FIT2005 (35 4 OMBRMFRmI+—5 L)

LF-008

AMUSE: An Agent-based Middleware for QoS-aware Ubiquitous Services

Takuo Suganuma Yoshikazu Tokairin

1. Introduction

In recent years, researches on ubiquitous computing
environment and service provisioning on the environment has
been greatly accelerated{1,2]. In the future, user demands on
these ubiquitous services will move into much richer ones such
as multimedia communication services. Thus, we are promoting
research and development on fundamental technologies aiming at
post ubiquitous computing environment, including multimedia
service provisioning by cooperative behavior of audio-visual
home electric appliances. To provide necessary and sufficient
QoS that satisfies user requirement is an intrinsic problem to
realize such ubiquitous services. To address this, we have to
consider not only user context, but also resource context of
hardware, network and software. This is because resource
availability tends to be poor and unstable in ubiquitous
environment, including laptop PC, PDA and home appliances
with wireless networks. In addition, multiple users would be
given the ubiquitous services simultaneously, thus problems of
effective resource sharing and assignment should be addressed.

In this research, we are aiming at investigating ubiquitous
service construction scheme in order to provide QoS-aware and
stable services against changes of resource status and user's
situation. Our unique idea is effective handling of multiple
contexts including user context and resource contexts. To
accomplish the objective, we apply agent-based middleware
approach. The remarkable feature of this approach is
agentification of each entity in overall ubiquitous environment.
We embed context management ability and cooperation ability
for conflict resolution on multiple contexts to each agent.
Furthermore, we give maintenance mechanism for long-term
context to accumulate and reuse history and experiences of past
cooperation among agents. The individual behavior and the
cooperative behavior of agents would make the QoS-aware
service provisioning possible.

In this paper, we propose a multiagent-based middleware for
ubiquitous computing environment, called AMUSE (Agent-
based Middleware for Ubiquitous Service Environment).
Moreover, we describe design of AMUSE focusing on the
service construction scheme for QoS-aware service provisioning
considering the multiple contexts. Finally we evaluate our
proposal by results of some simulation experiments.

2. Concept of AMUSE

2.1 Target issues

Following three technical issues need to be addressed to
provide QoS-aware services on ubiquitous computing
environment that consists of computers and audio-visual home

Research Institute of Electrical Communication / Graduate
School of Information Sciences, Tohoku University

107

Hideyuki Takahashi Norio Shiratori

electric appliances.
(P1) Resource context maintenance

Here we define “context" as situation of target entity at time ¢
and temporal changes of the situation after/before time ¢. The
situation of target entity is represented as internal representation
model of the entity. Previous works for context awareness have
been mainly focusing on user context acquisition scheme
including locating information of the user. However, in terms of
resource of entity, it was treated as only a value of the target
resource parameter at time f, not as ' context”. In ubiquitous
environment that consists of many kinds of entities in different
level of functionality and performance, it is important to consider
resource context efficiently as well for proper QoS control.
(P2) Multiple context coordination

In ubiquitous environment on which heterogeneous entities
coexist, QoS should be maintained in the range from entity level
to overall system level. To do so, we have to consider not only
input/output specification of the entity, but also multiple context
coordination including user context and resource context.
(P3) Non-deterministic property of service construction

Furthermore we need to cope with problem of mutual
dependency and interoperability among entitics that are not
resolved deterministically from analysis of static specifications
of entities. This is because each entity is basically designed to
work by itself, not designed to work with other entities
cooperatively. Thus, services constructed from the entities would
not work properly in accordance with the specifications.
2.2 AMUSE framework

In AMUSE, we solve the technical issues P1 to P3 described
in the previous section with the following two approaches.
(R1) Agentification of each entity

** Agentification" is a process to make a target entity workable
as an agent by adding knowledge processing mechanism to the
entity. In our proposal, we agentify each entity respectively. Also
we add context management ability and cooperation ability to
resolve context conflict to the agents. Moreover, we embed long-
term-context maintenance ability to the agents to accumulate
cooperation history and experiences. This is a solution to P1.
(R2) Multi-context-based Service Construction scheme

To realize QoS-aware ubiquitous service construction
considering multiple context, we propose contract-based service
construction scheme of agents. This will be a solution to P2.
Agents make organization based on CNP (Contract Net Protocol).
Moreover, we model heuristics and dependency information on
cooperation history in past among agents as long-term context
among agents. This kind of context is also managed by the agent.
By using this context, agents can construct more advanced
services employing lessons learned. This would be a solution to
P3.

The fundamental framework of AMUSE is shown in Fig.1.
AMUESE consists of four layers, i.e., Primitive Agent layer (PA),

FIT2005 (55 4 EREMFRET I+ —5 L)

Agent Relationship layer (AR), Agent Organization layer (AO),
and Ubiquitous Service layer (US), based on concept of
symbiotic computing [3]. PA makes physical entities to agents.
In PA, context of each entity is managed by corresponding agent.
In AR, inter-agent relationship based on long-term context
among agents is created and maintenanced. In AO, agent
organization is constructed based on the context in PA and AR,
when user requirement to specific service is issued. On the top
layer US, actual ubiquitous service is provided to users.

Service provisioning process in AMUSE framework consists
of the following six steps; (1) Entity agentification, (2) Inter-
Agent Relationship updating, (3) User requirement acquisition,
(4) Service construction, (5) Service provisioning and (6) User
evaluation.

<°?£ ﬁ}%s_b Ubiquitous Service(US)

@'@- ;'@\Q)
O O O @

Agent Organization(AO)

>~ Agent Relationship(AR)

I—Q Primitive Agent(PA)

Agentmwﬂon of ontities
Q Physical Entity

Uagets

DOOI@O?HQOW
= f Abs w“%

Network
connections

Figl. AMUSE ﬁamework

2.3 Agent-architecture of AMUSE

The basic architecture of agent in AMUSE is shown in Fig.2.
Here Cooperation Mechanism (CM) is a mechanism for
exchanging messages among agents. Domain Knowledge (DK) is
a knowledge-base system to store and activate various domain
knowledge concerning the target entity. Based on the knowledge,
agent monitors and controls the target entity, and makes actions
to other agents. Entity Processing Mechanism (EPM) is an
interface between DK and target entity. It passes events from
entity to DK such as exceptions, and directs control instruction
from DK to entity.

DK consists of three subsystems, i.e., Working Memory,
Inference Engine and Rule Base. In Working Memory and Rule
Base, set of Facts and Rules are stored respectively. Inference
Engine refers to the Rules and Facts, and works as production
system. By employing this inference mechanism, agent performs
interaction with other agents and controls the target entity, DK
has management functions for service construction in AMUSE.
These functions are implemented as Rule set and related Facts in
DK. IAR Management is module for maintenance of IAR such as
creating, updating and deleting of it. Context Management is
module for monitoring and recognizing context of the entity.
Moreover Contract Management is module to maintenance
contract conditions and contract status in case that contract
relationship is created with other agents.

108

Agent Communication Language

] +
/ [Cooperation Mechanlst «—\
I
¥

DK [working Memory Rule Base

Contract Management

Context Management

Engme

LELtrty F‘focessmg Mechamsm]

NI S/

Agent
Fig2. Agent Architecture for AMUSE agent

3. Service construction scheme in AMUSE
3.1 Creation of IAR

IAR consists of three kinds of relationships, they are, Tight-
Relationship (TR), Group-Relationship (GR) and Competing-
Relationship (CR). These relationships are supposed to be most
basic ones for constructing agent organizations.

(a) Tight-Relationship(TR)

TR is created among agents that provide some services by
constructing organization of the agents. By using this
relationship, the agent becomes possible to have past cases of
successes and failures in cooperation.

(b) Group-Relationship(GR)

GR is given to group of agents that have some potential
dependencies. For instance, there is GR among hardware entities
such as desktop PC, speakers and PC displays. By using GR, it is
possible that agent informs changes in their states frequently to
the agents within the group.

(c) Competing-Relationship(CR)

CR is formed among agents that have same function. Why this
relationship is introduced is that these agents would compete
when task announcement of the function is issued. By using CR,
the competing agents inform their status each other routinely,
and they can make good organization effectively when CNP-
based negotiation runs.

3.2 Knowledge representation of IAR

Fig.3 shows knowledge representation of IAR. IAR is
represented in set of iar which is an individual relation. The iar
consists of id, name, func, rel, state, ava, and shv. The id is an
integer value to identify each agent. The name is a name of agent
against which the iar points. The func is an expression of
functionality of the entity such as specification of I/O. It is a set
of type. The type represents each function. For instance, the
agent that has /O function of the voice has audio-output and
audio-input in fype variable. The rel indicates type of
relationship such as 7R, GR and CR. The state indicates present
state of agent. Here, running means state of service is being
provided, online means state of standby, and offline means state
of service cannot be provided, respectively. The ava indicates
degree of effectiveness of the agent. It consists of ace, us-
effectivity, etc. The ace (A) indicates acceptance ratio to task
announcement or bid of the agent.

FIT2005 (55 4 EMBHRBFERI+—5L)

A=bl/t (or a/b2)

Here, bl is number of times that agent has been received bid, ¢
is number of times that agent has sent task, a is number of times
that agent has been received award and b2 is number of times
that agent has sent bid.

The us-effectivity (E) indicates metrics of evaluation that agent
receives after providing user with service.

E=p/n

Here, p is total number of times of good evaluation, and n is
total number of times of good and bad evaluation based on
strength value of Ja-Net{2]. The initial values of p, n and E are
setto 1.

The shv is referred as common index used by each agent. For
instance, there is operating rate (O) that indicates how often
agent is usually used.

O=u/l

Here, u is number of times in which it is used. The / is fixed
period which is decided by user. It can be used to understand
trend of changes in the preference of the user according to the
shv.

IAR ::= {iar}*

iar ::=< id, name, func, rel, state, ava, shv >

id ::=int

name ::= string

func ::= {type}*

type ::= audio-output | audio-input | image-output | image-input | ...
rel::= TR|GR|CR

state ::= running | online | offline

ava ;= < ace, us-effectivity, ... >

shv ::= < operating rate, ...>

Fig.3 Knowledge representation of IAR

3.3 CNP-based service construction with IAR

Our scheme which is based on CNP builds agent organization
using three kinds relationship. CNP is a mechanism to make
contract relationship among agents by exchanging messages such
as task announcement, bid, and award, shown. Here, we explain
features of service construction scheme with IAR.

(1) Case of Tight-Relationship (TR)

We assume that agent A has a relationship of type TR with
both agent B and agent C whereas no relationship exists between
B and C. 7R between A and B indicates that trouble was
occurred when they cooperation in the past, and TR between A
and C indicates no trouble in the past. When B and C receives
the task announcement from A, they refer to each IAR. Here, B
does not send bid because 7R against A is bad. That means the
trouble in cooperation would occur this time too. On the other
hand, C sends bid because C judges from TR that it would
contribute to the task announced. In fact, it is possible to reduce
trouble in cooperation by agent considering coordinated
relationship in the past.

(2) Case of Group-Relationship (GR)

We assume that agent A has no relationship with both agent B
and agent C whereas relationship of type GR exists between B
and C. Here, C recognizes that GR against B exists when C
judges the task announcement from A. Then C sends bid if C
judges that B can provide service by referring to state in IAR. On

109

the other hand, C ignores the task announcement if B can not
provide service. In fact, it is possible to reduce the trouble in
cooperation by agent considering dependency of the agents.
(3) Case of Competing-Relationship (CR)

We assume that relationship of type CR exists between agent
B and agent C whereas agent A has no relationship with both B
and C. B and C receive the task announcement. Each agent
checks IAR of type CR if it can process the task. When agent has
CR, it refers to state of the CR. For instance, B sends bid in case
that B judged the value of us-effectivity on this task is higher
than that of C. On the other hand, C ignores the task
announcement in case that it judged us-effectivity of B is higher
than C. In fact, it is possible to efficient construction of service
by consideration of state of same function agent.

4. Simulation and evaluation
4.1 Implementation

We implemented agents based on AMUSE to perform some
simulation. In the implementation, we employed agent-based
programming environment DASH that is based on multiagent
programming framework ADIPS[4]. We wused DASH
programming environment because agent which is developed for
simulation can easily be reused when we build the real-world
system in future.

4.2 Evaluation method

We performed simulation of system behavior based on
AMUSE. In this simulation, QoS awareness of the system is
measured, and we investigate how much the QoS awareness is
improved by introducing AMUSE. To measure the QoS
awareness, we apply User Request Achievement (URA) level.
Using this metrics, we can measure how much the user
requirement is fulfilled with provided quality of service by the
system. Details of URA are described later.

Here, three entities including a hardware entity, a software
entity and a network entity are making organization and
providing service to a User. The user issues ~“User Request QoS"
and the system provides service with ““Provided QoS". Hardware
Agent (HA) monitors CPU resource context and Network Agent
(NA) monitors bandwidth resource context. On the other hand,
Software Agent (SA) has knowledge concerning mapping from
resource availability onto actual user level QoS.

The QoS evaluation of service is based on URA. URA is
calculated by comparison between User Request QoS RU and
Provided QoS SV. Here, ru; is an element of RU and it represents
User Request QoS on service element i. Also sv; is an element of
SV and it represents Provided QoS on service element i. The
value of ru; and sv; is from 1 to 10. Here, URA on service
element i, i.e. UR4,; is represented as follows:

SV = {sv,sv,,... }
RU = {rugruy,... }
URA; = (svrrup/10

This means that, if UR4; is above zero, the user requirement is
fulfilled, and if it is below zero, the requirement is not satisfied.

In this evaluation, the number of service elements is assumed
to be two (i=1,2) and URA indicates the total URA, that is, a
mean value of URA; and URA, for simplification.

FIT2005 (%6 4 EIEEBIFRIT I +—5 L)

We performed simulation of service construction with above
conditions 500 times. The agent constructs CR immediately after
simulation beginning. When SA constructs service, it refers to
NA's bid and IAR. If SA judges that other agent is suitable, it
disregards the task even if the task is acceptable. And if agent
receives bid by two or more agents that can fulfill user
requirement, agent sends award to agent with the highest value
of E of IAR after referring to the value of E. In the actual
simulation, we use only the strength of Ja-Net for the value of E.

User evaluation is assumed good if sv; is within from 120% to
100% when ry; is regarded as 100%. In this case value E is set to
1. It is assumed bad in case that sv; exceeds 120% or is below
80%, and the value is set to -1. Otherwise it is regarded as usual,
and the value is set to 0.

We compare three patterns of agent behaviors, i.e., our
proposal 1AR-based approach), the case considering only user
context User-request approach), and the case considering only
the maximum QoS value of agent for QoS without consideration
of resource context Maximum approach). For the simulation,
resources of HA and NA are assigned random values in every
service construction. Also we give dependencies of user request
in three patterns, which is high quality (7 to 10), middle quality
(4 to 7), and low quality (1 to 4).

120

-~ JAR-based approach
—=— Maximum approach
-« - User-request approach

Frequency

-« }AR-based approach
~r-- Maximum approach

o=
2 «- User-request approach
g
]
™
*-ﬁ\“‘ =
e N
N
PR

Fig.5 Results of comparison in case that RU is always in low

110

4.3 Simulation results and evaluation

Fig.4 and Fig.5 show the frequency distribution concerning
URA. Fig.4 is a comparison for case that RU is always in high,
and Fig.5 is a comparison in case that RU is always in low.

From analysis of Fig.4 in case that RU is always in high, our
approach could achieve the user requirement much more times
than User-request approaches. From this result, in case that user
requirement is higher than the service environment, it can be
understood that the requirement can not be fulfilled even if only
user context is considered. Moreover, in case that agent
considers only the user request and the maximum value that can
be selected, URA generally is lower than our approach, when
user requirement is not fulfilled. It is understood that some
conflict on resource context is occurred. Also it is understood
that our approach decreases bad service construction by
considering IAR. This is because that IAR decreases the conflict
of resource context. From these results our approach is rather
effective in this kind of case.

From analysis of Fig.5 in case that RU is always in low, UR4
of User-request approach often closes to zero extremely more
times than other approaches. In our approach and Maximum
approach, the case that URA closes to zero is not frequent. But,
our approach closes to zero much more times than Maximum
approach. Moreover our approach and User-request approach
reach much closer to zero than Maximum approach. Thus, we
can find that the agents construct organization considering user
requirement and IAR effectively. However, in this case, our
approach is thought to be meddlesome service for user who does
not want excessive quality.

5. Conclusion

In this paper, we proposed a multiagent-based middleware for
ubiquitous computing environment, called AMUSE. We
described design of AMUSE focusing on the service construction
scheme for QoS-aware service provisioning considering the
multiple contexts. We also evaluated our proposal with some
simulation experiments and confirmed that our proposal would
be remarkably useful in ubiquitous environment.

In future, we will implement prototype system using actual
hardware devices such as PC and home electric appliances to
confirn the feasibility and effectiveness in real-world
environment. Further improvement in updating and deletion
mechanism of IAR is another possible future goal in our research.

[References]

[1] C. Stefanelli ‘‘Context-Aware Middleware for Resource
Management in the Wireless Internet," IEEE Trans. software Eng.,
vol. 29, no. 12, pp. 1086-1099, 2003.

T. Itao, T. Nakamura, M. Matsuo, S. Tanaka, T. Suda, and T.
Aoyama, ‘'Relationship Mechanism for Dynamic and User
Preference-Aware Service Creation," Journal of IPSJ, vol. 44, no. 3,
pp. 812-825,2003.

K. Sugawara, N. Shiratori, and T. Kinoshita, “Toward post
Ubiquitous Computing -Symbiotic Computing-," IEICE Technical
Report, vol. 103, no. 244, pp. 43-46, 2003.

S. Fujita, H. Hara, K. Sugawara, T. Kinoshita, and N. Shiratori,
**Agent-based Design Model of Adaptive Distributed Systems," The
International Journal of Artificial Intelligence, Neural Networks
and Complex Problem-Solving Technologies, vol. 9, no. 1, pp. 57-
70, 1998.

2]

B3]

[41

