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Abstract: Detection of salient regions in images is useful for many computer vision applications. However, existing
methods tend to perform poorly in complex background because lower-level priors involved in the evaluation of visual
saliency are not reliable. I propose a salient region detection method by enhancing diversity of multiple priors. The
method naturally integrates conspicuity maps generated with the multiple priors in order to detect salient regions in
images. Extensive experiments show that the method can comfortably achieve comparable performance to the existing
methods even without the help from machine learning techniques. The combination with a simple machine learning
technique further improves the performance that outperforms the state-of-the-art, when evaluated using one of the
largest publicly available data sets.
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1. Introduction

Detecting salient regions in images has been extensively in-
vestigated in many computer vision applications such as object
detection and recognition [17], [18], [25], image editing [5], [9],
[13], image segmentation [14], and adaptive compression of im-
ages [6]. Here, a salient region indicates a region in an image that
visually stands out from its surroundings, as illustrated in Fig. 1.
Key properties that make a region salient are the visual difference
from the background and the uniqueness which attracts human
attention.

Methods of salient region detection can be roughly divided
into two categories: bottom-up approach and top-down approach.
Bottom-up approaches are data-driven based on lower-level pri-
ors (e.g., contrast prior, low-rank prior, and boundary prior).
Both local [11], [22] and global [1], [5] contrast priors have been
proposed so far. For example, center-surrounding operators [11]
are performed on feature maps to obtain the local maxima of
visual saliency, and regional contrast features such as center-
surround histograms [15] and center-surround divergence of fea-
ture statistics [4], [23] have been also introduced. Recently,
Refs. [18], [24] proposed a low-rank prior, which decomposes
an image into a low-rank matrix representing the background and
a sparse noise matrix indicating the salient regions by low-rank
matrix recovery, and Ref. [21] proposed a boundary prior, which
assumes the image boundary is mostly background for the eval-
uation of visual saliency. Thus, bottom-up approaches make use
of the visual difference from the background. However, while the
salient regions are mostly unique, the inverse might not necessar-
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Fig. 1 Examples of the salient region extracted with proposed method on
the MSRA-1000 [1]. (a) Input Images; (b) Saliency maps; (c) Salient
region detection results based on (b) by adaptive thresholding [16];
(d) Ground truth.

ily be true. Not all unique regions have the visual difference from
the background, and a small region with high contrast might be
recognized as meaningless noise by human. Furthermore, natu-
ral images usually exhibit cluttered backgrounds, so models that
make simplified assumptions, such that the background lies in a
low-dimensional feature space, might not perform well in prac-
tice. Thus, using only a lower-level prior has shortcomings.

On the other hands, top-down approaches are goal-driven
based on higher-level knowledge about interesting objects to
identify salient regions. A variety of top-down methods have been
also proposed so far. For example, Ref. [25] learns directly fea-
tures of interesting regions by dictionary learning and then gener-
ates the saliency map by modeling spatial consistency with condi-
tional random field, and Ref. [8] proposed a top-down saliency al-
gorithm by selecting discriminant features from a pre-defined fil-
ter bank. However, the performance of the top-down approaches
depends heavily on the quality and quantity of ground truth data
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used for supervised learning, and gathering a large number of
high-quality training data is costly. Furthermore, adding a new
object category is not straightforward because human subjectiv-
ity often causes ambiguity.

In addition, unlike previous approaches that are purely bottom-
up or top-down, combination approaches that integrate multi-
ple conspicuity maps generated with different priors or features
was demonstrated to be a promising alternative to the previ-
ous approaches. For example, Ref. [3] combined multi-scale
saliency, color contrast, edge density, and superpixel straddling
in a Bayesian framework, Ref. [15] integrated multi-scale con-
trast, center-surround histograms, and color spatial-distributions
with conditional random field, and Ref. [13] fused several con-
spicuity maps by weighted averaging, where the weights learned
by support vector machine. However, the combination methods
tend to identify regions with various structures as salient, which
is not always appropriate in practice.

In this paper, I propose a new combination method to detect
salient regions in images. The combination method integrates
multiple conspicuity maps generated with not only lower-level

priors but also higher-level priors. I define three types of lower-
level priors (i.e., local contrast prior, global contrast prior, and
boundary prior) which are motivated by early human visual sys-
tem, and four types of higher-level priors (i.e., face prior, color

prior, closedness prior, and center prior) which are motivated
by human perceptions. The combination method is based on the
standard structure of cognitive visual attention models [11], [19],
where the saliency computation consists of following four steps.

First, an input image is segmented into small image patches
called super-pixels by using SLIC [2]. The super-pixels are less
likely to cross object boundaries, which lead to more accurately
segmented salient regions. In practice, because it may be difficult
to determine the appropriate super-pixel size in advance, I gen-
erate four types of segmented images, each consisting of about
25, 50, 75, 100 super-pixels. Then, in the second step, the seg-
mented images are converted into feature maps in which each
super-pixel is assigned a conspicuity strength. Here, the proce-
dures to compute the conspicuity strength for each prior are de-
scribed in following sections. Furthermore, in the third step, the
feature maps which are generated with every segmented images
in each prior are fused into a single conspicuity map by linear
combination. Here, coefficients of the linear combination are de-
termined by the inverse of the number of feature maps in each
prior. Finally, in the fourth step, the multiple conspicuity maps
which are generated with both of the lower-level and higher-level
priors are integrated into a single saliency map by a simple ma-
chine learning technique (i.e., logistic regression). The above for-
mulation is summarized in Fig. 2, which illustrates the schematic
overview of my salient region detection system.

Through extensive experiments, I demonstrate that the pro-
posed method can comfortably achieve comparable performance
to the existing methods even without the help from the machine
learning technique, and the combination with the machine learn-
ing technique further improves the performance that outperforms
the state-of-the-art, when evaluated using one of the largest pub-
licly available data sets [1].

Fig. 2 Schematic overview of my salient region detection system.

2. Multiple Priors

In this section, I introduce how the conspicuity strength for
each prior is evaluated from the image segmented into super-
pixels.

2.1 Local-contrast Prior (LC)
Reference [9] proposed a local conspicuity measure based on

the differences of the color and position between small image el-
ements. Based on the local conspicuity measure, I define a local-

contrast prior at the i-th super-pixel spi in the image segmented
into N super-pixels as:

LC(spi) =
N∑

j=1

n(sp j) · dcolor(spi, sp j)

1 + c · dposition(spi, sp j)
,

where n(sp j) is the number of pixels in the j-th super-pixel
sp j, and dcolor(spi, sp j) is the Euclidean distance between the
color features of super-pixels spi and sp j which are vectorized
with the arithmetic mean pixel value in HS V color space, and
dposition(spi, sp j) is the Euclidean distance between the gravity
positions of super-pixels spi and sp j, and c is the median of the
Euclidean distances between the gravity positions of every pair of
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super-pixels.
The local-contrast prior is proportional to the difference in vi-

sual appearance and inverse proportional to the positional dis-
tance between super-pixels. Thus, the i-th super-pixel spi is con-
sidered as visually salient when it is highly dissimilar to the sur-
rounding super-pixels.

2.2 Global-contrast Prior (GC)
Reference [12] proposed a global conspicuity measure based

on the differences of the color and size between segmented region
types, which favors region types with a unique visual appearance
within the entire image. By simplifying the global conspicuity
measure, I define a global-contrast prior at the i-th region type ri

in the image segmented into M region types as:

GC(ri) =
M∑
j=1

n(r j) · w(ri) · dcolor(ri, r j), (1)

where n(r j) is the number of pixels in the j-th region type r j, and
w(ri) is the weight for the i-th region type ri, and dcolor(ri, r j) is the
Euclidean distance between the color features of region types ri

and r j which are vectorized with the arithmetic mean pixel value
in HS V color space. The remaining questions in Eq. (1) are how
to segment into M region types ri (i ∈ [1,M]) and compute the
weight w(ri) for the i-th region type ri, which are described in
detail below.

My segmentation technique consists of following four steps.
First, an input image is split into CIE L∗a∗b color channels. Then,
in the second step, the channel images are converted into average
maps in which each super-pixel is assigned the arithmetic mean
pixel value. Furthermore, in the third step, the average maps are
binarized by adaptive thresholding [16]. Finally, the input image
is segmented into several region types with the binary patterns.
Here, the binary patterns consist of the eight types that (0, 0, 0),
(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), and (1, 1, 1).
Therefore, the number of segmented region types is eight at most.
The above formulation is summarized in Fig. 3, which illustrates
the schematic overview of my segmentation technique. In ad-
dition, examples of the image segmented with my segmentation
technique are shown in Fig. 4. You can see that the images are
roughly divided into several region types while maintaining the
global structural features.

Furthermore, I define the weight w(ri) for the i-th region type
ri as:

w(ri) = 1 − |ri ∩ B|
|B| , (2)

where B is the boundary region on the segmented image as shown
in Fig. 5. In my experiments, I define the boundary size L as:

L = 0.05 · min(W,H),

where W and H are the horizontal and vertical image size, respec-
tively. The weight w(ri) is inverse proportional to the overlap rate
between the i-th region type ri and the boundary region B. There-
fore, when the overlap rate is large, GC(spi) is rather suppressed
as a whole even if dcolor(ri, r j) is large. On the other hand, when
the overlap rate is small, GC(spi) is rather enhanced as a whole

Fig. 3 Schematic overview of my segmentation technique.

Fig. 4 Examples of the image segmented with my segmentation technique.
(a) Input images; (b) Images segmented into super-pixels; (c) Im-
ages segmented into region types; (d) Colors of region type and their
binary patterns.

Fig. 5 Definition of boundary region on the segmented image. (a) Seg-
mented region types (blue, green, yellow, and orange); (b) Boundary
region (gray); (c) Colors of region type and their weights with Eq. (2)
on the segmented image.

even if dcolor(ri, r j) is small.
Thus, the i-th region type ri is considered as visually salient

when it is highly dissimilar to the other regions and not almost
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overlap with the boundary region B on the segmented image.

2.3 Boundary Prior (BD)
Reference [21] proposed a boundary conspicuity measure due

to the assumption that the image boundary is mostly background.
Based on the boundary conspicuity measure, I define a boundary

prior at the i-th super-pixel spi in the image segmented into N

super-pixels as:

BD(spi) =
M∑
j=1

W(r j) · dcolor(spi, r j ∩ B),

where r j and B are the j-th region generated with my segmenta-
tion technique and the boundary region on the segmented image
as described above, and dcolor(spi, r j ∩ B) is the Euclidean dis-
tance between the color features of regions spi and r j ∩ B which
are vectorized with the arithmetic mean pixel value in HS V color
space, and W(r j) is the weight for the j-th region r j defined by

W(r j) =
|r j ∩ B|
|B| .

The weight W(r j) is the overlap rate between j-th region r j and
the boundary region B. Therefore, when the overlap rate is small,
BD(spi) is rather suppressed as a whole even if dcolor(spi, r j∩B) is
large. Similarly, when the overlap rate is large, BD(spi) is rather
enhanced as a whole even if dcolor(spi, r j ∩ B) is small.

Thus, the i-th super-pixel spi is considered as visually salient
when it is highly dissimilar to the regions which extensively over-
lap with the boundary region B on the segmented image.

2.4 Face Prior (FC)
People pay more attention to certain semantic objects such as

faces even without specific purposes. Therefore, I perform face
detection on the images as is the case with Refs. [9], [12], [13].
In my implementation, I incorporated the face detection algo-
rithm [20] which is commonly used in computer vision commu-
nity. More specifically, when the face of size Wf × Hf is detected
at the position (Xf , Yf ) in an image, I define a face prior at the i-th
super-pixel in the image segmented into N super-pixels as:

FC(spi) =
n(spi)∑

j=1

exp

⎛⎜⎜⎜⎜⎜⎝− (Xf − x j)2

2σ2
fx

− (Yf − y j)2

2σ2
fy

⎞⎟⎟⎟⎟⎟⎠, (3)

where n(spi) is the number of pixels in the i-th super-pixel spi,
Xf and Yf are respectively the horizontal and vertical center po-
sition of detected face in the image, x j and y j are respectively the
j-th pixel positions of horizontal and vertical direction in the i-th
super-pixel spi, σfx and σfy are respectively the Gaussian sizes of
horizontal and vertical direction defined by

σfx =
Wf

4.0
, σfy =

Hf

4.0
.

Example of the feature map generated with the face prior is
shown in Fig. 6. You can see that the super-pixels near the de-
tected face are assigned higher conspicuity strength according to
Eq. (3). Thus, the face prior makes it possible to generate the fea-
ture map while maintaining the face contour features as shown in
Fig. 6.

Fig. 6 Example of the feature map generated with the face prior in Eq. (3).
(a) Face detection result; (b) Image segmented into super-pixels; (c)
Feature map.

Fig. 7 Example of the feature map generated with the color prior in Eq. (4).
(a) Input image; (b) Image segmented into super-pixels; (c) Feature
map.

2.5 Color Prior (CL)
From our daily experience, we find that warm color regions

such as red and yellow are more pronounced as pointed out in
Refs. [9], [13], [18]. To use such information, I define a color

prior at the i-th super-pixel spi in the image segmented into N

super-pixels as:

CL(spi) =
n(spi)∑

j=1

max (R
′
j −G

′
j, 0)

n(spi)
, (4)

where n(spi) is the number of pixels in the i-th super-pixel spi,
R
′
j and G

′
j are respectively the j-th normalized color elements of

R and G in the i-th super-pixel spi defined by

R
′
j =

Rj

R j +G j + Bj
, G

′
j =

G j

Rj +G j + Bj
.

Here, Rj, G j, and Bj are respectively the j-th color elements of R,
G, and B in the i-th super-pixel spi.

Examples of the feature maps generated with the color prior
are shown in Fig. 7. You can see that the warm color regions (i.e.,
triangle traffic sign) are popped out while maintaining the struc-
tural features. Thus, the color prior favors the regions which are
more attractive to humans and eliminates the background color
such as road, sky, and cloud.

2.6 Closedness Prior (CD)
A region which has a wider spatial distribution is typically less

salient than regions which have small spatial spread as pointed
out in Refs. [10], [15]. On the basis of the knowledge, I define a
closedness prior at the i-th region ri in the image segmented into
M regions as:

CD(ri) =

(
1 − D(ri)

maxi∈M D(ri)

)
w(ri), (5)

where ri is the i-th region segmented with my segmentation tech-
nique as described above, and w(ri) is the weight for the i-th
region ri defined by Eq. (2), and D(ri) is the average of the
Euclidean distances between the gravity positions of every pair
of super-pixels which are labeled as i-th region ri with my seg-
mentation technique.
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Fig. 8 Example of the feature map generated with the closedness prior in
Eq. (5). (a) Input image; (b) Image segmented into regions; (d) Fea-
ture map.

Fig. 9 Example of the feature map generated with the center prior in Eq. (6).
(a) Input image; (b) Image segmented into super-pixels; (d) Feature
map.

Example of the feature map generated with the closedness prior
is shown in Fig. 8. You can see that the closed regions (i.e., dog)
are popped out while maintaining the contour features. Thus, the
closedness prior favors the regions with small spatial variance and
eliminates the background color of large variance.

2.7 Center Prior (CT)
People taking photographs generally frame an interest object

near the image center. Therefore, similarly as in Ref. [13], I gen-
erate a center prior using a Gaussian distribution based on the dis-
tances between the gravities of super-pixels and the image center.
More specifically, I define a center prior at the i-th super-pixel
spi in the image segmented into N regions as:

CT (spi) =
n(spi)∑

j=1

exp

⎛⎜⎜⎜⎜⎝− (Xg − x j)2

2σ2
gx

− (Yg − y j)2

2σ2
gy

⎞⎟⎟⎟⎟⎠, (6)

where n(spi) is the number of pixels in the i-th super-pixel spi,
x j and y j are respectively the j-th pixel positions of horizontal
and vertical direction in the i-th super-pixel spi, Xg and Yg are
respectively the horizontal and vertical center position of the im-
age, σgx and σgy are respectively the Gaussian sizes of horizontal
and vertical direction defined by

σgx =
W
2.0
, σgy =

H
2.0
.

Here, W and H are the horizontal and vertical image size, respec-
tively.

Example of the feature map generated with the center prior is
shown in Fig. 9. You can see that the super-pixels near the im-
age center are assigned higher conspicuity strength according to
Eq. (6). Thus, the center prior favors the regions near the image
center and eliminates the regions near the image corner.

Overall, it is possible to generate the seven types of fea-
ture maps with the proposed lower-level and higher-level pri-
ors. Then, the feature maps are normalized into [0, 255] range
as shown in Fig. 10. Furthermore the feature maps are integrated
into a single conspicuity map by linear combinations. Finally,
the conspicuity maps are also normalized into [0, 255] range as
shown in Fig. 11.

Fig. 10 Feature maps generated with the proposed lower-level and higher-
level priors, each consisting of about (a) 25, (b) 50, (c) 75, (d) 100
super-pixels.

Fig. 11 Conspicuity maps generated with linear combinations between fea-
ture maps in Fig. 10. (a) Input image; (b) LC; (c) GC; (d) BD; (e)
FC; (f) CL; (g) CD; (h) CT; (i) Saliency map integrated with lin-
ear combination. The number below each conspicuity map is the
weight value βk in Eq. (7).

3. Saliency Map Construction

In this section, I introduce how the conspicuity maps are in-
tegrated into a single saliency map. As the details are shown in
below, there are two different approaches to construct the saliency
map.
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3.1 Linear Combination Based Approach
First, I introduce a linear combination based approach to con-

struct a saliency map. Specifically, I define a saliency strength at
the position (x, y) in the saliency map as:

ss(x, y) =
K∑

k=1

csk(x, y)
βk

, (7)

where K is the number of conspicuity maps (i.e,. K = 7), csk(x, y)
is the conspicuity strength at the position (x, y) in the k-th con-
spicuity map, and βk is the sum of weighted standard deviations
for the horizontal and vertical direction in the k-th conspicuity
map defined by

βk =

√√√∑W
x=1

∑H
y=1

(
(Xk − x)2 + (Yk − y)2

)
· csk(x, y)∑W

x=1
∑H
y=1 csk(x, y)

. (8)

Here, W and H are respectively the horizontal and vertical im-
age size. Furthermore, Xk and Yk are respectively the weighted
averages for the horizontal and vertical direction in the k-th con-
spicuity map defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xk =

∑W
x=1

∑H
y=1 x · csk(x, y)∑W

x=1
∑H
y=1 csk(x, y)

,

Yk =

∑W
x=1

∑H
y=1 y · csk(x, y)∑W

x=1
∑H
y=1 csk(x, y)

.

An example of the saliency map generated with linear com-
bination based approach is shown in Fig. 11. Here, The num-
ber below each conspicuity map is the weight value βk in Eq. (8).
You can see that the conspicuity maps with large spacial disper-
sion (e.g., (h) CT and (d) BD) are assigned higher weight value
βk. Therefore, the conspicuity maps with large spacial dispersion
are rather suppressed as a whole even if the conspicuity strengths
are large. Finally, the saliency map is normalized into [0, 255]
range as shown in Fig. 11, which is for the visualization and the
evaluation with ground truth [1].

3.2 Machine Learning Based Approach
In the second approach, a popular machine learning technique

called logistic regression is adopted to integrate multiple con-
spicuity maps into a single saliency map. Specifically, the model
of the logistic regression is that

log
p(x)

1 − p(x)
= α · x + β,

where x is a seven dimensional feature vector in which elements
are consist of conspicuity strengths that are computed with mul-
tiple priors (i.e., LC, BC, BD, FC, CL, CD, and CT), p(x) is the
probability density function in the particular category that the fea-
ture vector x is extracted from salient region in an image, β and α

are the constant of the model and the coefficient of the predictor
variables, respectively.

When β and α are determined by learning performed using
positive samples (i.e., approximately 2 × 105 samples randomly
extracted from salient regions) and negative samples (i.e., ap-
proximately 9 × 105 samples randomly extracted from its back-
ground)*1, the probability density for the feature vector x′ ex-
tracted from a test image is estimated by
*1 The details of the learning method leave it out in this paper.

Fig. 12 Examples of the probability density estimated with Eq. (9). (a) Input
images; (b) Estimated probability densities; (c) Normalized images
into [0, 255] range based on (b).

p̂(x′) =
1

1 + exp
(
−

(
α̂ · x′ + β̂

)) , (9)

where α̂ and β̂ are the model parameters obtained through learn-
ing. Examples of the probability density estimated with Eq. (9)
are shown in Fig. 12 (b). Finally, the saliency map is also normal-
ized into [0, 255] range as shown in Fig. 12 (c).

4. Experiments

I evaluate my salient region detection method quantitatively on
the publicly available data set [1]. Instead of using a bounding
box for the salient region, accurate human-marked labels are pro-
vided as ground truth in this 1000-image data set. Here, a test
image is excluded when learning the model parameters (i.e., α̂

and β̂) in Eq. (9), which are determined on other images from the
MSRA data set.

I follow a general methodology [1] to evaluate the accuracy of
the detected salient region. In the evaluation, the image is seg-
mented with a fixed threshold according to the saliency values.
Given a threshold T ∈ [0, 255], the regions whose saliency values
are higher than T are marked as foreground (i.e., salient region).
Then, the segmented image is compared with the ground truth
mask to obtain the precision and recall. When the threshold T

varies from 0 to 255, different precision-recall pairs are obtained
and a precision-recall curve can be drawn. The average precision-
recall curve is generated by combing the results from all the 1000
test images.

First, I compare the performance of my proposed method
with three different approaches: linear combination based ap-
proach, machine learning based approach, and the results from
each prior (i.e., LC, BC, BD, FC, CL, CD, and CT). The aver-
age precision-recall curves are shown in Fig. 13. By integrating
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Fig. 13 Average precision-recall curves on the 1000-image data set [1]. By
combining the multiple priors, the salient region detection perfor-
mance is significantly improved.

Fig. 14 Average precision-recall curves on the 1000-image data set [1].
Compared with seven state-of-the-arts (i.e., Jiang [12], Cheng [5],
Shen [18], Achanta [1], Goferman [9], Itti [11], and Frintrop [7]),
my proposed linear combination based approach nearly equivalent
to Jiang [12], and machine learning based approach achieved the
best performance.

Fig. 15 Average precision, recall and F-measure using different approaches
with adaptive thresholding. my proposed method achieves the best
precision, recall and F-measure.

the multiple priors, the salient region detection performance is
significantly improved.

In the second, I compare the average precision-recall curves
obtained with my proposed methods with Cheng [5], Achanta [1],
Goferman [9], Itti [11], and two recently proposed methods
Jiang [12], Shen [18] and Frintrop [7]. My proposed linear com-

Fig. 16 Examples of saliency map construction using different methods on
the MSRA-1000 database [1]. (a) Input images; (b) Ground truth;
(c) Itti [11]; (d) Achanta [1]; (e) Goferman [9]; (f) Cheng [5]; (g)
Shen [18]; (h) Jiang [12]; (i) My proposed linear combination based
approach; (j) My proposed machine learning based approach.

bination based approach is comparable to Jiang [12] and outper-
forms the other methods as shwon in Fig. 14. Furthermore, my
proposed machine learning based approach achieves the high-
est average precision and recall among all methods. The aver-
age precision, recall and F-Measure using different approaches
with adaptive thresholding are shown in Fig. 15. Among all ap-
proaches, my proposed method achieves highest precision, recall
and F-Measure values*2. Figure 16 shows some examples of

*2 Here, I did not apply any special post-processing techniques (e.g., Salien-
cyCut) in order to make a fair comparison. Therefore, the f-measure in
this paper differ from that of published in Cheng [5]. Actually, an appro-
priate post-processing technique is applied to my proposed method so
that the performance can be significantly improved.
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saliency map construction result using my proposed method and
Itti [11], Achanta [1], Goferman [9], Cheng [5], Shen [18], and
Jiang [12].

The processing time necessary for making a saliency map,
composed of 400 by 300 [pixels] images, was about 7 [sec] on an
Intel 2.53 [GHz] machine with 4.0 [GB] RAM memory. This is
approximately equal to the processing time of the Jiang [12], but
about 10 times of the processing time of the Itti [11]. However,
this weakness about computational time can be also overcome by
applying parallel computation and coarse-to-fine strategy.

5. Discussion

In this section, I discuss which priors worked better in what
types of images and why they worked better. I also refer to fail-
ure cases to specify the limitations of my proposed method.

Examples of the conspicuity map generated with the LC (CD)
are shown in Fig. 17. You can see LC (CD) success and fail-
ure case in Fig. 17. Here, the salient region in image (a) locally
stands out from the background and is surrounded by another re-
gion which is composed of the color (i.e., black) different from
that (i.e., silver) of the salient region. In such a case, it is possible
to accurately detect the salient region in an image with LC. On
the other hand, because the salient region in image (b) consists of
several conspicuous parts (i.e., orange and yellow regions), it is
difficult to pop out simultaneously both of them with LC. How-
ever, CD can easily pop out whole salient region in image (b),
although CD cannot detect accurately the salient region in im-
age (a). Thus, LC and CD are in a complementary relationship
mutually in these images.

Examples of the conspicuity map generated with the GC (LC)
are shown in Fig. 18. You can see GC (LC) success and fail-
ure case in Fig. 18. Here, salient region in image (a) is globally
different from the background and is composed of monotonous
color (i.e., black shadow). In such a case, it is possible to ac-
curately detect the salient region in an image with GC. On the
other hand, because salient region in image (b) is similar to a part
of the background (i.e., mountain), it is impossible to pop out not
the background but only the salient region with GC. However, LC
can easily pop out only the salient region in image (b), although
LC cannot detect accurately the salient region in image (a). Thus,
GC and LC are in a complementary relationship mutually in these
images.

Examples of the conspicuity map generated with the BD (CL)
are shown in Fig. 19. You can see BD (CL) success and failure
case in Fig. 19. Here, the salient region in image (a) is signifi-
cantly different from the boundary region (i.e., black boundary).
In such a case, it is possible to accurately detect the salient region
in an image with BD. On the other hand, because not only the
salient region (i.e., red strawberry) in image (b) but also its sur-
rounding region (i.e., pink food wash dishpan) stands out from the
boundary region, it is difficult to pop out only the salient region
with BD. However, CL can easily pop out only the salient region
in image (b), although CL cannot detect accurately the salient
region in image (a). Thus, BD and CL are in a complementary
relationship mutually in these images.

Examples of the conspicuity map generated with the FC (CT)

Fig. 17 Examples of conspicuity map generated with LC (CD). LC suc-
cess (CD failure): salient region in image (a) locally stands out
from the background. LC failure (CD success): salient region in
image (b) consists of several conspicuous parts (i.e., orange and
yellow regions).

Fig. 18 Examples of conspicuity map generated with GC (LC). GC suc-
cess (LC failure): salient region in image (a) is globally different
from the background. GC failure (LC success): salient region in
image (b) is similar to a part of the background (i.e., mountains).

Fig. 19 Examples of conspicuity map generated with BD (CL). BD suc-
cess (CL failure): salient region in image (a) is different from the
boundary region. BD failure (CL success): not only salient region
in image (b) but also its surrounding region is different from the
boundary region.

Fig. 20 Examples of conspicuity map generated with FC (CT). FC suc-
cess (CT failure): image (a) which is succeeded in detecting the
face region. FC failure (CT success): image (b) which is failed in
detecting the face region.

are shown in Fig. 20. You can see FC (CT) success and failure
case in Fig. 20. Here, the face detection is succeeded in image (a),
while the face detection is failed in image (b). Naturally enough,
if the face detection is failed in an image, FC cannot work effec-
tively. However, CT can roughly detect the salient region (i.e.,
baby face) in image (b), although CT cannot work well in im-
age (a). Thus, FC and CT are in a complementary relationship
mutually in these images.

Examples of the conspicuity map generated with the CL (BD)
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Fig. 21 Examples of conspicuity map generated with CL (BD). CL suc-
cess (BD failure): salient region in image (a) is mainly composed
of warm color. CL failure (BD success): not salient region but
background region in image (b) is rather composed with warm
color (i.e., ground lighted by the sunlight).

Fig. 22 Examples of conspicuity map generated with CD (LC). CD suc-
cess (LC failure): salient region in image (a) has a small spatial dis-
tribution with monotonous color. CD failure (LC success): salient
region in image (b) has a wide spatial distribution with several col-
ors.

are shown in Fig. 21. You can see CL (BD) success and failure
case in Fig. 21. Here, the salient region in image (a) is mainly
composed of warm color (i.e., red rose). In such a case, it is
possible to accurately detect the salient region in an image with
CL. On the other hand, because not the salient region but the
background in image (b) is rather composed of warm color (i.e.,
ground lighted by the sunlight), it is impossible to pop out the
salient region with CL. However, BD can detect accurately the
salient region in image (b), although BD cannot work well in im-
age (a). Thus, CL and BD are in a complementary relationship
mutually in these images.

Examples of the conspicuity map generated with the CD (LC)
are shown in Fig. 22. You can see CD (LC) success and failure
case in Fig. 22. Here, the salient region in image (a) has a small
spatial distribution with monotonous color (i.e., yellow). In such
a case, it is possible to accurately detect the salient region in an
image with CD. On the other hand, because the salient region
in image (b) has a wide spatial distribution with cluttered col-
ors (i.e., gray, white, and pink), it is difficult to pop out the salient
region with CD. However, LC can detect accurately the salient re-
gion in image (b), although LC cannot perform well in image (a).
Thus, CD and LC are in a complementary relationship mutually
in these images.

Examples of the conspicuity map generated with the CT (GC)
are shown in Fig. 23. You can see CT (GC) success and failure
case in Fig. 23. Here, the salient region in image (a) is near the
image center, while the salient region in image (b) is near the
image corner. Naturally enough, if the salient region in an im-
age is not near the center, CT cannot work effectively. However,
GC can detect accurately the salient region in image (b), although
GC cannot perform well in image (a). Thus, CT and GC are in a
complementary relationship mutually in these images.

Fig. 23 Examples of conspicuity map generated with CT (GC). CT suc-
cess (GC failure): Salient region in image (a) is near the image
center. CT failure (GC success): Salient region in image (b) is near
the image corner.

Fig. 24 Examples of failure image. (a) smiley written on the egg; (b) insect
on the flower; (c) character string on the sign.

Finally, examples of failure image are shown in Fig. 24. You
can see representative failure images in Fig. 24. Here, while my
proposed method intuitively seems to work well, the ground truth
in image (a) is not the egg itself but the smiley written on the
egg, and the ground truth in image (b) is actually not the flower
itself but the insect on the flower. Furthermore, the ground truth
in image (c) is not the STOP sign itself but rather the character
string (i.e., S, T, O, and P) on the sign. To overcome this problem
based on the uncertainty by human subjectivity, it will be neces-
sary to define more advanced higher-level priors.

6. Conclusion

In this paper, I presented a salient region detection method by
enhancing diversity of multiple priors. In my proposed method,
the three types of lower-level priors (i.e., local contrast prior,
global contrast prior, and boundary prior) which are motivated
by early human visual system, and the four types of higher-level
priors (i.e., face prior, color prior, closedness prior, and center

prior) which are motivated by human perceptions are defined. By
integrating the higher-level and lower-level priors, the salient re-
gion detection results are significantly improved and more consis-
tent with human intelligent vision system. Experimental results
indicate that the algorithm outperforms existing salient region
detection methods including Jiang [12], Cheng [5], Shen [18],
Achanta [1], Goferman [9], Itti [11], Jiang [12] and Frintrop [7].
Furthermore, my proposed saliency computation system can be
used as a prototype model in task-dependent computer vision
applications by integrating more advanced higher-level priors,
which merits further need to study in future.
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