30] is a
container implementation using this standard Linux functionality.

*2 The company name was SWsoft at the time.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

Containers are used from a higher-level software platform. For
example, with the Mesos [31] platform for sharing multiple work-
loads on a cluster, LXC is used as a mechanism for separating
multiple workloads over nodes. Docker [32], which was released
in 2013 as a platform for application deployment, initially used
LXC for container functionality. Also, CoreOS [33], which was
released in 2013 as a platform for deployment on clusters, ini-
tially used Docker as its container engine (runtime library).

Note that as of version 0.9 in 2014, Docker no longer uses LXC
and the implementation has migrated to libcontainer. CoreOS is
also developing the new appcontainer (appc) container specifi-
cation and is releasing its own engine called Rocket (Rkt). In
June 2015, Docker, CoreOS and others initiated the Open Con-
tainer Initiative (OCI) *3 [34] industry association to create stan-
dard container specifications and the Open Container Specifica-
tions [35] were released. Docker provides the runC [36] container
runtime implementation based on this specification. runC is able
to run Docker images. On the other hand, Google announced the
Kubemetes [37] container management platform in 2014 and con-
tributed to the new Cloud Native Computing Foundation (CNCF)
in 2015. Both OCI and CNCF organizations are under the Linux
Foundation.

Linux functions for implementing containers include kernel
namespace [38], Control groups (cgroups) [39], and Linux kernel
capabilities [40].

Kernel namespace decides how system resources appear to
processes. For example, user ID 0 (root user) in container A and
user ID 0 in container B can each be mapped to different non-root
users in the host OS.

Cgroups is functionality for allocating hardware resources such
as CPU time, memory, and network bandwidth to processes.

Capabilities sets access permissions for individual resources.
It enables access control to be configured in smaller units than
the conventional distinction between privileged and unprivileged.
Isolation of container environments is realized by combining
these functions.

Container environments are compact because each environ-
ment does not need to have a separate OS. The benefits of con-
tainers as a virtual OS environment are that virtualization over-
head is low compared to VMs, they can be launched quickly, and
they can operate with high density on a single node. On the other
hand, they also have the following limitations. All container en-
vironments must use the same version of the OS kernel. Per-
formance isolation is also weak. All containers share kernel re-
sources, so a particular container could use up all resources. Lim-
itations can be put on resource use to prevent this, but application
behavior must be understood in order to do so.

The TCB for container environments is the OS, which contains
much more code than VM environments, for which the TCB is
the Type-1 hypervisor only, and the possibility of vulnerabilities
being introduced is considered to be higher.

In some container implementations isolation of the environ-
ments is not yet complete because the kernel keyrings namespace
is not separate, among other reasons.

*3 Initially called the Open Container Project (OCP).

Xavier et al. [41] compared the performance of three types of
container: LXC, OpenVZ, and VServer; to a Xen VM using
an HPC workload. The results showed that all containers had
less overhead than Xen in memory throughput, disk I/O, network
throughput, and network latency. On the other hand, regarding
performance isolation, all containers were more affected by other
environments on the same node in memory, disk and network per-
formance compared to Xen. All containers and Xen have little
processor overhead so processor performance isolation is good.

5. Storage

Processor virtualization has made use of computation re-
sources elastic, so demand has increased to handle storage this
way as well. In cloud environments, storage requires the follow-
ing two points. First, it must be possible to manage resources
with agility and flexibility to the same extent as is possible with
processors, and second, it must be possible to manage through
software it in a unified manner, coordinated with other resources
such as processors and networks.

There are two main approaches to storage configurations in
cloud infrastructures. One is to use a general, advanced and self-
contained storage solution (a product), and the other is to config-
ure a storage subsystem that combines a commodity cluster, hav-
ing storage devices attached directly to each node, with software
to manage them. The latter means that the cluster itself is also a
suitable base for a scalable storage subsystem, and this has been
used successfully as the data store for large-scale data processing
systems such as Hadoop [42]. With cluster-based systems, low-
cost commodity drives are used. Faults are expected to occur with
these drives, so fault tolerance is implemented in an upper-layer
of software. Each of these approaches is described below.

5.1 Storage Solutions
Even before cloud technology became common, various types

of resource abstraction in storage had been implemented. For
example, a Logical Volume Manager (LVM) would integrate or
partition physical drives in order to define logical drives (i.e., log-
ical volumes). Logical Volumes made it easy to change capacity.
This eliminated the need to allocate excess capacity before hand
and increased utilization of drives. As a result, the number of
drives, and consequently CAPEX, were reduced. By managing
multiple drives centrally in a resource pool, OPEX could also
be reduced. Most storage products provide various additional
functions by mapping from logical drives to physical drives. Ex-
amples include, RAID to increase throughput or fault tolerance,
backups, version control, compression, deduplication, encryp-
tion, automated capacity allocation, capacity leveling, load bal-
ancing, and hierarchical storage management (HSM). HSM at-
tempts to achieve both high performance and low cost by com-
bining high-speed, high-cost storage (e.g., SSD) with low-speed,
low-cost storage (e.g., HDD, tape). Data is automatically moved
between different types of drive according to access frequency
and QoS policies.

Even before cloud technology became common, storage prod-
ucts had become advanced independent subsystems not reliant
on a host system. For example, dedicated Storage Area Net-

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

works (SAN) enabled storage to be shared among multiple hosts.
New categories of storage have also appeared, incorporating fea-
tures of cluster-based systems. Examples include scale-out NAS,
which integrates drives with controllers so that throughput can be
increased by adding equipment, hyper-converged infrastructure,
which integrates processors, storage and networking making it
easy to build cluster systems, and software defined storage (SDS),
which can be controlled through software.

5.2 Cluster-based Storage Systems
Cluster-based data stores can be classified based on the struc-

ture of data they handle, including block storage, object stor-
age, file systems, key-value stores, column stores and document
stores.

Block storage is accessed in block units, in the same way as
physical drives. Examples include Amazon EBS (hereinafter,
EBS) [43] and OpenStack Cinder (hereinafter, Cinder) [44].

EBS is a block storage service for the Amazon EC2 IaaS,
started in 2008. EC2 does not have persistent storage, so separate
storage was needed to save data beyond the life of a VM instance.
EBS is attached to an instance for use, but it cannot be attached
to multiple instances at the same time. Storage volumes are au-
tomatically replicated within their availability zone. Optionally,
data and communication can also be encrypted. Throughput and
latency can be monitored from a Web administration screen. As
of 2015, the maximum capacity for SSD-backed EBS is 16 TB,
and the maximum throughput is 4 Gbps when using an EBS-
optimized instance.

Cinder is block storage for the OpenStack [45] open-source
cloud infrastructure. Similar to EBS, it is used by attaching
a volume to a VM. Cinder supports multiple types of back-
end storage through drivers. Currently, supported solutions in-
clude Ceph [46], GlusterFS [47], Sheepdog [48], [49], LVM, and
NFS [50], and they can be used in combination.

Object storage is a storage architecture that processes data in
units of objects composed of data and metadata. Data consists of
variable-length byte arrays, while meta data consists of keys, val-
ues and attributes. By separating data and metadata, data can be
accessed directly, and metadata is used for extensibility and opti-
mization. Objects are identified using globally unique identifiers.
The object storage concept was described by Gibson et al. [51]
in 1997 and has been implemented in many systems since then.
Amazon S3 (hereinafter, S3) [52] is one example of a commer-
cial service. OSS examples include Lustre [53] and OpenStack
Swift (hereinafter, Swift) [54]. Ceph, GlusterFS and Sheepdog,
as mentioned above, also have object storage interfaces. There
are also storage products that have an object storage architecture.
Most object storage provides an S3-compatible API.

GlusterFS provides a file system interface. It can also be used
as object storage or block storage.

A key-value store (KVS) stores data in key-value pairs. One
example is Dynamo [55].

A column store stores data in column units representing tables
of rows and columns. In contrast with RDBMSs, which store data
in row units, they facilitate rapid addition of new columns and
analysis that accesses data from particular columns only. They

are also able to store sparse tables compactly. On the other hand,
they are not suited to transaction processing. One example is Cas-
sandra [56]. Bigtable and Hbase, which are used as large-scale
data processing platforms, can also be classified as column stores.
These are discussed in Section 10.2.

A document store stores data in units of documents. One ex-
ample is MongoDB [57].

The data structures for KVS, column store and document store
are similar, so they can be considered as types of KVS. They also
have common characteristics, including scalability due to relaxed
consistency requirements, flexible data structures, and ability to
build low-cost systems using inexpensive drives due to fault tol-
erance.

6. Networking

Virtualization of networking has also become necessary in
cloud infrastructures as processing has been virtualized. For ex-
ample, provisioning of VMs requires network configuration and
dynamic allocation of bandwidth according to workload (band-
width on demand), and in multi-tenant environments, networks
for each tenant must be kept separate. Software defined Networks
(SDN) [58] is a key idea for managing networks for cloud in-
frastructures. SDN is an architecture that enables networks to be
created, deleted and configured through software control. SDNs
separate network functions into the forwarding function and the
controller. The forwarding function transports packets, and the
controller controls the forwarding function.

The forwarding function is implemented in switches and
routers. The controller is implemented as a software module. The
behavior of the forwarding function is programmably controlled
by the controller, allowing networks to be controlled rapidly and
dynamically according to the requirements of higher layers. It
also enables automated control and centralized device manage-
ment within a data center.

OpenFlow [59] is a protocol regulating the interface between
forwarding function and controller. OpenFlow was developed to
facilitate network research and began from research by Casado,
who was at Stanford University in 2006. After OpenFlow was
proposed, the concept of SDNs grew and became widely known.
The initial specification was set in 2011 and specifications [60]
are currently set by the Open Network Foundation, an industry
organization.

One way to configure a network between two VMs in a data
center using OpenFlow is to configure all switches on the path
between the VMs. In this case, all switches would have to sup-
port OpenFlow.

Another way is to use overlay networks. Note that hypervisors
have a virtual switch, which is a software implementation of a
switch. An overlay network is created by tunneling between the
virtual switches of the hypervisors hosting the two VMs. Then,
network configuration is done on that overlay network, which is
to say, on the two virtual switches. As an example, if VM 1a and
VM 1b are running on node 1 and VM 2a and VM 2b are on node
2, a virtual network for VM 1a and VM 2a and another virtual
network for VM 1b and VM 2b could be created. This method
has the benefit that there are no changes to the underlying phys-

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 3 NFV framework.

ical network. Tunneling protocols used include VXLAN [61],
STT [62], GRE [63], and DOVE.

In addition to vendor products, there are also OSS implemen-
tations of OpenFlow controllers. Examples include Ryu [64],
Trema [65], Open-Daylight controller [66], OpenContrail con-
troller [67], and Floodlight [68].

In addition to vendor products, there are also OSS imple-
mentations of OpenFlow switches. Examples include Open-
vSwitch (OVS) [69], [70] and Lagopus [71]. OVS was merged
with Linux kernel 3.3 in 2012. Both OVS and Lagopus increase
processing speed by using the Intel Data Plane Development Kit
(DPDK) [72], which is a packet processing library. DPDK is run
in the user space. By using polling for reception, overhead caused
by interrupts can be avoided. It also uses DMA to interact directly
with the NIC, not using a kernel buffer. This reduces overhead
and increases throughput for small packets.

NFV [73] is a specification for implementing, dynamically
organizing, and managing the Network Function (NF) using
commodity hardware and virtualization, and is standardized by
ETSI [74]. The NFV framework is shown in the Fig. 3. In the
figure, Virtualised Network Function (VNF) is a software imple-
mentation of the NF. The NFV Infrastructure (NFVI) runs the
VNF, so it includes hardware resources and software that vir-
tualizes it. NFV Management and Orchestration manages life-
cycles of VNFs as well as hardware resources and software or-
chestration in the NFVI. By separating software and hardware,
improvements to both are made separately. The goals of NFV
include implementing NF at low cost using commodity hardware
and virtualization, connecting VNF and hardware with flexibility,
developing services rapidly through software, automating opera-
tions, reducing power consumption by consolidating workloads,
and multi-vendor solutions through open standards.

OPNFV [75] is an example of an OSS implementation of NFV.
It integrates Ceph, KVM, OpenDaylight [76], OpenStack and
Open vSwitch to form a carrier-grade NFV platform.

Conventional network switches provide both hardware and the
software to control it. In contrast, white-box switches provide
only the hardware, and the software can be selected by the user.
This provides the benefits of freedom and the possibility of cen-
tralized management. Device cost should also decrease. On the
other hand, the possibility of attack by malware increases with

more freedom [77], and it is more difficult to detect such attacks.
For these reasons, they must be managed carefully.

In large-scale data-center networks, it is important to prepare
enough bandwidth. Network topologies such as Fat-trees [78]
and Clos networks [79], [80] are used as well as tree struc-
tures. Al-Fares et al. have proposed an architecture based on
fat-trees that achieves high aggregate bandwidth using commod-
ity switches [81]. Mysore et al. have proposed the Portland [82]
Layer 2 forwarding and routing protocol, which is scalable and
fault tolerant. Google data centers achieve bisection bandwidths
over 1 Pbps using multi-stage Clos networks and a centralized
control protocol [83].

7. High-availability and Fault-tolerance

Availability is a basic requirement of a service. For operation
of large-scale systems on a cloud, hardware failure rates increase,
and spread of the effects of a fault is an issue. For these reasons,
high availability (HA), which minimizes downtime due to faults,
and fault tolerance (FT), which suppresses faults and maintains
processing, are important. Systems that are fault tolerant at the
host level have redundant hosts, so that if the primary host stops,
processing switches to a backup host. To achieve this, the states
of primary and backup hosts must be synchronized.

Bressoud et al. [84] proposed an FT system using VMs in 1995.
This was a lock-step system controlled such that primary and
backup VMs executed the same instructions in parallel. Both
VMs were given the same input and maintained deterministic ex-
ecution in parallel. Non-deterministic processing such as reading
timers was emulated by the hypervisor so that both VMs pro-
duced the same result. Interrupts were also generated at the same
time. This was implemented in the hypervisor layer, so no special
hardware was required. No changes to OS or applications were
required either. However, maintaining determinacy was depen-
dent on the instruction set architecture (ISA). The authors imple-
mented a PA-RISC ISA prototype system. The hypervisor code
was on the order of 24 thousand lines of code (24 KLOC). Note
that processing speed reduced by approximately half due to over-
head.

In 2002, Sapuntzakis et al. [85] proposed a method that en-
capsulates VM state and rapidly migrates it to a different host.
They discussed methods for reducing the amount of transferred
data including copy-on-write to disk, ballooning to handle un-
used memory efficiently, paging methods for getting only the
blocks needed, and using a hash to detect matches in the destina-
tion block. The main objectives of the proposed method were to
move computing environments as users move and improve man-
ageability of environments by encapsulating them, but they also
suggested applications for failover using portability of VMs.

In 2005, Clark et al. [86] proposed a method for live migra-
tion of running VMs to different BMs, which they implemented
on Xen. During the proposed pre-copy, memory pages are first
partitioned and repeatedly sent to the destination BM without
stopping VM execution. During this time, any changed pages
are resent. In the final phase, the VM is stopped, the remain-
ing changed pages are sent, and VM execution is resumed. To
users, the time required by the final phase is down time, and is

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

less than the total migration time from start to end of the migra-
tion. There is a tradeoff between reducing down time and re-
ducing total migration time, which was considered in the design.
This paper proposed the concept of a writable working set. By
estimating the writable working set for the workload, the num-
ber of pre-copy rounds is decided. The migration traffic affects
VM processing, so a rate-adaptive algorithm is used to adjust the
transmission rate. The implementation achieved migration of an
interactive workload on a commodity cluster with down time of
60 ms. Live migration of VMs has much in common with VM
replication for HA and FT, and can be applied to them as well.

In 2008, Cully et al. [87] proposed the Remus FT system based
on VM replication. Remus requires several seconds of down time
during failover, but preserves state including network connec-
tions. Protected software is encapsulated in a virtual machine and
a VM snapshot is replicated to the backup host in 25 ms. Note that
even though the system replays on the backup host from a check-
point when a fault occurs, the same output is not guaranteed due
to non-determinism. For this reason, external output cannot be re-
leased until the state that produced the output has been replicated
on the backup host. One way to achieve this is to synchronize
when there is external output. Instead of this, Remus sets syn-
chronization points every 25 ms and buffers output till the next
point. This reduces output latency and run-time overhead. Note
that writing to disk is also duplicated on the backup host, and
writing is done upon synchronization. Remus is implemented on
Xen using live migration functions and is a standard feature as of
Xen 4.0 [88].

In 2008, Tamura et al. proposed the Kemari [89] FT system,
which replicates VM snapshots on a backup host, similar to Re-
mus. In contrast with Remus, it performs synchronization when
there is external output. This eliminates the buffering latency re-
quired by Remus. On the other hand, when output frequency is
low, snapshots that must be replicated become larger and the la-
tency for one synchronization increases. Conversely, when output
frequency exceeds the Remus synchronization frequency, syn-
chronization overhead becomes higher than that of Remus.

In 2013, Dong et al. proposed the COLO [90] FT system,
which performs lock-step execution with coarse granularity. With
COLO, the VM on the primary host (called P) executes in paral-
lel with the VM on the secondary host (S). Both receive the same
input, and external outputs are compared before being released.
When P and S output the same data, it is released externally and
execution continues. When outputs differ, the output from P is
released after stopping P, taking a snapshot, and using it to syn-
chronize S. Then execution of P and S is re-started. Note that
even if the outputs match, the states of P and S are not necessar-
ily the same. In fact, any differences in state cannot be observed
externally, and no inconsistencies arise, even after failover from P
to S. COLO performs lock-step operation when there is external
output. There is overhead from distributing input and comparing
output. This is less overhead than performing lock-step opera-
tion at the instruction level, as with the method from Bressoud. It
is also less overhead than Remus, which performs periodic syn-
chronization, as long output from P and S match. However, when
outputs do not match, the full state of P must be synchronized, re-

sulting in delay. In Ref. [90], optimizations to increase the rate at
which outputs match are proposed, such as ignoring packet times-
tamps and comparing outputs by client to absorb any differences
in the order of output caused by the concurrent programs. COLO
is a standard feature of Xen as of Xen 4.5.

8. Security

There are three perspectives on security regarding cloud com-
puting.

The first is from the perspective of system operation. To main-
tain systems in a secure state, activity such as network input and
output must be monitored and security patches applied, and these
can be complex tasks. In fact, many incidents result from incom-
petent operation. Users can outsource OS-level security adminis-
tration to a provider by using PaaS or SaaS. This can maintain the
level of operational security. On a private cloud, VM images can
be centrally managed, unifying security management and making
policy enforcement easier.

The second perspective is security of virtualized systems. Se-
curity of virtualized systems depends on the hypervisor, which is
the TCB. Generally, the hypervisor has a smaller code base than
the OS. For example, the source code for Xen is approximately
100 KLOC. This means there is less likelihood that vulnerabili-
ties will be introduced in a hypervisor than an OS, and isolation of
environments should be more robust. On the other hand, if a vul-
nerability is found in the hypervisor, there is a risk that security
for all VMs it manages will be compromised. It is also difficult
to detect hypervisor malware infections from a guest OS environ-
ment [91], [92], [93], [94]. Various methods for increasing the
security of virtualized environments have been proposed.

Garfinkel et al. proposed an integrity verification method to
check that system software comprising the TCB has not been tam-
pered with Refs. [95], [96]. The integrity verification computes a
hash value of the code when system software such as the boot
loader or hypervisor is launched and during execution [97] and
compares it with a stored value computed beforehand. The hash
value is digitally signed to guarantee its validity. This feature is
used in the Windows 8 secure boot feature.

Steinberg et al. have proposed the NOVA micro hypervisor
based virtualization architecture [98]. The kernel mode micro hy-
pervisor is 9 KLOC. This is smaller than both Xen and Hyper-V,
which are approximately 100 KLOC. Performance drops slightly
because virtualization is implemented in the user space, but it
simplifies the interface and the TCB is smaller. This reduces the
attack surface, increasing security.

Szefer at al. have proposed the noHype virtualization system
that runs multiple VMs in parallel and runs guest OSs directly
on the hardware [99]. With noHype, processor and memory are
allocated to a VM before it is executed and the OS is modified
so that all resources are determined before the OS is launched.
Guest OSs access virtualized I/O devices directly. This reduces
the cases when control passes from VM to hypervisor, thereby re-
ducing opportunities for malware infection from guest OS to the
hypervisor.

In 2013, Yarom et al. identified a side-channel attack called
FLUSH+RELOAD [100], in which the internal state of VM run-

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

ning on the same processor could be guessed by observing pro-
cessor L3 cache access patterns. In combination with a Web
server attack, it enables encryption keys in a target VM to be
guessed. There are various conditions for a successful attack,
including the need for the target source code, and that attack code
must be running on the same processor as the target VM, but
the attach shows one way that information can leak through the
processor. Special consideration is needed when implementing
highly confidential processing such as encryption.

The third perspective is monitoring and control of VMs when
using virtualization. The hypervisor runs with higher privilege
than the VMs and controls them. Hypervisors not only realize
VM isolation, they can also inspect and interpose on VM activ-
ities. This is called virtual machine introspection (VMI) [101].
VMI is able to detect attacks from within the LAN that cannot be
detected by a firewall located at the border of intranet, and indi-
vidual VMs can be isolated individually from the LAN. A VMI
library called libVMI [102] has also been developed, supporting
the hypervisors in Xen, KVM and others.

9. Open Source Cloud Platforms

Most components comprising cloud infrastructures have been
developed as OSS. For example, there is infrastructure, including
hypervisors, OSs, and data stores, as well as tools for resource
management, configuration management, deployment, and mon-
itoring. There are also cloud platforms providing the software
stack needed to build private or public clouds, including Euca-
lyptus [103], Open Nebura [104], CloudStack [105], and Open-
Stack [45].

The OpenStack project was started by Rackspace Hosting and
NASA in July, 2010. As of 2015, it is being developed with
a six-month release cycle under management of the OpenStack
Foundation, which has over 500 member enterprises. There are
projects to develop various components, including Nova (com-
pute), Swift (object storage), Glance (imaging service), Keystone
(identity service), Horizon (dashboard), Newtron (networking),
and Cinder (block storage). OpenStack APIs are compatible with
Amazon EC2 and S3, and can be used with major Linux distribu-
tions. It is being used with large scale environments on the order
of 200,000 cores.

Cloud Foundry [106] is an OSS PaaS platform. The Cloud
Foundry Foundation was established in 2014. Projects include
DIEGO (execution environment), LATTICE (container manage-
ment), and BOSH (lifecycle management tool).

10. Applications

10.1 High Performance Computing
Initially, cloud computing was applied in fields such as Web

servers and enterprise systems with small to medium workloads,
and resources provided by cloud systems were suitable for that
scale of workload. However, the reliability, scalability, and cost
of cloud systems were also useful for other fields such as high-
performance computing (HPC).

Around 2010, Ostermann [107], Iosup [108], and Jack-
son [109] each evaluated the performance of cloud systems when
applied to scientific computing. The results showed that network

latency can reduce performance, and in particular, performance
drops as VM instances are added due to reduced network
performance and this can lead to reduced scalability. EC2 is
often suitable for scientific computing, but for large problems
using 1,024 or more cores, performance drops by an order of
magnitude. Performance can be improved by tuning programs
to consider cache size and using high-speed interconnects.
The cloud model can also be extended to HPC by utilizing
BM resources accessible in a cloud. Note that in EC2, high
performance instances, 10 Gbps interconnects, and high-speed
I/O through SR-IOV are currently available for HPC. In 2011,
the EC2 cluster ranked 42nd in the top 500 supercomputing
sites [110]. The instance was cc2.8xlarge (Xeon 8C 2.6 GHz,
10G Ethernet), with 17,024 cores.

10.2 Large Scale Data Processing
Large-scale data processing infrastructures have some points in

common with clouds in that they are scalable cluster-based sys-
tems, and are one application of cloud systems.

Google developed its Google FS (GFS) scalable distributed file
system to perform the high-speed crawling and indexing required
for its search services, and published it in 2003 [111], [112]. The
system uses commodity hardware, so faults are assumed to occur
under normal operation. For the assumed workload, many clients
will write to the same file in parallel, and multiple clients will also
read from the file in parallel. Most writes will be appends, over-
writes will be rare, and most reads will be sequential. Beyond
these, the file system was designed to have fault tolerance and to
prioritize high aggregated throughput rather than low latency.

In GFS, files are partitioned into and managed in 64 MB
chunks. Chunks are identified with a globally unique 64 bit ID.
Chunks also have version numbers and checksums attached to
them.

The system is composed of one master, multiple chunk servers,
and multiple clients. The master has metadata, including the di-
rectory hierarchy and chunk locations. The chunk servers hold
the chunks. For fault tolerance, chunks are replicated on three
chunk servers. The metadata on the master is held in memory.
In preparation for a master fault, the metadata change history is
saved. The master also performs chunk repositioning and garbage
collection, among other tasks.

GFS separates data and control in order to simplify data flow.
Data does not go through the master and is exchanged directly
between clients and chunk servers. Data replication is performed
by the chunk servers.

In addition to the usual read and write file operations, a record
append operation is introduced. Record append adopts a week
consistency model in order to gain throughput.

Google also developed Colossus (GFS2) [113] as a successor
to GFS. Colossus was designed with low latency for real-time
processing, a 1 MB chunk size, and eliminating any single point
of failure.

In 2004, Google announced MapReduce [114] as a program-
ming model for large-scale data processing. With MapReduce,
the user describes the process using a map function and a reduce
function. The map function generates a set of intermediate data

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

(key-value pairs) from the input, and the reduce function takes
that set of key-value pairs as input and computes outputs that
summarize it. For example, to count the frequency of words ap-
pearing in a text, the map function would divide the input text into
words and create a key value pair for each word as output. Here,
the key would be the word and the value would be a frequency of
1. The key-value pairs are classified by key (by word), and input
to the reduce function. The reduce function computes totals from
the input values and outputs the frequency of each word. Multiple
workers process both the map function and the reduce function.
Parallelization and load balancing is done automatically by the
MapReduce library. A locality optimization, which co-locates
data and compute nodes, is also performed. MapReduce was im-
plemented on a cluster of thousands commodity PCs. Directly
connected IDE drives were used for storage and GFS was used
for reliability. MapReduce is used for tasks including Web page
analysis, large-scale machine learning, satellite image processing,
and machine translation. As of 2008, over 10,000 MapReduce
programs had been written, and 20 PB of data per day had been
processed on the cluster in 100,000 jobs every day.

Google also developed a scalable distributed data store called
Bigtable [115] for use by its own services, which was published
in 2006. By designing their own data store, they were able to
support scalability and they gained design freedom to eliminate
bottlenecks. Bigtable features scalability to support thousands of
commodity servers and handle several petabytes of data, it sup-
ports various data-size and latency requirements so it can be used
with many applications, and it uses a simplified data model rather
than a relational data model. Data is stored as multi-dimensional
tables, and is identified by row, column and timestamp. Data
consists of byte arrays (character strings), and keys are character
strings specifying row and column. GFS is used to store data and
logs and Chubby is used as a distributed lock service.

Bigtable is used for Web indexing, and services such as Gmail,
YouTube, Google Maps, and Google Earth, and as a platform for
MapReduce. It has been in use since April, 2005, and was be-
ing used from 60 projects as of August, 2006. It required seven
person-years for design and implementation.

In 2005, inspired by the Google GFS and MapReduce papers,
Cutting et al. implemented them as OSS. Currently, this set of
modules is being developed by the OSS community as Apache
Hadoop [42] (hereinafter, “Hadoop”).

Several projects are included within the Apache Hadoop
project.

The HDFS project is developing the Hadoop distributed file
system (HDFS) [116]. HDFS was designed under almost the
same assumptions as GFS, but the implementation is slightly dif-
ferent; some tasks are handled by the clients rather than by the
servers.

The MapReduce project is developing the MapReduce large-
scale data processing platform. MapReduce can be used with file
systems other than HDFS and on public clouds. However, it does
not perform well unless locality optimization is done.

In 2008, Hadoop broke the world record for sorting. It per-
formed a 1 TB sort in 209 seconds using a 910-node cluster. In
2008, Yahoo disclosed that it was generating its Web search data

using a Hadoop application on a 10,000-core cluster. In 2012,
Facebook was maintaining 100 PB of data on a Hadoop cluster
and adding 0.5 PB every day.

11. Summary and Future Directions

This paper has described technologies supporting cloud com-
puting. After summarizing cloud benefits and categories of use,
it outlines technologies for virtualization, storage, networking,
high-availability, security, an open-source software stack, and ap-
plications for HPC and large-scale data processing. Four consid-
erations for future directions are discussed below.

The first is expansion of platform functionality. Using cloud
computing to lease IT resources, anyone with an idea can create
a service from it. In the future, various platform functions are
expected to appear that will make this even easier. For example,
functions that will make it simple for people without system ex-
pertise to use them. Currently, tools for software development
and collaboration, analytics platforms, machine learning, stream
processing platforms based on lambda architecture, and market-
places are being provided as cloud services. These combinations
will be organized as design patterns and become established as
architectures covering layers from business workflow to software
organization.

The second is development of open source and Software De-
fined Anything (SDx). In addition to OSS, open innovation will
accelerate through standardization of hardware platforms, with
OCP [117] for instance. Administration will continue to get eas-
ier through SDN, SDS, and Software Designed Data Centers
(SDDC), and it will become possible to manage a wider range
of resources centrally.

The third is that versatility will increase. In addition to general
server resources, resources specialized for particular applications
will be usable on cloud systems. GPU virtualization and hetero-
geneous computing are possibilities.

Finally, new systems will be redefined and globally optimized,
incorporating new elemental technologies and new requirements.
SSD prices are dropping and they continue to replace disk stor-
age [118], and high-speed persistent memory is expected to be-
come practical soon. Interconnects between processors are also
expected to increase in speed. Optimized systems in these envi-
ronments also need to be designed. Resource management func-
tions are duplicated in hypervisors and OSs. There are two tech-
nologies, unikernel and containers, that remove one or the other.
There is still room for optimization of technology in this area.
Regarding storage and networking, there will be further work on
whether to ensure fault tolerance and other added values at the
equipment level, or to implement them with commodity hardware
and software, comparing them on operations costs and other is-
sues.

Global data and traffic is concentrated at data centers and the
volume is increasing exponentially, approximately doubling ev-
ery two years. Networks and protocols suited to those sorts of
data and traffic distributions are needed.

Acknowledgments The authors would like to thank Mr.Seiji
Kihara, Mr.Toshio Hitaka and anonymous referees for their help-
ful comments.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

References

[1] IFS, WHY BUSINESS AGILITY MATTERS, RIGHT NOW (on-
line), available from 〈http://www4.ifsworld.com/
business-agility-now〉 (accessed 2015-07-29).

[2] Smith, J. and Nair, R.: Virtual Machines: Versatile Platforms for
Systems and Processes, Elsevier (2005).

[3] Bernstein, D., Ludvigson, E., Sankar, K., et al.: Blueprint for the
Intercloud - Protocols and Formats for Cloud Computing Interoper-
ability, Proc. ICIW’09, pp.328–336, IEEE (2009).

[4] Amazon, AWS Documentation (online), available from
〈https://aws.amazon.com/documentation/〉 (accessed 2015-07-29).

[5] Intel: Intel 64 and IA-32 Architectures Software Developer’s Man-
ual.

[6] Sugerman, J., Venkitachalam, G. and Lim, Beng-Hong: Virtualiz-
ing I/O Devices on VMware Workstation’s Hosted Virtual Machine
Monitor, Proc. USENIX ATC’01, General Track, pp.1–14 (2001).

[7] Barham, P., Dragovic, B., Fraser, K., et al.: Xen and the Art of Vir-
tualization, Proc. SOSP’03, pp.164–177, ACM (2003).

[8] Kivity, A., Kamay, Y., Laor, D., et al.: kvm: the Linux Virtual Ma-
chine Monitor, Proc. Linux Symposium, Vol.1, pp.225–230 (2007).

[9] Popek, G.J. and Goldberg, R.P.; Formal Requirements for Virtual-
izable Third Generation Architectures, Comm. ACM, Vol.17, No.7,
pp.412–421, ACM (1974).

[10] Robin, J.S. and Cynthia E.I.: Analysis of the Intel Pentium’s Ability
to Support a Secure Virtual Machine Monitor, Proc. USENIX Secu-
rity’00, pp.129–144 (2000).

[11] Sites, R.L., Shernoff, A., Kirk, M.B., et al.: Binary Translation,
Comm. ACM, Vol.36, No.2, pp.69–81, ACM (1993).

[12] Adams, K. and Agesen, O.: A Comparison of Software and Hard-
ware Techniques for x86 Virtualization, Proc. ASPLOS’06, pp.2–13,
ACM (2006).

[13] DEPARTMENT OF DEFENSE TRUSTED COMPUTER SYSTEM
EVALUATION CRITERIA (TCSEC), DoD 5200.28-STD (1985).

[14] Uhlig, R., Neiger, G., Rodgers, D., et al.: Intel Virtualization Tech-
nology, Computer, Vol.38, No.5, pp.48–56, IEEE (2005).

[15] Miloś, G., Murray, D.G., Hand, S., et al.: Satori: Enlightened page
sharing, Proc. USENIX ATC’09, pp.v1–14 (2009).

[16] Bellard, F.: QEMU, a Fast and Portable Dynamic Translator, Proc.
USENIX ATC’05, FREENIX Track, pp.41–46 (2005).

[17] AMD: AMD I/O Virtualization Technology (IOMMU) Specification,
48882-Rev 2.62-February 2015 (2015).

[18] Intel: Intel Virtualization Technology for Directed I/O - Architecture
Specification, rev2.3 (Oct. 2014).

[19] PCI-SIG: Single Root I/O Virtualization and Sharing Specification
Revision 1.0 (2007).

[20] Gordon, A., Amit, N., Har’El, N., et al.: ELI: Bare-Metal Perfor-
mance for I/O Virtualization, Proc. ASPLOS’12, pp.411–422, ACM
(2012).

[21] Madhavapeddy, A. and Scott, D.J.: Unikernels: Rise of the Virtual
Library Operating System, ACM Queue, Vol.11, No.11, pp.30–44,
ACM (2013).

[22] Madhavapeddy, A., Mortier, R., Rotsos, C., et al.: Unikernels: Li-
brary Operating Systems for the Cloud, Proc. ASPLOS’13, pp.461–
472, ACM (2013).

[23] NEC: Tiny, Agile Virtual Machines for Network Processing (online),
available from 〈http://cnp.neclab.eu/clickos/〉 (accessed 2015-07-29).

[24] Martins, J., Ahmed, M., Raiciu, C., et al.: ClickOS and the Art
of Network Function Virtualization, Proc. NSDI’14, pp.459–473,
USENIX Association (2014).

[25] Soltesz, S., Potzl, H., Fiuczynski, M.E., et al.: Container-based Op-
erating System Virtualization: A Scalable, High-performance Alter-
native to Hypervisors, Proc. EuroSys’07, pp.275–287, ACM (2007).

[26] Kamp, P.H. and Watson, R.N.M.: Jails: Confining the omnipotent
root., Proc. SANE’00, Vol.43, pp.116–126 (2000).

[27] Odin: Virtuozzo (online), available from 〈http://www.odin.com/
products/virtuozzo/〉 (accessed 2015-07-29).

[28] Price, D. and Tucker, A.: Solaris Zones: Operating System Support
for Consolidating Commercial Workloads, Proc. LISA’04, pp.241–
254, USENIX Association (2004).

[29] OpenVZ (online), available from 〈https://openvz.org/〉 (accessed
2015-07-29).

[30] Linux Containers (online), available from
〈https://linuxcontainers.org/〉 (accessed 2015-07-29).

[31] Hindman, B., Konwinski, A., Zaharia, M., et al.: Mesos: A Plat-
form for Fine-Grained Resource Sharing in the Data Center, Proc.
NSDI’11, pp.22–35 (2011).

[32] Docker (online), available from 〈https://www.docker.com/〉 (ac-
cessed 2015-07-29).

[33] Core OS (online), available from 〈https://coreos.com/〉 (accessed
2015-07-29).

[34] Open Container Initiative (online), available from
〈https://www.opencontainers.org/〉 (accessed 2015-07-29).

[35] Open Container Specifications (online), available from
〈https://github.com/opencontainers/specs〉 (accessed 2015-07-29).

[36] runc (online), available from
〈https://github.com/opencontainers/runc〉 (accessed 2015-07-29).

[37] Kubernetes (online), available from 〈http://kubernetes.io/〉 (accessed
2015-07-29).

[38] NAMESPACES(7), Linux Programmer’s Manual (online), available
from 〈http://man7.org/linux/man-pages/man7/namespaces.7.html〉
(accessed 2015-07-29).

[39] CGROUPS (online), available from 〈https://www.kernel.org/doc/
Documentation/cgroups/〉 (accessed 2015-07-29).

[40] CAPABILITIES(7), Linux Programmer’s Manual (online), available
from 〈http://man7.org/linux/man-pages/man7/capabilities.7.html〉
(accessed 2015-07-29).

[41] Xavier, M.G., Neves, M.V., Rossi, F.D., el al.: Performance Evalu-
ation of Container-based Virtualization for High Performance Com-
puting Environments, Proc. PDP’13, pp.233–240, IEEE (2013).

[42] White, T.: Hadoop: The definitive guide, O’Reilly Media, Inc.
(2012).

[43] Amazon EBS (online), available from
〈https://aws.amazon.com/ebs/details/〉 (accessed 2015-07-29).

[44] OpenStack Operations Guide, 6. Storage Decisions (online), avail-
able from 〈http://docs.openstack.org/openstack-ops/
openstack-ops-manual.pdf〉 (accessed 2015-07-29).

[45] Open source software for creating private and public clouds (online),
available from 〈https://www.openstack.org/〉 (accessed 2015-07-29).

[46] Weil, S.A., Brandt, S.A., Miller, E.L., et al.: Ceph: A Scalable, High-
Performance Distributed File System, Proc. OSDI’06, pp.307–320,
USENIX Association (2006).

[47] GLUSTER (online), available from 〈http://www.gluster.org/〉 (ac-
cessed 2015-07-29).

[48] Morita, K.: Sheepdog: Distributed storage system for qemu/kvm,
LCA 2010 DS&R miniconf (2010).

[49] Sheepdog (online), available from
〈https://sheepdog.github.io/sheepdog/〉 (accessed 2015-07-29).

[50] RFC 7530, Network File System (NFS) Version 4 Protocol, Mar.
2015.

[51] Gibson, G.A., Nagle, D.F., Amiri, K., et al.: File Server Scaling with
Network-Attached Secure Disks, Proc. SIGMETRICS’97, pp.272–
284, ACM (1997).

[52] Amazon S3 (online), available from
〈https://aws.amazon.com/s3/details/〉 (accessed 2015-07-29).

[53] Braam, P.J.: The Lustre Storage Architecture, Cluster File Systems,
Inc. (2004).

[54] Welcome to Swift’s documentation! (online), available from
〈http://docs.openstack.org/developer/swift/〉 (accessed 2015-07-29).

[55] DeCandia, G., Hastorun, D., Jampani, M., el al.: Dynamo: Ama-
zon’s Highly Available Key-value Store, Proc. SOSP’07, pp.205–
220, ACM (2007).

[56] Lakshman, A. and Malik, P.: Cassandra - A Decentralized Structured
Storage System, ACM SIGOPS Operating Systems Review, Vol.44,
No.2, pp.35–40, ACM (2010).

[57] monogoDB (online), available from 〈https://www.mongodb.org/〉
(accessed 2015-07-29).

[58] ONF: Software-Defined Networking: The New Norm for Networks
(online), available from 〈https://www.opennetworking.org/images/
stories/downloads/sdn-resources/white-papers/
wp-sdn-newnorm.pdf〉 (accessed 2015-07-29).

[59] McKeown, N., Anderson, T., Balakrishnan, H., et al.: OpenFlow:
Enabling Innovation in Campus Networks, Proc. SIGCOMM’08,
pp.69–74, ACM (2008).

[60] ONF: OpenFlow Switch Specification Version 1.3.4 (online), avail-
able from 〈https://www.opennetworking.org/sdn-resources/
openflow/57-sdn-resources/onf-specifications/openflow/〉 (accessed
2015-07-29).

[61] RFC7348 Virtual eXtensible Local Area Network (VXLAN): A
Framework for Overlaying Virtualized Layer 2 Networks over Layer
3 Networks.

[62] Internet-Draft: A Stateless Transport Tunneling Protocol for Net-
work Virtualization (STT) (online), available from 〈https://www.ietf.
org/archive/id/draft-davie-stt-06.txt〉 (accessed 2015-07-29).

[63] RFC2784 Generic Routing Encapsulation (GRE)
[64] Build SDN Agilely (online), available from

〈http://osrg.github.io/ryu/index.html〉 (accessed 2015-07-29).
[65] Trema (online), available from 〈http://trema.github.io/trema/〉 (ac-

cessed 2015-07-29).
[66] OpenDaylight Controller (online), available from

〈https://wiki.opendaylight.org/view/OpenDaylight Controller:Main〉

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

(accessed 2015-07-29).
[67] OpenContrail (online), available from

〈http://www.opencontrail.org/〉 (accessed 2015-07-29).
[68] Project Floodlight (online), available from 〈http://www.

projectfloodlight.org/floodlight/〉 (accessed 2015-07-29).
[69] Pfaff, B., Pettit, J. and Koponen, T.: Extending Networking into the

Virtualization Layer, Proc. HotNets’09, ACM (2009).
[70] OvS Open vSwitch (online), available from 〈http://openvswitch.org/〉

(accessed 2015-07-29).
[71] Lagopus switch (online), available from 〈https://lagopus.github.io/〉

(accessed 2015-07-29).
[72] DPDK (online), available from 〈http://dpdk.org/〉 (accessed 2015-07-

29).
[73] ETSI GS NFV 002: Network Functions Virtualisation (NFV); Archi-

tectural Framework.
[74] ETSI: Network Functions Virtualisation (online), available from

〈http://www.etsi.org/technologies-clusters/technologies/nfv〉 (ac-
cessed 2015-07-29).

[75] OPNFV (online), available from 〈https://www.opnfv.org/software〉
(accessed 2015-07-29).

[76] OPEN DAYLIGHT (online), available from
〈https://www.opendaylight.org/〉 (accessed 2015-07-29).

[77] Pickett, G.: Stay Persistent in Software Defined Networks, Blackhat
USA (2015).

[78] Leiserson, C.E.: Fat-Trees: Universal Networks for Hardware-
Efficient Supercomputing, IEEE Trans. on Comput., Vol.C-34,
No.10, pp.892–901, IEEE (1985).

[79] Clos, C.: A Study of Non-Blocking Switching Networks, Bell Sys.
Tech. J., Vol.32, No.2, pp.406–424 (1953).

[80] Dally, W.J. and Towles, B.P.: PRINCIPLES AND PRACTICES OF
INTERCONNECTION NETWORKS, Elsevier (2004).

[81] Al-Fares, M., Loukissas, A. and Vahdat, A.: A Scalable, Commodity
Data Center Network Architecture, Proc. SIGCOMM’08, pp.63–74,
ACM (2008).

[82] Mysore, R.N., Pamboris, A., Farrington, N., et al.: PortLand: A Scal-
able Fault-Tolerant Layer 2 Data Center Network Fabric, Proc. SIG-
COMM’09, pp.39–50, ACM (2009).

[83] Singh, A., Ong, J., Agarwal, A., et al.: Jupiter Rising: A Decade
of Clos Topologies and Centralized Control in Google’s Datacenter
Network, Proc. SIGCOMM’15, pp.183–197, ACM (2015).

[84] Bressoud, T.C. and Schneider, F.B.: Hypervisor-based Fault-
tolerance, ACM Trans. Comput. Syst. (TOCS), Vol.14, No.1, pp.80–
107, ACM (1996).

[85] Sapuntzakis, C.R., Chandra, R., Pfaff, B., et al.: Optimizing the Mi-
gration of Virtual Computers, Proc. OSDI’02, pp.377–390, USENIX
Association (2002).

[86] Clark, C., Fraser, K., Hand, S., et al.: Live Migration of Virtual Ma-
chines, Proc. NSDI’05, pp.273–286, USENIX Association (2005).

[87] Cully, B., Lefebvre, G., Meyer, D., et al.: Remus: High Availabil-
ity via Asynchronous Virtual Machine Replication, Proc. NSDI’08,
pp.161–174, USENIX Association (2008).

[88] Remus (online), available from 〈http://wiki.xen.org/wiki/Remus〉
(accessed 2015-07-29).

[89] Tamura, Y., Sato, K., Kihara, S., et al.: Kemari: Virtual Machine
Synchronization for Fault Tolerance, Proc. USENIX ATC’08 (Poster
Session), USENIX Association (2008).

[90] Dong, Y., Ye, W., Jiang, Y., et al.: COLO: COarse-grained LOck-
stepping Virtual Machines for Non-stop Service, Proc. SoCC’13, Ar-
ticle No.3, ACM (2013).

[91] King, S.T., Chen, P.M., Wang, Y.-M., et al.: SubVirt: Implement-
ing malware with virtual machines, Proc. IEEE Symp. Security and
Privacy (S&P)’06, IEEE (2006).

[92] Zovi, D.A.D.: Hardware Virtualization Rootkits, Black Hat USA
(2006).

[93] Rutkowska, J.: Security Challenges in Virtualized Environments,
RSA Conference 2008 (online), available from 〈http://
invisiblethingslab.com/itl/Resources.html〉 (accessed 2015-07-29).

[94] Perez-Botero, D., Szefer, J. and Lee, R.B.: Characterizing Hypervi-
sor Vulnerabilities in Cloud Computing Servers, Proc. Workshop on
Security in Cloud Computing (SCC’13), ACM (2013).

[95] Garfinkel, T., Pfaff, B., Chow, J., et al.: Terra: A Virtual Machine-
Based Platform for Trusted Computing, Proc. SOSP’03, pp.193–206,
ACM (2003).

[96] Sailer, R., Zhang, X., Jaeger, T., et al.: Design and Implementation
of a TCG-based Integrity Measurement Architecture, Proc. USENIX
Security Symp. ’04, USENIX Association (2004).

[97] Grawrock, D.: Dynamics of a Trusted Platform: A building block
approach, Intel Press (2009).

[98] Steinberg, U. and Kauer, B.: NOVA: A Microhypervisor-Based
Secure Virtualization Architecture, Proc. EuroSys’10, pp.209–222,

ACM (2010).
[99] Szefer, J., Keller, E., Lee, R.B., et al.: Eliminating the Hypervisor At-

tack Surface for a More Secure Cloud, Proc. CCS’11, pp.401–412,
ACM (2011).

[100] Yarom, Y. and Falkner, K.E.: Flush+Reload: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack, Proc. USENIX Security
Symp. ’14, pp.719–732, USENIX Association (2014).

[101] Garfinkel, T. and Rosenblum, M.: A Virtual Machine Introspection
Based Architecture for Intrusion Detection, Proc. NDSS’03, pp.191–
206 (2003).

[102] LibVMI (online), available from 〈http://libvmi.com/〉 (accessed
2015-07-29).

[103] Nurmi, D., Wolski, R., Grzegorczyk, C., et al.: The Eucalyptus
Open-source Cloud-computing System, Proc. CCGRID’09, pp.124–
131, IEEE (2009).

[104] Milojičić, D., Llorente, I.M. and Montero, R.S.: OpenNebula: A
Cloud Management Tool, IEEE Internet Computing, Vol.15, No.2,
pp.11–14, IEEE (2011).

[105] Apache CloudStack (online), available from
〈https://cloudstack.apache.org/〉 (accessed 2015-07-29).

[106] Cloud Foundry (online), available from
〈https://www.cloudfoundry.org/〉 (accessed 2015-07-29).

[107] Ostermann, S., Iosup, A., Yigitbasi, N., et al.: A Performance Anal-
ysis of EC2 Cloud Computing Services for Scientific Computing,
Proc. Cloudcomp’09, LNICST, Vol.34, pp.115–131, Springer Berlin
Heidelberg (2010).

[108] Iosup, A., Ostermann, S., Yigitbasi, M.N., el al.: Performance Anal-
ysis of Cloud Computing Services for Many-Tasks Scientific Com-
puting, IEEE Trans. Parallel and Distributed Systems, Vol.22, No.6,
pp. 931–945, IEEE (2011).

[109] Jackson, K.R., Ramakrishnan, L., Muriki, K., et al.: Performance
Analysis of High Performance Computing Applications on the Ama-
zon Web Services Cloud, Proc. CloudCom’10, pp.159–168, IEEE
(2010).

[110] TOP 500 AMAZON EC2 CLUSTER COMPUTE INSTANCES (on-
line), available from 〈http://www.top500.org/system/177457〉 (ac-
cessed 2015-07-29).

[111] Ghemawat, S., Gobioff, H. and Leung, S.T.: The Google File Sys-
tem, Proc. SOSP’03, pp.29–43, ACM (2003).

[112] McKusick, K. and Quinlan, S.: GFS: Evolution on Fast-forward,
ACM Queue, Vol.7, No.7, ACM (2009).

[113] Fikes, A.: Storage Architecture and Challenges, Talk at the Google
Faculty Summit (2010).

[114] Dean, J. and Ghemawat, S.: MapReduce: Simplified Data Processing
on Large Clusters, Comm. ACM, Vol.51, No.1, pp.107–113, ACM
(2008).

[115] Chang, F., Dean, J., Ghemawat, S., et al.: Bigtable: A Distributed
Storage System for Structured Data, ACM Trans. Comput. Syst.
(TOCS), Vol.26, No.2, Article 4, ACM (2008).

[116] Shvachko, K., Kuang, H., Radia, S., et al.: The Hadoop Distributed
File System, Proc. Symp. Mass Storage Systems and Technologies
(MSST) 2010, pp.1–10, IEEE (2010).

[117] Open Compute Project (online), available from
〈http://www.opencompute.org/〉 (accessed 2015-07-29).

[118] Meza, J., Wu, Q., Kumar, S., et al.: A Large-Scale Study of Flash
Memory Failures in the Field, Proc. SIGMETRICS’15, ACM (2015).

Yukio Tsuruoka received his B.E. and
M.E. degrees from the University of
Electro-Communications in 1985 and
1987, respectively. He joined Nippon
Telegraph and Telephone Corporation in
1987. He received the Dr. Eng. from the
University of Electro-Communications in
2001. He was a visiting professor, the

University of Electro-Communications, Graduate School of In-
formation Systems. He is presently a senior research engineer in
NTT Software Innovation Center. His research interests include
information security, cloud computing and mobile computing. He
is a member of the IPSJ and the IEICE.

c© 2016 Information Processing Society of Japan


