
IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.1 33–42 (Feb. 2016)

Regular Paper

Periodic Pattern Mining
with Periodical Co-occurrences of Symbols

Keisuke Otaki1,2,a) Akihiro Yamamoto1

Received: September 2, 2015, Revised: October 14, 2015,
Accepted: November 16, 2015

Abstract: Finding periodic regularity in sequential databases is an important topic in Knowledge Discovery and in
pattern mining such regularity is modeled as periodic patterns. Although efficient enumeration algorithms have been
studied, applying them to real databases is still challenging because they are noisy and most transactions are not ex-
tremely frequent in practice. They cause a (combinatorial) pattern explosion and the difficulty of tuning a threshold
parameter. To overcome these issues we provide a novel pre-processing method called skeletonization, which was re-
cently introduced for finding sequential patterns. It tries to find clusters of symbols in patterns, aiming at shrinking the
space of all possible patterns in order to avoid the combinatorial explosion by considering co-occurrences of symbols.
Although the original method cannot allow for periods, we generalize it by using the periodicity. We give experimental
results using both synthetic and real datasets to show the effectiveness of our approach, and compare results of mining
with and without the skeletonization to see that our method is helpful for mining comprehensive patterns.

Keywords: periodic pattern mining, comprehensive patterns, similarity graph, spectral clustering

1. Introduction

Finding patterns frequently appearing in databases is one of
the important problems in data mining. Transactions in databases
naturally have timestamps as their auxiliary attributes. They are
often ordered with timestamps and a typical sorting is the chrono-
logical order. For example sequences of transactions, describing
products bought by a user in a EC site, are sorted in the chrono-
logical order from old to new. If such orders are important to a
database, such a database is called a sequential database. As the
order is directly related to time, typical periods related to clocks
or calendars (e.g., hour, day, etc.) may contribute to hidden regu-
larity in it. Therefore assuming that such periodic behaviors may
appear in various sequential databases (e.g., trajectory, life-log) is
natural in data mining. To get valuable but hidden insights from
databases by capturing periodic regularity, periodic pattern min-

ing have been studied [4], [5], [14] and applied to various prob-
lems [6], [7].

We have several variations on the definition of periodic pat-
terns. The fundamental ones are full periodic patterns and par-

tial periodic patterns [4]. Note that we now assume that patterns
are sequences of symbols drawn from an alphabet Σ for the sake
of simplicity. For example, let Σ = {sns, news, blog, shops}. We
consider a sequence suser:

suser = (sns, news, blog, sns, news, blog, sns, shop, blog)

representing a log of categories of Web sites visited by a user. A

1 Kyoto University, Kyoto 606–8501, Japan
2 Research Fellow of the Japan Society for the Promotion of Science,

Chiyoda, Tokyo 102–0083, Japan
a) ootaki@iip.ist.i.kyoto-u.ac.jp

pattern (sns, news, blog) in suser appears twice, and this is called
full periodic pattern of period length 3. Full periodic patterns re-
quire that all symbols should be fully specified. In some cases,
such requirement is so strong and it is difficult to handle various
periodic behaviors. As more flexible patterns, partial periodic

patterns have been studied [5]. For example, a partial periodic
pattern (sns, �, blog) appears 3 times, where � is the wildcard
symbol of length 1 representing any symbol in Σ. As partial
periodic patterns can contain the symbol �, they are more flex-
ible than full periodic patterns to capture periodic behaviors in
databases. In mining these periodic patterns, we assume that
a given sequence s is divided into � |s|P � fragments, where P is
a period of users’ interest, and the fragments are used to eval-
uate patterns: In the example above, the pattern (sns, �, blog)
appears 3 times in fragments (sns, news, blog), (sns, news, blog),
and (sns, shop, blog) of suser.

Although many efficient mining algorithms have been devel-
oped [4], [14], it is still challenging to use them in practice be-
cause the number of enumerated patterns highly depends on the
number |Σ| of symbols we use. When databases get large, |Σ| in-
creases as well. This fact consequently makes evaluating patterns
by their support counts (i.e., the number of occurrences) difficult
because the support counts of most patterns are similar and rel-
atively small. That is, the space of (frequent) patterns on Σ get
sparse with respect to the space of all possible patterns*1.

Motivating Examples: For both numerical (e.g., price, tem-
perature) and symbolic (e.g., item, product) sequences, preparing

*1 Consider to find all partially periodic patterns up to the length k on Σ. Let
Σ� = Σ∪{�}. All possible combinations are in Σ�∪Σ2

�∪· · ·∪Σk
�, which

can become much larger than that of all patterns appearing in databases
in practice.

c© 2016 Information Processing Society of Japan 33

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.1 33–42 (Feb. 2016)

Fig. 1 A numeric sequence of electric power demand in UK, 2013 in
Fig. 1 (a), and its discretization with 16 symbols (corresponding to
dashed lines) in Fig. 1 (b).

a large set Σ of symbols is essential to achieve the high resolu-
tion of describing phenomena. For example, Fig. 1 (a) shows a
sequence of electric power demand per day in UK, 2013. We dis-
cretize the sequence with dividing values into |Σ| bins uniformly*2

as seen in Fig. 1 (b) with |Σ| = 16. Clearly, we can represent a se-
quence as a symbolic sequence with a smaller loss with a larger
set Σ. In Fig. 1 (b), however, only a few combinations of Σ ap-
pear consecutively. It is difficult to tune the set Σ while taking
a balance among the expressiveness and the sparseness. Now a
typical periodic behavior is that the demand gets higher every

weekend, which could be obtained by frequent patterns, where
symbols corresponding to low values are followed by those doing
to high values. We believe that such high-level patterns are more
informative and useful to analyzing databases.

As another example we consider those stored from Last.fm
(http://last.fm/), which are sequences of songs logged by
users. We take some logs of users from an open dataset (See Sec-
tion 3 of [2]), where a sequence s = 〈S 1, S 2, . . . 〉 is a log of a
user and each S i is the set of songs heard in the index i in which
the index i corresponds to a 1 hour interval of the log (e.g., the set
S 4 shows the listened songs during 0 a.m. to 1 a.m.). For exam-
ple, the sequence for user ID 808 is length 16,913 log, where the
user listened to 24,310 songs and 1,340 out of 16,913 intervals
are not empty (i.e., in other intervals the user did not listen to any
songs). Then if we would like to analyze some daily behaviors
(i.e., P = 24) including the empty situation, 24,31024 is the upper
bound of the size of all possible combinations. This is intractable
and data we have are obviously sparse.

Approaches: In pattern mining, therefore, Liu et al. [8] and
others insisted that users carefully need to tune the set Σ and pro-
posed the temporal skeletonization for symbolic sequential pat-
terns. Their idea is to construct clusters of symbols and assign
each cluster a label. Then a sequence can be translated into a
high-level and potentially comprehensive sequences of the labels.
By grouping symbols into clusters, we can reduce the size |Σ|.
We develop such method for periodic analyses by generalizing
the idea [8], and discuss frequently occurring high-level patterns
with the periodicity. In the existing method [8], to represent com-
prehensive sequential patterns, left-to-right HMMs are implicitly

assumed as their models. Based on the study we take into account

*2 If the range of values [0, 10) and |Σ| = 4, values in [0, 10] would be cat-
egorized into either [0, 2.5), [2.5, 5.0), [5.0, 7.5), or [7.5, 10), and sym-
bolic alphabets are assigned to encode the sequence into a symbolic se-
quence.

the periodicity of the given period length P by considering a bit
different models of sequences, i.e., cyclic HMMs, which can be
applicable to describe periodical behaviors of sequences compre-
hensively.

In addition to that, we would like to emphasis on the fact that
many existing studies dealt with DNA sequences, which requires
only 4 symbols (i.e., Σ = {T,C,A,G}). In such a situation, the
combinatorial explosion is only depending on the length l of pat-
terns we try to mine. However, this situation is a bit restricted
as many sequences require more symbols in general. Therefore
developing a new approach with the periodicity is an important
remained problem. We thus focus on the point by following the
existing method [8]. Since the temporal skeletonization cannot be
applied to periodic settings, we generalize it by using the idea of
periodic extensions of functions.

The rest of this paper is organized as follows. We give prelim-
inaries in Section 2. Our method is formally described in Sec-
tion 3. We provide our experimental results and discuss them in
Sections 4 and 5, and conclude our study in Section 6.

2. Preliminary

Let Σ be the alphabet. The set Σ� denotes the Kleene closure
of Σ. We use Σ+ ≡ Σ� \ {ε}, where ε is the empty string. For
a sequence s ∈ Σ+, |s| denotes the length of s. We let |ε| = 0.
In addition, si and si, j represent i-th element and the continuous
subsequence from i to j of s (i < j), respectively. Let P be a fixed
integer representing the period of users’ interest.

2.1 Frequent Partially Periodic Pattern Mining
Periodic behaviors of databases can be modeled as partially pe-

riodic patterns. An important concept used is periodic segments

of sequences.

Definition 1 (Event Sequence and Periodic Segment) For an
event sequence s ∈ Σ+ and a period P, s can be divided into
m (= � |s|P �) mutually disjoint segments. We denote it by s =

〈ps1, ps2, . . . , psm〉, where for 1 ≤ i ≤ m, psi = s(i−1)m,im−1.
For example with a sequence s = abcabdabb of symbols

{a, b, c, d} and P = 3, the sequence s is divided into three parts;
ps1 = abc, ps2 = abd, and ps3 = abb.

Definition 2 (Partial Pattern) A sequence from Σ ∪ {�} is a
(partial) pattern, where the special character � � Σ represents
any event of length 1.

In this paper we focus on the partial patterns appearing in peri-
odic segments frequently. Then, for a sequence s and a pattern p,
it is necessary to evaluate whether or not p has an interesting oc-
currence in s. The traditional measure for the purpose is to adopt
the support count of patterns.

Definition 3 (Support Count) The support count of a pattern
p, denoted by SupP(p), is defined as SupP(p, s) = |{psi | s =

〈ps1, . . . , psm〉, psi � p}|, where psi � p means that for all
1 ≤ i ≤ |p| it satisfies either pi = � or pi = si. We say that a
pattern p is frequent if SupP(p) ≥ θ for a user-specific threshold

c© 2016 Information Processing Society of Japan 34

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.1 33–42 (Feb. 2016)

θ. We call such a p a partially periodic pattern (PPP) when the
period P is given and important.

For s2 = abcabdabb = 〈abc, abd, abb〉 and the a constant (pe-
riod) P = 3, SupP(ab�, s2) = 3

3 = 1.0.

Now the mining problem is formally described below.

Problem 1 (The FPPPM problem) Let θ be a user-specific
threshold and P a given period length. For a sequence s, the
FPPPM problem is defined as to list all partially periodic patterns
p from s satisfying SupP(p) ≥ θ.

Several efficient algorithms have been developed: For example,
Han et al. showed a fundamental algorithm using max sub-pattern
trees [5]. This method is used frequently in several application
problems based on periodic patterns [6], [7]. Yang et al. proposed
to use tuple representations for periodic patterns and a depth-first
search algorithm based on the PrefixSpan [11] used in sequential
pattern mining [14].

2.2 Temporal Skeletonization
We review the original definition of temporal graphs to explain

the idea of the temporal skeletonization in [8], which tries to build
a similarity graph*3 from a given database DB for capturing the
similarity within symbols in Σ.

Definition 4 (Temporal Graph [8]) Let G = (V, E) be a
weighted undirected graph, where V corresponds to Σ. Let
DB = {s(1), . . . , s(N)} be the set of sequences of symbols from
Σ. For two symbols x, y ∈ Σ, the weight Wx,y of the edge corre-
sponding to {x, y} is defined as

Wx,y =
1
N

N∑

n=1

∑

1≤i≤ j≤|s(n) |,
|i− j|≤r

1s(n)
i =x∧s(n)

j =y
(1)

where N is the number of sequences, r be the window width, 1 f

is the indicator function that returns 1 if and only if the predicate
f is true; 0 otherwise. We count the number of co-occurrences of
symbols x and y in a window.

The right-hand side of Eq. (1) can be computed by checking the
given database DB, where the indicator function can be replaced
with other similarity measures. The authors in [8] used the expo-
nential function exp(−k|i − j|) with a parameter k. In construct-
ing a temporal graph G, all indices of sequences in DB are taken
into account several times. In each time we focus on some in-
dex i, we check all neighbors within width r. That is, for indices
1 ≤ i ≤ j ≤ |s|, a simple implementation of Eq. (1) is to increment
the weight Wsi ,s j if |i − j| ≤ r for s ∈ DB.

After constructing G, users try to find clusters of symbols
by applying clustering methods to G (e.g., spectral cluster-

ing [9], [12]). The problem of finding clusters can be formulated
as a standard graph-based optimization problem with some con-
straints as explained in [8], where an important step is to compute

*3 A similarity graph is a weighted graph in which vertices represent data
points and edges represent the similarity between two points with their
weights.

Fig. 2 A toy example in [8] and two heatmaps: Fig. 2 (b) shows the original
W computed from DB, and Fig. 2 (c) is the re-ordered one, in which
a cluster C1 is drawn.

Fig. 3 Temporal clusters and their transition.

eigenvalues and eigenvectors from G. Now a computed matrix W

of weights can be represented as a heatmap as shown in Fig. 2.

Example 1 The input is shown in Fig. 2 (a). We compute the
weights from {s(1), s(2), s(3), s(4)} as seen in Fig. 2 (b) and repre-
sent them by a heatmap, where both the x-axis and y-axis cor-
respond to the order of the alphabet Σ. That is, on some (i, j),
the thickness in the heatmap corresponds the value WΣi ,Σ j . After
applying the spectral clustering, we can re-order indices of W as
shown in Fig. 2 (c). For example, we can find a cluster of sym-
bols such as C1 = {4, 7, 9, 11, 12}, which is the upper right area in
Fig. 2 (c). Note that C1 appears in prefixes of sequences in DB.
Then we can now conjecture that all sequences in DB are in the
form 〈C1,C1,C1, . . . 〉. This prefix consisting of cluster labels can
be regarded as a high-level pattern of the sequences.

Models and Assumptions: This method is based on an im-
plicit assumption; symbols x, y appearing closely and temporally

may belong to some meaningful cluster. We can assume several
generative models behind sequences. In this scenario, a typical
(left-to-right) HMM is adopted (as seen in Fig. 3), and based on
the strong assumption above, the method tries to find such clus-
ters by using a moving window of width r and graph clustering
methods.

3. Periodical Skeletonization

The key idea for taking into account periodic information is
simple: Extending functions representing areas that we check in
computing weights to some periodic functions of the periodicity
P of our interest. In order to analyze some monthly behaviors, for

c© 2016 Information Processing Society of Japan 35

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.1 33–42 (Feb. 2016)

Fig. 4 Periodic extensions and co-occurrences.

example, we set P = 31.
The sliding window of width r used in the temporal skele-

tonization can be modeled by a rectangular function with width r

and the origin i*4. By modifying this function in a periodic man-
ner, we can deal with the periodicity of occurrences of symbols.
We can easily imagine such techniques on the analogy of Fourier
series and Fourier transforms. Recall the toy examples in Sec-
tion 2.1. For an input sequence s = abcabdabb and P = 3, a
frequent partially periodic pattern ab� appears 3 times in every
segment abc, abd, and abb. This means that not only neighbors
according to the sliding window Recti,r(·), but also periodic in-
formation from i, that is, i + P, i + 2P, i + 3P, . . . could be used to
search for similar intervals as shown in Fig. 4.

The above observation inspired our method, periodical skele-

tonization, in which a similarity graph named a periodic graph is
computed by observing the periodic co-occurrences of symbols
from an input sequence s.

Definition 5 (Periodic Graph) Let G = (V, E) be a similarity
graph. The weights of G from an input sequence s and a period P

for two symbols x, y are computed as:

Wx,y =
∑

1≤i, j≤|s|
if si=x∧s j=y

1|i− j|≤r + 1i≡ j (mod P) (2)

The second term is newly introduced based on the periodic infor-
mation. We can also replace the right-hand side of Eq. (2) with
similarity functions by adapting them in a similar fashion based
on the temporal skeletonization.

Example 2 Figure 5 illustrates examples of computing Eq. (2)
from s = (0, 2, 6, 0, 2, 4, . . .) with Σ = N. Figure 5 (b) is com-
puted by the temporal skeletonization, while Fig. 5 (c) adopts the
periodic term only in Eq. (2). We can see 3 clusters as rectangles:
C1 = {0, 1}, C2 = {2, 3} and C3 = {4, 5, 6, 7, 8} in Fig. 5 (c), and
they are clear than those in Fig. 5 (b) (it is hard to find clusters
from it).

Models and Assumptions: Our basic observation is that we
can have periodic sequences by cyclic HMMs. That is, from
the definition of patterns, we assume that symbols appearing fre-
quently and periodically in s should belong a meaningful cluster
in periodic data analyses with period P. Our computation is then
a bit generalized from the existing study, where the periodical

co-occurrences of symbols in s are newly taken into account. An
example is given in Fig. 6. For example, to simulate a partially
periodic pattern 02�, in T1 and T2, H outputs 0 and 2, respec-
tively with high probability 100 × (1 − u)% and outputs 1 and 3

*4 It is defined as Recti,r(t) = 0 if |t − i| > r, 1 otherwise.

Fig. 5 An example of periodic co-occurrences is shown in Fig. 5 (a). Fig-
ure 5 (b) is a result only using the temporal information and Fig. 5 (c)
is that adopting the periodic information only, where rectangles are
the discovered clusters.

Fig. 6 Settings of HMMs used for Example 2. The output symbols from
states T1, T2, and T3 are set to be o(T1) = {0, 1}, o(T2) = {2, 3}, and
o(T3) = {4, 5, 6, 7, 8, 9}. The two symbols 0 and 2 are generative with
a high probability 1 − u and 1 and 3 are done with a low probability
u (0 < u ≤ 0.25). Symbols from T3 is generated uniformly.

with low probability 100×u%. On the other hand in T3,H gener-
ates {4, 5, 6, 7, 8, 9} uniformly. By generating sequences of length
N from H , we can obtain a sequence s containing the partially
periodic pattern 02� very frequently. Compared with the result
in Fig. 5 (b), we can confirm that C1, C2, C3 correspond to T1, T2,
T3 are found by the skeletonization more clearly as blocks in the
matrix in Fig. 5 (c).

3.1 Set Sequences
Let us reminder the computation of Wsi ,s j when indices i and

j are considered in s ∈ DB. The discussion above and the ex-
isting study [8] only consider the case when s is a sequence of
symbols from Σ. However, some applications of sequential and
periodic pattern mining assume that s is a sequence of subsets of
Σ: s ∈ (2Σ)+. To deal with set sequences we consider two naı̈ve
methods below:
(sum-up) for two sets S i and S j of indices i and j, compute

straightforwardly weights and sum up them. That is, com-
pute all WS i,k ,S j,l for S i,k ∈ S i and S j,l ∈ S l S j,l ∈ S j in a
pair-wise manner, and use them.

(average) for two sets S i and S j, compute the weights in a pair-
wise manner as well, and divide the weights WS i,k ,S j,l with
|S i|+ |S j|, to take an average contribution of each symbols in
S i and S j.

By these small generalizations, we note that the skeletonization
techniques can be generalized to set sequences. If not otherwise
stated, we adopt the sum-up idea below.

c© 2016 Information Processing Society of Japan 36

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.1 33–42 (Feb. 2016)

Table 1 Summary of datasets used in experiments.

Name Length |Σ| P Note

HMM-600-u 600 10 3 with u = 0.25
PD-32 365 32 7 Discretized with level 32
PD-128F 100 128 7 Subset with level 128
Kyoto 43,833 359 365 The resolution 0.1 celsius

4. Experiments

We report experiments with synthetic and real datasets which
should have simple periodic behaviors to observe the effect of
our proposal. We also discuss the difference between two skele-
tonization methods.

4.1 Datasets
Now in this part, we use both synthetic and real datasets. The

summary of these datasets is shown in Table 1. A synthetic
dataset is generated by using the HMM shown in Fig. 6. A real
dataset, named PowerDemand, is a set of sequences of electric
power demand in 2013, extracted from the GridWatch system*5,
which were previously used in Fig. 1. The original sequence
records power demand in UK 12 times per hour, that is, roughly
300 times per day. We take the simple average of them to con-
struct a hourly sequence of power demand in 2013, named PD-
32. Because an yearly record may contain many periodic behav-
iors (e.g., daily, weekly, monthly, etc.), we extract a small subset,
named PD-128F, of PD-32 and make the resolution of Σ more
clear by increasing the size Σ from 32 to 128 and taking a part
roughly from summer to autumn. For PD-128F, we expect that
the sequence have the period P = 7. As another real dataset,
we use Kyoto, a sequence of the daily temperatures from 1880 to
2014 with P = 365 and |Σ| = 359.

4.2 Preparations
We implemented the periodic skeletonization part in C++*6,

and apply the spectral clustering algorithm (and k-means al-
gorithm in it) by using a built-in implementation by scikit-
learn [10] based on Python 2.7.8. All experiments are run on a
machine of Mac OS X 10.10 with 2 × 2.26 GHz Quad-Core Intel
Xeon processors and 64 GB memory.

We would like to show computed graphs and the discovered
clusters by the spectral clustering algorithm via temporal/periodic
graphs. We set k by using the heuristic of the spectral cluster-
ing (Please see [13]), or by a small number (2 or 3, for example).
In experiments we basically use only the original definition, i.e.,
we only use the delta function by the indicator function 1 f . In
the following, we prepare the following labels to represent meth-
ods: 1) DT means the temporal skeletonization, 2) DP users the
periodic information only, and 3) DTP adopts the both of them.

4.3 Results
Out of several parameter settings we tried, we took a part of

results to compare our periodic skeletonization with the temporal
one. We showed results of synthetic data in Fig. 7, and those of

*5 http://www.gridwatch.templar.co.uk/
*6 gcc 4.7 with -std=c++11 without parallelization.

Fig. 7 Heatmaps representing similarity matrices of graphs from the syn-
thetic sequence with P = 3 and r = 3. Figures 7 (b) and 7 (c) suc-
cessfully show clusters as rectangles.

Fig. 8 Heatmaps from PD-32 (top row) and PD-128F (bottom row) with
DT, DP, and DTP.

Fig. 9 Heatmaps from Kyoto with DT, DP, and DTP.

real datasets in Figs. 8 and 9 with varying methods of computing
weights, where the labels {DT,DP,DTP} represent the methods
used.

Synthetic Datasets: From results using synthetic data, we
can conjecture that periodic information of temporal graphs are
helpful to find clusters of symbols compared with Fig. 7 (a) and
Fig. 7 (b) and Fig. 7 (c), where we would like to extract periodic
clusters, that is, clusters representing {0, 1} and {2, 3}, which cor-
responds to T1 and T2 in the HMM in Fig. 6, respectively. From
the result using only temporal information in Fig. 7 (a), however,
we cannot find them. On the another hand, results using periodic
information seen in Fig. 7 (b) and both of them in Fig. 7 (c) show
two clusters {0, 1} and {2, 3} much clearly.

Real Datasets: Results from real datasets should be affected
by properties of sequences and the periodicity of them. In two
cases with PD-32 and PD-128F, for example, results were sym-
metric with respect to methods: If we use the periodic informa-
tion in Fig. 8 (b) and Fig. 8 (c), we cannot find any clusters but
in Fig. 8 (e) and Fig. 8 (f), we can find a few clusters of symbols,

c© 2016 Information Processing Society of Japan 37

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.1 33–42 (Feb. 2016)

which are similar to results of synthetic data. We guessed that
the difference between PD-32 and PD-128F is whether or not
there exists many periodic behaviors in sequences. Because we
selected a subsequence from PD-32 as PD-128F to remove multi-
ple periodic information, the periodic skeletonization with a fixed
period parameter P = 7 seemed to work well.

In results from Kyoto, we can see that there exist roughly 3
clusters in all outputs in Fig. 9. If we adopt the periodic infor-
mation, those clusters are also emphasized on visualized tempo-
ral graphs. For example, by comparing results in Fig. 9 (a) and
Fig. 9 (c), we confirm that two dense clusters (top left and bottom
right) in Fig. 9 (c) are much more clear than in those Fig. 9 (a).
Note that these clusters are related to winter and summer, respec-
tively. We conjecture that these visualized results are helpful to
analyze given sequential databases and enumerated patterns, par-
ticularly when we need to run methods many times to tune pa-
rameters.

Conclusions: We conclude experiments using sequences con-
taining clear periodic behaviors. Originally, results of cluster-
ing symbols are sensitive to the definition of similarities. The
previous study reported in [8] that results of the skeletonization
seemed to be stable. As far as we investigated in experiments,
with respect to the parameter r, which control a kind of smooth-
ing of sequences, the results could be stable as well. We also see
that our method could be helpful to highlight periodic behaviors

of sequences. We guess that this result is also affected from the
multiple periodicity, and conclude that the periodic skeletoniza-
tion help us to find underlying structures. Although the method
sometimes (as seen in PD-32) disturbs results, it seems to work
as we expected particularly when the periodicity is clear.

4.4 Unstable Case
As we show in Fig. 6, the model behind our skeletonization

procedure is a cyclic HMM. This assumption suits the FPPPM
problem with (fixed) periodic segments. However, in general, the
period of a sequence s is unstable because of noisy symbols or
outliers. In the pattern mining part, mining algorithms allowing
for a small gap (i.e., a kind of wildcard) between segments have
been studied [17]. Therefore we would like to discuss the same
point on the skeletonization techniques. Because temporal clus-
ters correspond to a kind of moving average on symbols, we con-
jecture that adopting both the temporal skeletonization and the
periodic one should be useful to deal with such a situation.

To investigate this issue, we generated synthetic sequences
from a cyclic HMM of P states, and see whether or not we can
discover P clusters from the data. The results by DT (only tempo-
ral), DP (only periodic), and DTP (both) of the transition failure
percentage η = 20% in Fig. 10 were summarized in Table 2. We
can confirm that, at least for synthetic data, periodic information
used in the skeletonization is helpful to estimate hidden periodic
clusters of sequences. From experiments, we guess that using
both information could be helpful when real sequences are pro-
cessed.

4.5 Case Studies
We provide results using (more) real datasets. One is from

Fig. 10 A cyclic HMM including unstable periods with transition failures
with probability η of the case P = 3.

Table 2 From P states cyclic HMM, for each state we generate 5 symbols
uniformly. The transition failure η = 0.2 (i.e., 20%). Values show
accuracy of recovering hidden clusters.

P DT DP DTP

3 0.33 0.80 0.80
5 0.24 0.92 0.92

Table 3 Statistics of user logs from the Last.fm dataset.

User ID |Lall | |Lne | (non-empty) |Σ| ||S||
User 672 384 147 247 2,329
User 808 529 147 578 2,108

Fig. 11 Heatmaps of User 672 from Last.fm datasets with varying DT, DP,
and DTP where P = 24 and w = 2.

Last.fm data that we have used in Section 1. In addition to that,
we here adopt 2-dimensional sequences (i.e., X and Y) represent-
ing trajectories of movements, and encode them as (1-dim) sym-
bolic sequences for experiments.

Last.fm Datasets: Because properties of data vary according
to users, we would like to investigate how results get for real
datasets. Datasets are obtained from [2] by gathering and order-
ing the logs of songs listened by users based on focusing the gran-
ularity “hour”. One database corresponds to one sequence of sets
of symbols (i.e., songs) by one user. For experiments, we take
randomly users from the whole dataset, obtain sequences of sets
of symbols, and use small parts of such sequences. We provide
statistics of selected parts of sequences chosen by our method in
Table 3. For a sequence s = 〈S 1, S 2, . . . , S M〉 of S i ⊆ Σ, Lall

means |s| = M, Lne shows |{S i | S i � ∅, S i is in s}|, Σ means the
size of the set |S 1 ∪ · · · ∪ S M |, and ||S|| = ∑i |S i|, respectively. We
set P = 24 to analyze hourly behaviors.

We show results in Figs. 11 and 12. Here we do not want to
say which clustering results are good (or bad). From experi-
ments by periodic information in the skeletonization we can con-
firm two kind of results: A type increases the number of clusters
compared with the ordinal temporal skeletonization (e.g., from
Fig. 11 (a) to Fig. 11 (c)). Another type, in contrast, decreases the
number of clusters (e.g., from Fig. 11 (a) to Fig. 11 (b), Fig. 12 (a)
to Fig. 12 (b) and 12 (c)). As the periodic information help us to

c© 2016 Information Processing Society of Japan 38

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.1 33–42 (Feb. 2016)

Fig. 12 Heatmaps of User 808 from Last.fm datasets with varying DT, DP,
and DTP where P = 24 and w = 2.

Fig. 13 Examples of trajectory plots.

Table 4 Statistics of discretized trajectories.

ID |DB| # of non-empty (|Σ|)
1277 8187 3410
6275 3960 2450

consider periodic co-occurrences of symbols, if there exist some
periodic behaviors of sequences, then applying the periodicity
skeletonization should be helpful. We can only confirm that in
some cases the clustering work for our purpose. We conjecture
that for some databases our method does not work as they con-
tain no periodic regularity.

Trajectory Datasets: As an another example of skele-
tonization and mining, we adopt some trajectory time-stamped
databases used in Refs. [15], [16]*7. A trajectory here is an or-
dered sequence of pairs, i.e., (X,Y) corresponding to longitude
and latitude of an entity. Its movements is regularly recorded and
stored as a sequential database. An example of trajectory can be
plotted in 2-dimensional space as shown in Fig. 13. Note that a
sequential database DB is now encoded as a single sequence s by
discretizing X and Y , and putting some integer n ∈ N on each
grid. Table 4 shows some statistics of trajectories used. All tra-
jectories are discretized with level d = 256, and many (X,Y) slots
on the grid could be empty. Thus the table also shows the num-
ber of non-empty slots in discretized sequences. As they include
some obvious outliers or noise, such data are cleaned by checking
the mean and standard decreases of X and Y .

In contrast to the datasets used above, for trajectories, we have
no idea on what are its period. The following experiments, there-
fore, we give a kind of exploratory data analyzing processes using
skeletonization by observing the similarity graphs constructed. In
addition, we only try the case k = 2, i.e., try to divide all symbols
Σ into two groups as the basis of recursively decomposition of Σ.

Figures 14 and 15 are results of the skeletonization with w =
45 and P = 60 and 120. First of all, compared with synthetic
cases or some real datasets used above, trajectory data are much

*7 See also http://research.microsoft.com/en-us/projects/tdrive/

Fig. 14 Heatmaps of ID 1277 with DT and DTP (w = 45, P = 60 and 120),
trying with the number k = 2 of clusters.

Fig. 15 Heatmaps of ID 6275 with DT and DTP (w = 45, P = 60 and 120),
trying with the number k = 2 of clusters.

more sparse. That is, most symbols in Σ appear only once in our
discretized sequential databases. In results, similar results are ob-
tained compared with Last.fm datasets, but it was difficult to find
clusters automatically without tuning algorithms. In fact, only
small clusters (illustrated in the right-bottom part) can be found:
From Fig. 14 (a) to Fig. 14 (b) and Fig. 14 (c), a small cluster con-
taining a few symbols was found. By contrast, from Fig. 15 (a)
to Fig. 15 (b), Fig. 15 (c), a (relatively) large cluster disappeared,
and a small cluster was found again.

4.6 Discussions
Discussing the quality of clusters is fundamentally impossible

as we do not have any labels. Conceptually, the skeletonization
does not use any semantic information of symbols, and results
only depend on the co-occurrences of symbols. In our method,
we intend that adding more computations by the periodicity have
increased information we can use in the pre-processing step. In-
troducing additional resources for computing the similarities such
as background knowledge or taxonomy is one of interesting fu-
ture work. However, such knowledge resources are in general
high cost compared with the skeletonization. Therefore, we guess
that combining both methods is much effective for solving the
sparseness problem. As another direction on the viewpoint of
the increase of syntactic information when constructing similar-
ity graphs, taking into account the order of indices or the distance

of them should be an interesting future problem. These are also
related to the application step of graph clustering methods. In
addition, we also expect that introducing sophisticated clustering
algorithms is important: For example, hierarchical spectral clus-
tering [1], Non-negative Matrix Factorization (NMF) (e.g., [3])
should be helpful (e.g., considering multiple periods with hierar-
chy).

5. Mining Meets Skeletonization

Recall our start point of the discussion on pattern mining in real
situations. We now try to apply pattern mining algorithms based

c© 2016 Information Processing Society of Japan 39

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.1 33–42 (Feb. 2016)

Algorithm 1 Incremental Mining with Skeletonization
1: procedure Inc-MS(s (input), θ (threshold))

2: Construct a similarity graph G from s

3: Estimate the number k of clusters (with heuristics)

4: Compute assignments of symbols � Σ→ {1, 2, . . . , k}
5: Sort clusters C1, · · ·Ck

with their cardinality (|C1 | > |C2 | > . . . |Ck |, descending)

6: for j = 1 to k do � (Or, any j (1 ≤ j ≤ k) if you want)

7: Replace symbols in s using the cluster C j

and get the encoded sequence s(≥ j) � Re-encoding

8: Apply a mining method to s(≥ j) with θ

on the clusters discovered by the skeletonization techniques.
In the following, we consider two cases: 1) We have some as-

sumptions on P, and 2) we have no idea on P. For the case 1),
we solve the FPPPM problem with a fixed P we have in mind.
For the case 2), we allow for patterns contain a gap among sym-
bols in the following form based on [17]: Let p = c1c2, where
c1, c2 ∈ Σ and [α, β] be an closed interval of integers. Then, we
interpret the pattern p as follows: p has at least α and at most β
wildcard characters between c1 and c2. For example s1 = abc and
s2 = abbbc, a pattern ac with [α, β] = [0, 2] matches with s1, but
does not match with s2 because three b occurs between the first a

and c.
Experiments: We now apply the periodic skeletonization with

mining problems (e.g., the FPPPM problem). Our purpose here
is to obtain readable and high-level patterns in mining by reduc-
ing the size |Σ|. We use clustering results obtained by the above
experiments.

For enumeration of patterns in the case 1), we use the algo-
rithm proposed by Yang et al. [14], and call it PPPMiner. For
the purpose, we re-implemented PPPMiner in Python 2.7.8. Ex-
perimental settings are the same to those in Section 4.2. To ex-
amine how the periodic skeletonization affects enumerating pat-
terns by the PPPMiner, we use Kyoto and Last.fm datasets. On
the other hand, for the case 2) we adopt the algorithm by Zhang
et al. [17], which is also re-implemented, named by GAPMiner,
in Python 2.7.8.

Based on the number k of clusters found (or estimated, fixed,
etc.), we propose an incremental method, where users replace
symbols with cluster labels incrementally. The overview of this
process is shown in Algorithm 1. We first sort clusters by the size
(in Line 5). In descending order of the size, we incrementally
re-encode an original sequence s with cluster labels. That is, we
first replace symbols in s belonging to the largest cluster label C1

(this new sequence is denoted by s(≥1) in Algorithm 1). We then
do the same with the second largest cluster C2, and continue this
replacement (corresponding to Line 6 and Line 7). For each step
in Line 8, we apply a mining method.

5.1 Mining with the PPPMiner
In the following experiments, we adopt both (temporal and pe-

riodical) information in the clustering step. For the Kyoto dataset,
using k = 3 clusters, we prepared four cases: Kyoto (origi-
nal), Kyoto(≥1), Kyoto(≥2), and Kyoto(≥3) to apply the PPPMiner.
We show the number of enumerated patterns with P = 365 and

Table 5 Numbers of enumerated patterns with (i.e., re-encoding labeled as
(≥ j)) and without the skeletonization with the PPPMiner.

(a) For the Kyoto dataset (P = 365)

Datasets θ = 0.9 0.7 0.5 |Σ|
Kyoto 0 0 0 359
Kyoto(≥1) 9,065 57,596 133,027 224
Kyoto(≥2) 28,134 210,806 523,021 97
Kyoto(≥3) 54,354 349,648 917,403 3

(b) For User 672 dataset (P = 24)

Datasets θ = 0.3 0.2 0.1 |Σ|
User 672 0 0 0 247
User 672(≥1) 128 318 51,304 177
User 672(≥3) 128 319 22,540 144
User 672(≥10) 127 260 5,718 10

with varying θ in Table 5 (a). For the User 672 dataset from the
Last.fm dataset, we use the number k = 10 of clusters to pre-
process. Out of k = 10 clusters illustrated in Fig. 11 (c), for the
integer j in Line 6, we use the largest cluster C1 and get the re-
encoded sequence User 672(≥1) corresponding to j = 1. In the
same manner, we adopt the top three largest clusters C1,C2, and
C3 (i.e., j = 3) and get the sequence User 672(≥3). We finally
use all clusters (j = 10) and label the obtained sequence as User
672(≥10). We show in Table 5 (b) the numbers of enumerated pat-
terns.

Discussions: In both cases we cannot find any frequent pat-
terns without the periodic skeletonization. That is, without any
pre-processing, databases are sparse and we cannot evaluate the
support count well to get insights from datasets in the form of
partially periodic patterns. However, with thanks to the peri-
odic skeletonization, we can find many frequent patterns in other
cases.

Because the periodic skeletonization help us to find rough,
characteristic patterns by clustering, we can find abstract but
readable and high-level frequent patterns. For example in the
Kyoto(≥1) setting, we can find 9,065 patterns which character-
ize 90% of segments in the given sequence. In addition, in the
settings of User 672(≥1) and User 672(≥3), we successfully find
roughly 300 frequent patterns that characterize 20% of segments,
and this number of patterns is relatively small and easy to analyze.

We confirmed that clustering using the skeletonization as a pre-
processing of pattern mining work well to get more frequent pat-
terns than those obtained from raw sequences.

5.2 Mining with the GAPMiner
We adopt the trajectory sequence of ID 1277 used the above. In

this case, we use the number k = 2 of clusters because we have no
idea on the numbers of discretized trajectories. Then the largest
cluster C1 is replaced and a new encoded dataset, denoted by ID
1277(≥1), is obtained. We let [α, β] – the gap admitted among
characters – to be α = 0 and β = 5, and mine patterns with gaps
up to the length 6 as an example. As shown in Table 6, we could
find almost similar numbers of patterns of length from 3 to 6.

Discussions: To investigate the differences by using the sup-
port count of patterns we give logarithmic plots of them in
Fig. 16. The figure shows the difference of patterns enumerated
by GAPMiner clearly. Without any pre-processing, in Fig. 16 (a),

c© 2016 Information Processing Society of Japan 40

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.1 33–42 (Feb. 2016)

Table 6 Numbers of enumerated patterns for ID 1277 trajectory, with
threshold 0.00022 of the gap [α, β] = [0, 5] by using the GAP-
Miner.

Datasets Length 3 4 5 6

ID 1277(≥1) 46 58 68 78
ID 1277 72 59 51 51

Fig. 16 Two logarithmic plots of the support count of patterns enumerated
by the GAPMiner from two sequences.

the frequency varies in exponential. On the other hand, by the
skeletonization in Fig. 16 (b), patterns can have similar frequency,
as results of removing rare symbols from Σ by replacing the sym-
bols in the large cluster discovered with a cluster label. This result
appeared as an waved curve on the logarithmic plot in Fig. 16 (b).

Through experiments, we confirmed that the skeletonization
affected the distribution of the frequency of patterns. We have
many choices on how to replace symbols originally in Σ with
cluster labels, and in these experiments we use cluster labels in
an descending order.

5.3 Future Directions
It is the always problem in pattern mining how to deal with

a kind of redundancy among patterns. In our experiments, many
patterns constructed by shifting symbols are mined. For example,
we often have the case a frequent pattern p occurring at 8 a.m.
again becomes frequent patterns at 9 a.m., 10 a.m., and so on.
That is, the primitive definition of partially periodic patterns have
some redundancy. It is our important future work to overcome
the redundancy problem by considering well-studied conceptions
(e.g., closed or maximal patterns) and combining them with our
pre-processing method. Tuning hyper-parameters including the
number k of clusters and the width r of sliding windows is also
our future work to enrich partially periodic pattern mining with
pre-processing using the skeletonization.

Last, we show a future problem should be taken into account
the pre-processing of pattern mining with Machine Learning
methods by using the support count. Figure 17 is a logarithmic
chart (of the y-axis) representing the frequency of each symbol*8

in Σ for the ID 1277 sequence. If given databases are not merely
noise, we can have an assumption that the symbol frequency is
not uniform. This fact encourages more developments on applica-
tions of Machine Learning methods for the sparseness of several
pattern mining problems. For example considering the TF-IDF
model in pattern mining, utility-based pattern mining, and unsu-
pervised metric learning on symbols area related topics on the
viewpoint of pre-processing using Machine Learning.

*8 It is equal to the support count of each symbol, i.e., the total number of
occurrences of symbols in a database.

Fig. 17 The logarithmic plot of the frequency of symbols.

6. Concluding Remarks

In this paper we provide a new skeletonization method for deal-
ing with partially periodic patterns based on the temporal skele-
tonization and periodic information. Our experiments with syn-
thetic and real datasets show that our method could help us to
obtain clusters of symbols even for periodic settings, particularly
for a case where sequences have only one fixed period. Pattern
mining results with the skeletonization indicate that our method
is helpful to obtain readable results with a relatively small com-
putational cost as Σ get small. Even we use a large threshold,
we can find frequent patterns which cannot be listed without the
skeletonization. Using more real datasets, we test that our method
give some insights on relation of symbols used for describing
databases, and their analyses might be important and helpful for
Knowledge Discovery.

In future work, we would like to develop algorithms to reduce
the redundancy of patterns more, based on well-studied concepts
(e.g., closed patterns) together with the skeletonization. Further
discussion using other pre-processing methods, particularly com-
paring methods using semantic information (i.e., hierarchy, back-
ground knowledge) are also our important future work.

Acknowledgments This work was partially supported by
Grant-in-Aid for JSPS Fellows (26-4555) and JSPS KAKENHI
Grant Number 26280085.

References

[1] Alzate, C. and Suykens, J.A.: Hierarchical kernel spectral clustering,
Neural Networks, Vol.35, pp.21–30 (2012).

[2] Celma, O.: Music Recommendation and Discovery in the Long Tail,
Springer (2010).

[3] Cichocki, A., Zdunek, R. and Amari, S.-I.: Nonnegative matrix
and tensor factorization [lecture notes], Signal Processing Magazine,
IEEE, Vol.25, No.1, pp.142–145 (2008).

[4] Han, J., Dong, G. and Yin, Y.: Efficient mining of partial periodic
patterns in time series database, Proc. 15th ICDE, pp.106–115 (1999).

[5] Han, J., Gong, W. and Yin, Y.: Mining segment-wise periodic patterns
in time-related databases, Proc. 4th KDD, pp.214–218 (1998).

[6] Huang, P., Liu, C.-J., Xiao, L. and Chen, J.: Wireless spectrum occu-
pancy prediction based on partial periodic pattern mining, Proc. 20th
MASCOTS, pp.51–58 (2012).

[7] Le, A. and Gertz, M.: Mining periodic event patterns from RDF
datasets, Catania, B., Guerrini, G. and Pokorný, J., (Eds.), Advances
in Databases and Information Systems, Lecture Notes in Computer
Science, Vol.8133, Springer Berlin Heidelberg, pp.162–175 (2013).

[8] Liu, C., Zhang, K., Xiong, H., Jiang, G. and Yang, Q.: Temporal skele-
tonization on sequential data: patterns, categorization, and visualiza-
tion, Proc. 20th KDD, pp.1336–1345 (2014).

[9] Ng, A.Y., Jordan, M.I. and Weiss, Y.: On spectral clustering: analysis
and an algorithm, Advances in Neural Information Processing Systems
13, pp.849–856 (2001).

[10] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.
and Duchesnay, E.: Scikit-learn: machine learning in Python, Journal

c© 2016 Information Processing Society of Japan 41

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.1 33–42 (Feb. 2016)

of Machine Learning Research, Vol.12, pp.2825–2830 (2011).
[11] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q.,

Dayal, U. and Hsu, M.-C.: Mining sequential patterns by pattern-
growth: the PrefixSpan approach, IEEE Transactions on Knowledge
and Data Engineering, Vol.16, No.11, pp.1424–1440 (2004).

[12] Shi, J. and Malik, J.: Normalized cuts and image segmentation, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol.22,
pp.888–905 (1997).

[13] Von Luxburg, U.: A tutorial on spectral clustering, Statistics and Com-
puting, Vol.17, No.4, pp.395–416 (2007).

[14] Yang, K.-J., Hong, T.-P., Chen, Y.-M. and Lan, G.-C.: Projection-
based partial periodic pattern mining for event sequences, Expert Sys-
tems with Applications, Vol.40, No.10, pp.4232–4240 (2013).

[15] Yuan, J., Zheng, Y., Xie, X. and Sun, G.: Driving with knowledge
from the physical world, Proc. 17th KDD, ACM, pp.316–324 (2011).

[16] Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G. and Huang,
Y.: T-drive: driving directions based on taxi trajectories, Proc. 18th
SIGSPATIAL GIS, pp.99–108 (2010).

[17] Zhang, M., Kao, B., Cheung, D.W. and Yip, K.Y.: Mining periodic
patterns with gap requirement from sequences, ACM Trans. Knowl-
edge Discovery from Data, Vol.1, No.2 (2007).

Keisuke Otaki received his B.E. degree
and the M.S. degree in Informatics from
Kyoto University in 2011 and 2012, re-
spectively. He is currently a Ph.D. student
at Graduate School of Informatics, Kyoto
University. His research interests include
pattern mining from structured data and
Information Theory-based mining algo-

rithms.

Akihiro Yamamoto received his B.S. de-
gree from Kyoto University in 1985, and
Dr.Sci. degree from Kyushu University in
1990. Currently, he is a Professor of the
Department of Intelligence Science and
Technology, Graduate School of Infor-
matics at Kyoto University. He has made
research contributions to foundations of

intelligence science, with a particular focus on application of
mathematical logic to machine learning. His recent research in-
terest includes developing machine learning theory with discrete
mathematics, in particular formal concept analysis. He is join-
ing Information Processing Society Japan, Japan Society for Soft-
ware Science and Technology, and the Japanese Society for Arti-
ficial Intelligence.

c© 2016 Information Processing Society of Japan 42

