FIT2004 (58 3 MEHRBZFRITT + —5 L)

LA-001

Generating All Series-parallel Graphs
(Extended Abstract)

Shin-ichiro Kawano!

Abstract

In this paper we give an algorithm to generate all
series-parallel graphs with at most m edges. This algo-
rithm generates each series-parallel graph in constant
time on average.

1 Introduction

It is useful to have the complete list of graphs with a
specified property. One can use such a list to search
for a counter-example to some conjecture, or to ex-
perimentally measure an average performance of an
algorithm over all possible input graphs.

Many algorithms to generate a particular class of
graphs without repetition are already known [B80,
LNO1, LR99, M98, N02, N04, R78, W86]. Many
nice textbooks have been published on the subject
[G93, KS98, W89|.

In this paper we give an algorithm to generate all
series-parallel graphs having at most m edges with-
out repetition. For example, all series-parallel graphs
having four edges are shown in Fig.1. Series-parallel

et e—o—0r & e—a: e e
P S e TR T e
SR O O T
e O e OO
e e e et s {/ +ue s @ .

Figure 1: All series-parallel graphs G(s,t) with m = 4.

grahs are important class of recursively defined graphs
having a nice tree structure.

One can generate series-parallel graphs by follow-
ing the recursive definition. However such method
needs much running time, and may output graphs
with many repetitions. Our algorithm generates each
series-parallel graph without repetition in constant
time on average.

The main idea of our algorithm is as follows. We do
not directly generate each series-parallel graph. First,
we assign a unique ordered tree for each series-parallel
graph. Then, we define a tree, called “the family
tree”, so that each ordered tree assigned above cor-
responds to a distinct vertex of the family tree. By
efficiently traversing the family tree, we generate all
series-parallel trees without repetition.

t Gunma University

Shin-ichi Nakanof

Using similar method we can generate several planar
structures {LN0O1, N02, NO4]. In this paper we first
extend the method for more general graphs.

The rest of the paper is organized as follows. Sec-
tion 2 gives some definitions. Section 3 introduces the
family tree. Section 4 presents our algorithm. Finally
Section 5 is a conclusion.

2 Preliminaries

In this section we give some definitions. Let G be a
connected graph with n vertices and m edges. A tree
is a connected graph without cycles. A rooted tree is
a tree with one vertex r chosen as its root. For each
vertex v in a rooted tree, let U P(v) be the unique path
from v to the root r. If UP(v) has exactly k edges
then we say the depth of v is k, and write dep(v) = k.
The parent of v # r is its neighbor on UP(v), and
ancestors of v # r are the vertices on UP(v) except v.
The parent and the ancestors of r are not defined. We
say that if v is the parent of w then w is a child of v,
and if v is an ancestor of u then u is a descendant of
v. A leaf is a vertex having no child. An ordered tree
is a rooted tree with a left-to-right ordering specified
for the children of each vertex. We denote by T'(v)
the ordered subtree of an ordered tree T consisting
of a vertex v and all descendant of v preserving the
left-to-right ordering for the children of each vertex.
A graph G(s,t) is a series-parallel graph with termi-
nals s and ¢, if (1) G consists of one edge connecting
sand t, or (2) G is derived from two or more series-
parallel graphs by one of the following two operations.

e The series composition. Given k series-parallel
graphs G1(s1,t1), Ga(s2,t2), - - ., Gk (sk, tk), form
a new graph G(s,t) by identifying s = s1,t = t,
andti:sz-ﬂ fOI‘lSjSk—l.

e The parallel composition: Given k series-parallel
graphs Gy(s1,t1), Ga(s2,t2), - .., Gk(sk, tx), form
a new graph G(s,t) by identifying s = 51 = 59 =
o=, andt =ty =ty = =t

Note that the ordering Gi(s1,t1), Ga(s2,t2), ...,
G (sk,tx) matters for the series composition, while
it does not matter for the parallel composition.

The recursive definition of the series-parallel graph
above naturally gives a tree T, called a series-parallel
tree, for each series-parallel graph G(s,t). Each leaf
in T corresponds to an edge of G(s,t), and each non-
leaf vertex in T corresponds to either series or parallel
composition. We say that each vertex is normal, se-
ries, or parallel, respectively. We can observe that if

FIT2004 (35 3 EIEMBZERMTI +—5 L)

the root vertex is series vertex, then every non-leaf
vertex at even depth is also a series vertex, while ev-
ery non-leaf vertex at odd depth is a parallel vertex.
(The other case is similar.)

Note that a series-parallel graph G may have many
corresponding series-parallel trees, since we can choose
any ordering for child vertices of each parallel vertex.
We are going to assign a unique ordered tree for each
series-parallel graph. We need some definitions here.

Let T be an ordered tree with n vertices, and
(v1,v2,...,vp) be the vertices of T' in preorder [A95].
Let dep(v) be the depth of v. Then the sequence
L(T) = (dep(v1),dep(vq),...,dep(vy,)) is called the
depth sequence. Let T3 and T3 be two ordered
trees, and L(T}) = (a1,a2,...,a.) and L(Tz) =
(b1,b2,...,bg). Then we say that T} is heavier than
Ty, if a; = b; for each ¢ = 1,2,...,k — 1 (possibly
k =1) and either ax > brorc>k—-1=d.

Now we assign the heaviest ordered tree H for each
series-parallel graph G. We call such the heaviest or-
dered tree H the canonical tree of G.

Let S, be the set of all canonical trees with at most
m leaves. Note that each tree in S,, corresponds to
each series-parallel graph having at most m edges.

We have the following lemma.

Lemma 2.1 A series-parallel tree T is in Sy, if and
only if T has at most m leaves, and for every consec-
utive child vertices v and vy of every parallel vertez,

L(T(v1)) > L(T(v2)) holds.

Proof. By contradiction. Omitted. O
We call the condition above “the left heavy condi-
tion”.

3 The family tree

Assume m > 2. Let T € S,,, be a canonical tree. We
say a vertex v in T is un-removable if v satisfies the
following three conditions.
(col) v is normal,
(co2) v is the rightmost vertex in its siblings, and
(co3) v has exactly one sibling (except v).
A leaf v is removable if it is not un-removable. The
last removable vertex of T' in preorder is called the last
removable vertex of T

Let u be the last removable vertex of T, and v the
parent of u. Also let w be the parent of v if v is not
the root of T

We define a new tree P(T') as follows.

We have the following two cases, depending on the
number of child vertices of v.
Casel: v has exactly two child vertices.

Now v has two child leaves. We have the following
two subcases.
Casel-1: w has exactly two child vertices, and v is
the right child of w.

(r1) Then replace T(v) by one normal vertex. Note
that the new vertex is un-removable.
Casel—2: Otherwise. Now we have two cases (1) w
has exactly two child vertices, and v is the left child
of w, or (2) w has three or more child vertices, and v
is the rightmost child of w.

(r2) Then replace T'(v) by one normal vertex. Note
that the new vertex is removable.
Case2: v has three or more child vertices.

(r3) Remove u.

Note that in all cases above, P(T') has one less leaves
than T. We say that P(T) is the parent of T, and T
is a child of P(T"). We have the following lemma.

Lemma 3.1 If T is canonical then P(T) is also
canonical.

Proof. In P(T), only subtrees rooted at vertices on
the path between the root and the new vertex loose
the “weight ”. So we need to check the left heavy
condition for those subtrees. Since only trivial trees,
consisting of one un-removable vertex, exist on the
right of the subtrees above, the left heavy condition
holds in P(T). - O

Repeatedly applying above operations to any canon-
ical tree T € S,,, we have a sequence
P(T), P(P(T)), P(P(P(T))),... of canonical trees,
and the sequence eventually ends with the canonical
tree having only one (normal) vertex. We denote the
trivial canonical tree by 77. See an example in Fig.2.

w
(®) (B)v (r3)
®®®®O
(x2)
W v ®
(®)v® (r1) (:S(u Et) (r1)
®u &

Un-removable vertex

o The last removable vertex

Figure 2: The removing sequence.

By merging those sequences we have a tree F,, such
that each vertex corresponds to a distinct canonical
tree in S,,, each edge corresponds to some relation
between some T and P(T). We call F,, the family
tree of S,y,.

4 Algorithm

In this section we give an algorithm to construct F,.
We only consider the case the root of 7T is parallel.
The other case is omitted since it is similar.

FIT2004 (58 3 @EHRBMFRMI +—5 L)

Given a canonical tree T in S,,, if we have an algo-
rithm to generate all child canonical trees of T, then
in a recursive manner we can generate F,,,, and which
means we can generate all series-parallel graphs hav-
ing at most m edges. How can we generate all child
canonical trees of a given canonical tree ? As we will
soon see we can do this by “reversing” the operations
(r1)-(r3) in Section 3.

Let T be a canonical tree in S,,, rx be the last re-
movable vertex of T, and RP = (rq,71,...,7%) be the
path between the root rq and rp. We construct three
types of new trees T'[i], T[], T, from T as follows.

For 7,0 <4 < k—1, we define T'[i] to be the canonical
tree derived from T' by
(al) adding a new vertex z as the rightmost child of
ri. See some examples in Fig.3 (b)-(d). Note that the
last removable vertex of T'[¢] is the new vertex z.

For 1,0 < 1 < k — 1, if r; has exactly two child
vertices, and the right child vertex w of r; is normal,
then we define T, [i] to be the canonical tree derived
from T by
(a2) replacing w by either a series or parallel vertex z
and add two normal child vertices to z. See Fig.3 (e)
and (f). Note that the last removable vertex of T, [i]
is the left child of vertex z.

By definition, ry_; always has two normal child ver-
tices. We define T_ to be the. canonical tree derived
from T by
(a3) replacing ry by either a series or parallel vertex
z and add two normal child vertices to z. See Fig.3
(g). Note that the last removable vertex of T_ is the
left child vertex of z.

We can observe that each operation (al), (a2) and
(a3) is the reverse of (r3), (r2) and (rl), respectively.
Each derived tree has one more leaves than 7.

Define C(T) = {T[0),T[1],...,T[k — 1]} U
{740}, T4 [1],..., T+ [k — 1]} U {T_}, those are can-
didates for child trees of T. We can observe that each
child tree of T' € Sy, is in C(T’), however, not all trees
in C(T') are child trees of T. For example, the tree
T [2] in Fig.3(f) is not a child tree of 7', since it is
not a canonical tree, so T4 [2] ¢ Sy,. Thus we need
to check whether each possible child tree is actually a
child tree of T or not.

We now have the following lemma.

Lemma 4.1 Let T € S,,, T € C(T), 71 be the last
removable vertex of T' and RP = (r¢,71,...,Tk) be
the path of T' between the root rq and ry. Then T is a
child tree of T if and only if L(T"(si+1)) > L(T'(ri41))
holds for every parallel vertex r;,0 < i < k, on RP,
where s;1 is the child of r; preceding r;41.

Proof. Since T € S,,, the left heavy condition has
held in T'. In 7" some subtrees may be heavier than in
T'. So we must check if left heavy condition still holds
or not. The claim checks all of these possible changes
to destroy the left heavy condition. O

If we generate each tree in C(T') then check whether
it is actually a child tree or not based on the lemma
above, then we need much running time. However we
can improve the running time as follows. We need
some definition here.

Let T be a canonical tree in Sy,, 7 be the last
removable vertex of T. RP = (ro,r1,...,7;) be the
path of T" between the root rg and r;. Let T, be
the tree derived from T by removing all un-removable
vertices. We say that T is active at depth 7, 0 <1 <
k—1,if

(i) 7; is a parallel vertex.
(i) r; has the child vertex s;;1 preceding r;,1.
(iil) L(Tr(rs41)) is a prefix of L(T,(si41))-

Intuitively, if T' is active at depth 7, then we are
copying subtree T'(r;+1) from T'(s;11). We say that
the copy-depth of T is ¢ if T is active at depth ¢ but
not active at each i € {0,1,...,c—1}. Especially if T
is not active at any in {0,1,...,k — 1}, then we define
the copy depth of T is k.

Now we are going to check each tree in C(T') is actu-
ally a child tree of T or not. Let ¢ be the copy-depth
of T. Assume that the root vertex of T is parallel
vertex. (The other case is similar.)

First we consider for T7i], 0 < i < k.

Case TTi

We have the following four cases.

Case 1: T has m leaves.

Then T corresponds to a leaf in F,,. Hence T has no
child tree.

Case 2: Otherwise, ¢ = k.

In this case L(T}-(si+1)) > L(Tr(r;+1)) holds for each
parallel vertex r;. Now T'[0],T'[1],...,T[k — 1] are all
child trees of T. In each tree T[i], the last removable
vertex is z. The copy-depth of T'[¢] is ¢ for each even 1,
(that is a parallel vertex) and i+ 1 for each odd i. For
example, a tree T and some child trees are shown in
Fig.4. In T[2], (i) 72 is parallel vertex, (ii) r2 has the
child vertex y preceding rs, (iii) L(T-(r3)) is a prefix
of L(T-(y)). Hence T[2] is active at depth 2 and the
copy depth of T[2] is 2. In T3], r3 is not parallel
vertex. Hence 73 is not active and copy depth of T'[3]
is k=4.

T T[2] T[3]

Un-removable vertex o The last removable vertex RP

Figure 4: Illustrations for T[¢].

FIT2004 (58 3 EMBEBZERMI + —5 L)

(@)
©) @ Wi () @
® @ ®x
® @
T (0] TI1)
(a) (b) (©

Un-removable vertex

@)
() &
® (&
® @ ®x

T[2]

(d)

(e)

O The last removable vertex wumsswsewsm RP

Figure 3: The possible child series-parallel trees.

Case 3: Otherwise, L(T;(r¢+1)) = L(T(Sc+1)). (In-
tuitively the copy has completed.)

In this case T(0],T[1],...,T[c] are child trees of T.
The copy-depth of T'[i] is ¢ for each even i, and ¢ + 1
for each odd i. T[c+1],T[c+2],...,T[k — 1] are not
child trees of T'.
Case 4: Otherwise.
completed yet.)

Now L(T(scy1)) = L(Tr(7c41)) holds.

Let L(T (sc+1)) = (dep(u1),dep(uz), ..., dep(un:),
sy dep(un”))’ L(TT(TC—}-I)) = (dep(vl)vdep(UZ)v cey
dep(vn')), and set d = dep(un+1). (Intuitively we are
copying T, (re+1) from Ty(sct1) and up/ 41 is the next
vertex to be copied.) In this case T[0],T[1],...,T[d—
1] are child trees of T. For i = 0,1,...,d — 2, The
copy-depth of T[i] is ¢ for each even ¢, and ¢ + 1 for
each odd i. The copy-depth of T;[d — 1] is remains at
c.

(Intuitively the copy has not

Next we consider for T4[i], 0 <1 < k — 1.

Case T [i] Omitted. See [KNO04].
Next we consider for T_.

Case T'_[i] Omitted. See [KNO4].
Based on the case analysis above we have the fol-
lowing theorem.

Theorem 4.2 Given m, one can generate all series-
parallel graphs with at most m edges without repetition
in O(|Sp|) time.

5 Conclusion

In this paper we have given a simple algorithm to gener-
ate all series-parallel graphs with at most m edges. Our
algorithm first defines a family tree such that each ver-
tex corresponds to each series-parallel trees with at most
m leaves, then outputs each graph without repetition by
traversing the family tree. Our algorithm generates each
series-parallel graph in constant time on average. When
traverse the family tree we need O(h) space, where h is
the height of family tree, which is bounded by n. Thus
the algorithm uses O(n) space.

References

[A95] A. V. Aho and J. D. Ullman, Foundations of Com-
puter Science, Computer Science Press, New York,
(1995).

[B80] T. Beyer and S. M. Hedetniemi, Constant Time
Generation of Rooted Trees, SIAM J. Comput., 9,
(1980), pp.706-712.

[G93] L. A. Goldberg, Efficient Algorithms for List-
ing Combinatorial Structures, Cambridge University
Press, New York, (1993).

[KN04] S. Kawano and S. Nakano, Generating All Series-
parallel Graphs, IPSJ Technical Reports, SIGAL-94,
(2004), pp.41-48.

[KS98] D. L. Kreher and D. R. Stinson, CRC Press, Boca
Raton, (1998).

[LNO1] Z. Li and S. Nakano, Efficient Generation
of Plane Triangulations without Repetitions, Proc.
ICALP2001, LNCS 2076, (2001), pp.433-443.

[LR99] G. Li and F. Ruskey, The Advantage of Forward
Thinking in Generating Rooted and Free Trees, Proc.
10th Annual ACM-SIAM Symp. on Discrete Algo-
rithms, (1999), pp.939-940.

[M98] B. D. McKay, Isomorph-free Ezhaustive Genera-
tion, J. of Algorithms, 26, (1998), pp.306-324.

[NO2] S. Nakano, Efficient Generation of Plane Trees, In-
formation Processing Letters, 84, (2002), pp.167-172.

[NO4] S. Nakano, Efficient Generation of Triconnected
Plane Triangulations, Computational Geometry The-
ory and Applications, Vol. 27(2), (2004), pp.109-122.

[R78] R. C. Read, How to Awoid Isomorphism Search
When Cataloguing Combinatorial Configurations, An-
nals of Discrete Mathematics, 2, (1978), pp.107-120.

[W89] H. S. Wilf, Combinatorial Algorithms : An Update,
SIAM, (1989).

[W86] R. A. Wright, B. Richmond, A. Odlyzko and B.
D. McKay, Constant Time Generation of Free Trees,
SIAM J. Comput., 15, (1986), pp.540-548.

