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Abstract: With the recent growth of mobile communication, the location-based k-nearest neighbor (k-NN) search is
getting much attention. While the k-NN search provides beneficial information about points of interest (POIs) near
users, users’ locations could be revealed to the server. Lien et al. have recently proposed a highly-accurate privacy-
preserving k-NN search protocol with the additive homomorphism. However, it requires a heavy computation load due
to the unnecessary multiplication on the server in the encryption domain. In this paper, we propose a lightweight pri-
vate circular query protocol (LPCQP) with divided POI-table and the somewhat homomorphic encryption for privacy-
preserving k-NN search. Our proposed scheme removes unnecessary POI information for the request user by dividing
and aggregating a POI-table, and this reduces both the computational and the communication costs. In addition, we
use both additive and multiplicative homomorphisms to perform the above process in the encryption domain. We
evaluate the performance of our proposed scheme and show that our scheme reduces both the computational and the
communication costs while maintaining high security and high accuracy.
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1. Introduction

Location-based services (LBSs) are a major service among re-
cent mobile communication trends to exploit mobile users. The
key technique of an LBS is to find points of interest (POIs), e.g.,
cafes or drugstores, in the vicinity of a user. In particular, finding
the nearest k POIs around the user is called k-nearest neighbor (k-
NN) search. An LBS basically consists of two entities, a user who
wants to find k-nearest POIs and an LBS server which returns
them. An LBS server manages POI information such as names
or addresses. For instance, when a user at a station wants to find
nearby cafes, the user informs his/her current location, e.g., lat-
itude and longitude, to the server. Then, since the server knows
the user’s location and it can provide the information about cafes
near the station. However, the user’s current location is sensitive
and informing it might harm the privacy of the user.

A private circular query protocol (PCQP) proposed by Lien
et al. [1] is a state-of-the-art protocol for privacy-preserving k-NN
search. This protocol adopts the Moore curve [2] and the Pail-
lier cryptosystem [3] to securely rotate the POI-table to conceal
a user’s location. No adversary (even an LBS server) knows the
user’s location in PCQP because the user’s query and the search
results are encrypted. However, it takes a high computational cost
since it involves a large number of multiplications on a matrix in
the encryption domain on the server side and this must be reduced
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to achieve a real-time LBS.
In this paper, we propose a lightweight private circular query

protocol (LPCQP) with the divided POI-table and the somewhat
homomorphic encryption for privacy-preserving k-NN search.
We notice that PCQP multiplies an encrypted matrix by the en-
tire POI-table for circularly shifting although most POIs are not
required for search results. Accordingly, we propose to divide
a POI-table into some sub-tables and aggregate them into a ta-
ble before shifting a POI-table in order to obtain partial entries
of a POI-table. This reduces the computational cost in the ma-
trix multiplication on the server. In addition, we use a somewhat
homomorphic cryptosystem with the properties of additive and
multiplicative homomorphisms to perform the above process in
the encryption domain. As a result, our scheme achieves low
complexity and high accuracy of k-NN search without losing se-
curity. Moreover, the communication cost is also reduced in our
scheme because the size of a matrix becomes small.

We evaluate the performance of our proposed scheme with
both real and synthetic POI datasets and show that our scheme
reduces the computational costs on the server and the user by up
to 99% and 98% respectively and the communication cost by at
least 27% by allowing a 5% reduction in search accuracy without
losing security.

The rest of this paper is constructed as follows. Section 2 de-
scribes the background techniques. The related work is intro-
duced in Sections 3 and 4. System model and comprehensive
description regarding the proposed scheme are described in Sec-
tion 5. Simulation result and evaluation are discussed in Sec-
tion 6. Finally we conclude our discussion in Section 7.
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2. Background

2.1 k-Nearest Neighbor Search
Finding the nearest k POIs from the querying point is called

k-NN search. In particular, k = 1 means that the user obtains
the information about the nearest POI. An LBS basically con-
sists of two entities, a user who wants to find k-nearest POIs and
an LBS server which manages POI information such as names
or addresses. In k-NN search, the user first sends his/her current
location to the server as a query. The server retrieves POIs on the
database with the user’s location and returns the k POIs which are
near the user. As a result, the user obtains the information about
the nearby POIs. However, the current location is highly sensitive
for the user and should not be revealed to untrusted entities un-
necessarily. The query may be leaked not only over the network
by eavesdropping but also from the LBS server by the attack. In
addition, an adversary may masquerade as an LBS server. There-
fore, privacy-preserving k-NN search is required for the LBS.

2.2 Homomorphic Encryption
For preserving the user’s privacy, especially in private infor-

mation retrieval (PIR), homomorphic encryption is adopted. In
order to describe the homomorphism, we denote by Epk(m; r) and
Dsk(Epk(m; r)) the encryption of a message m under an encryp-
tion key pk with a pseudo-random number r and the decryption
of that under a decryption key sk, respectively. For given plain-
texts m1 and m2, pseudo-random numbers r1 and r2, a public-key
pk, and a private-key sk, Eqs. (1) and (2) are satisfied in the ho-
momorphic cryptography.

Dsk(Epk(m1; r1) +c Epk(m2; r2)) = m1 + m2. (1)

Dsk(Epk(m1; r1) ×c Epk(m2; r2)) = m1 × m2. (2)

Here, +c and ×c denote the operator of additive homomorphism
and that of multiplicative homomorphism, respectively. In other
words, the server can execute addition and/or multiplication of
plaintexts without decryption. For example, the NTRU cryp-
tosystem [4] is a cryptosystem with both additive and multiplica-
tive homomorphisms [5]. In particular, if an encryption scheme
fully supports additive and multiplicative homomorphisms, it is
called a fully homomorphic encryption (FHE) scheme. In con-
trast, a somewhat homomorphic encryption (SHE) scheme sup-
ports these properties with a limited number of operations. Al-
though an FHE scheme can reduce the noise of the encrypted
data by bootstrapping [6], the cost is significantly heavy com-
pared with that of an SHE. We, therefore, adopt an SHE scheme
for our scheme. The effects on cryptography from noise in our
scheme are discussed in Section 5.8.

3. Related Work

Many schemes have been proposed to allow mobile users to
search nearby POI without revealing their own location. They
are categorized into three types; cloaking-based [7], [8], [9], [10],
[11], transformation-based [12], [13], [14], and PIR-based meth-
ods [1], [15], [16], [17]. The cloaking-based methods generate
a cloaking region that an LBS server cannot distinguish the user
from other K − 1 users to obscure the location information. One

of most active challenges in cloaking-based methods is to reduce
useless spaces in a cloaking region. For example, the scheme
in Ref. [7] utilizes adjacent cell information where it does not
pass through an original Hilbert curve and Tan et al. propose a
multiple anonymizing spatial regions algorithm [8]. In another
study, Kalnis et al. propose a circular range k-NN search which
reduces the number of redundant results [9]. Chow et al. identify
three new privacy-aware query types, private queries over pub-
lic data, public queries over private data, and private queries over
private data, and propose a framework, Casper*, which supports
all the three query types [10]. Meanwhile, the scheme in Ref. [11]
uses proximity information among users instead of their coordi-
nates for location cloaking while the schemes [7], [8], [9], [10]
use users’ coordinates. The transformation-based methods trans-
form the queried location into other location via a trusted third
party (TTP) to conceal a user’s location. The key point of
transformation-based methods is how to conceal the user’s loca-
tion from a malicious user/server. Khoshgozaran et al. propose
a dual curve query resolution which achieves highly-accurate k-
NN search and guarantees stringent privacy via a trusted third
party [12]. On the other hand, the schemes in Refs. [13] and [14]
do not rely on any trusted third party. In LocX [13], the trans-
formation key is shared among the user’s friends, so that only
the friends know the user’s actual location. Yiu et al. propose
SpaceTwist [14] which obscures the user’s location by incremen-
tally retrieving POIs from a fake location (i.e., the user’s actual
location is transformed) until the user’s privacy and quality re-
quirements are satisfied. The PIR-based methods enable a user
to retrieve a POI from a database on the server without reveal-
ing which POI is retrieved, e.g., by using cryptographic tech-
niques. However, PIR techniques require high computational
and communication costs. Therefore, an efficient search tech-
nique is required in order to reduce these costs. Papadopoulos
et al. propose an aggregate Hilbert grid (AHG) scheme which
achieves low computational and communication costs for arbi-
trary k-NN search by eliminating the empty space in the database
blocks [15]. Lien et al. propose a private circular query pro-
tocol with homomorphic encryption [1]. They also propose a
cross-like search algorithm and achieve the high accuracy utiliz-
ing the algorithm. While the scheme in Ref. [1] supports only
k-NN search, Khoshgozaran et al. propose an approach which
supports range and k-NN searches [16], [17]. The cloaking-
based and the transformation-based methods achieve high accu-
racy of k-NN search, but they require a TTP to hide a user’s lo-
cation [7], [8], [9], [10], [11], [12]. However, the TTP possesses
sensitive information for many LBSs and could be the target of at-
tacks, e.g., the denial of service (DoS) attack. Moreover, the TTP
becomes the bottleneck of the service. In contrast, the PIR-based
methods achieve high-level security without a TTP. Although
this type of k-NN search requires a high computational cost for
searching POIs, it is robust to the correlation attack or the back-
ground knowledge attack, whereas the cloaking-based and the
transformation-based methods are vulnerable to these attacks [1].

4. Private Circular Query Protocol

For high quality k-NN search with strong security, we pay at-
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tention to PCQP which is a state-of-the-art PIR-based scheme
proposed by Lien et al. [1]. PCQP offers highly-accurate privacy-
preserving k-NN search without a TTP. Moreover, even if an ad-
versary masquerades as an LBS server, the user’s location cannot
be revealed to that in PCQP due to the PIR technique. A user’s
location is hidden by circularly shifting the entries of a POI-table
through k-NN search. The shift amount is randomly chosen by
the user whenever he/she queries to the LBS. Then, the user re-
quires k-nearest POIs of the shifted location. Since the POI-table
is also shifted, the user can obtain nearby k POIs by informing
the shifted location. In order to securely shift the POI-table, Lien
et al. adopt the Paillier cryptosystem as a building tool of ad-
ditive homomorphism [1]. Shifting is securely performed in the
encryption domain, and thus no user’s location information is re-
vealed to the server. In addition, k-NN search is performed in a
one-dimensional space in PCQP using a space-filling curve [2].
Since the distance between a user and a POI is calculated in a
one-dimensional one, the calculation cost is lower than that of k-
NN search performed in a two-dimensional one. The architecture
of PCQP is described below.

4.1 Initialization Process
In the initialization process, an LBS server constructs the

Moore curve. The Moore curve is a space-filling curve with end-
point-connected property. Figure 1 (a) indicates the second order
Moore curve. As shown in Fig. 1 (a), the dotted line crosses ev-
ery cell. As the characteristic of the Moore curve, the start point
(point 0 in Fig. 1 (a)) and the end point (point 15 in Fig. 1 (a))
are adjacent. The number on the corner of each cell represents
an index in the curve, which is called H-value. Thus, the two-
dimensional coordinates of a POI can be converted into the one-
dimensional one, i.e., H-value. Utilizing the H-value makes the
k-NN search more efficient because (i) calculating the distance
between H-values is low cost and (ii) it partially retains the adja-
cency relation of the two-dimensional one. The server generates
two tables, lookup-table and POI-table, from POIs stored on the
server. The lookup-table contains H-value and H-index of each
POI, where H-index denotes the evenly distributed value num-
bered in the ascending order of H-value with common difference
d (i.e., H-index of i-th POI in the ascending order of H-value is
calculated as d× i). The POI-table contains POI information, e.g.,
the names or the latitude and longitude of POIs, and H-index of
each POI. Only the lookup-table is publicly announced to users
for retrieving H-index of their current location. Figure 1 (b) and

(a) Moore curve. (b) POI-table. (c) lookup-table.

Fig. 1 Example of location information on an LBS server.

(c) indicate a POI-table and a lookup-table of the POIs on the
map in Fig. 1 (a), respectively. Here, d = 2 in Fig. 1. The user
knows which cell the user belongs to from the Moore curve and
the H-index of the cell from the lookup-table. Meanwhile, each
user generates their public-key pk and private-key sk of the Pail-
lier cryptosystem and sends their pk to the server. Note that each
user retains their sk.

4.2 Query Process
In the query process, a user chooses an arbitrary amount of

shifts t and generates an np×np t-offset circular shift permutation
matrix Pt, which is defined as

Pt =
[
Pi, j

]
0≤i, j≤np − 1

,

Pi, j =

⎧⎪⎪⎨⎪⎪⎩
1 ( j = (i + np − t) mod np)
0 (otherwise)

,
(3)

where np denotes the number of all entries in a POI-table. In order
to hide the amount of shifts, the user encrypts Pt before sending
it. However, it requires high communication cost for sending the
encrypted whole Pt. Here, (i + 1)-th row of Pt can be obtained
by circularly shifting the element of i-th row by one. Therefore,
the user encrypts only the first row of Pt and sends it. For a given
set of pseudo-random numbers r = {r1, · · · , rnp } and the user’s
public-key pk, the encrypted first row of Pt is represented as

Epk(P t
0, j; r) =

[
Epk(P0, j; r j+1)

]
0≤ j≤np − 1

, (4)

where P t
0, j denotes the first row of Pt. After encrypting P t

0, j, the
user sends Epk(P t

0, j; r) and the shifted location, which is calcu-
lated as H-indexu + t × d, to the server, where H-indexu denotes
the H-index of the user retrieved from the lookup-table by using
his current location as a key. The server receives Epk(P t

0, j; r) and
constructs the encrypted Pt, i.e., Epk(Pt; r), by circularly shift-
ing the element of Epk(P t

0, j; r) to the right by one consecutively.
Then, the server multiplies Epk(Pt; r) by a POI-table. By the ho-
momorphic properties of the Paillier cryptosystem, the POI-table
is shifted by t without decryption. That is, for given entries of
POI I = {I1, · · · , Inp }, the i-th entry of the shifted POI-table It

i is
calculated as:

It
i =

np−1∏

j=0

Epk(Pi−1, j; r j+1)I j+1 . (5)

Here, It
i is still encrypted. In addition, because of the homomor-

phic properties of the Paillier cryptosystem, It
i satisfies

Dsk(It
i ) = I((i+np−t) mod np). (6)

Therefore, only the user who possesses the correspondent private
key can decrypt the shifted POIs and obtain the decrypted them.
Finally, the server returns k-nearest rows in the shifted POI-table
from the shifted location specified by the user. Note that the
server cannot obtain any information regarding the user’s loca-
tion since the amount of shifts t varies every time the user queries
and every shifted POI (i.e., It

i ) is encrypted with the user’s public-
key as shown in Eq. (5). After receiving encrypted k results from
the server, the user decrypts them with its private-key sk.
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4.3 Cross-Like k-NN Search
Under the condition that each cell has one POI on an average,

most of exact k-nearest POIs are covered by a (2D+ 1)× (2D+ 1)
area centered at the querying point, where D is the minimum pos-
itive integer satisfying (2D + 1)2 ≥ k. For example, when a user
issues a 9-NN search query at the cell of 50 in Fig. 2 (a), exact 9-
nearest POIs (i.e., a, b, c, d, e, f , g, h, and i) are covered by a 3×3
area. Here, as shown in Fig. 2 (a), some POIs in the area (i.e., f ,
g, h, and i) cannot be searched by 9-NN search because these are
far from the querying point on the curve. For the full coverage of
the area, a user issues additional queries from the central cells of
the area’s borders in PCQP. These are selected in the descend-
ing order by the differences between H-values to reduce dupli-
cated POIs. In Fig. 2 (a), POIs b, d, f , and h are candidates for
that query. By issuing additional queries from these cells, more
POIs in the area can be searched as shown in Fig. 2 (b), Fig. 2 (c),
Fig. 2 (d), and Fig. 2 (e). Though this technique improves the ac-
curacy of k-NN search, the computational cost and the commu-
nication cost increase in proportion to the number of additional
queries.

4.4 PCQP with Somewhat Homomorphic Encryption
As shown in Eq. (4), the communication cost for sending

E(P t
0, j; r) increases in proportion to np. Moreover, data size of

a ciphertext should be extremely large to ensure high security,
and this causes burden on a mobile user. To address this problem,
Lien et al. also proposed to decompose P t

0, j into two vectors. For
instance, P 3

0, j, i.e., [0 1 0 0], can be obtained from the outer prod-
ucts of u = [1, 0] and v = [0, 1] calculated as

uT v =

⎡⎢⎢⎢⎢⎣
1
0

⎤⎥⎥⎥⎥⎦
[
0 1

]
=

⎡⎢⎢⎢⎢⎣
0 1
0 0

⎤⎥⎥⎥⎥⎦, (7)

by reading in raster-scan ordering. Thereby, the communi-
cation cost becomes O(

√
np) from O(np) by sending E(u; ru)

and E(v; ru) instead of E(P t
0, j; r), where ru and ru are sets

of
√

np random numbers (i.e., ru = {r1, · · · , r√np } and ru =

{r′1, · · · , r′√np
}). Note that a server must compute the product of

(a) 9-NN search from a
query point c.

(b) 9-NN search from
query points c and h.

(c) 9-NN search from
query points c, h, and f .

(d) 9-NN search from
query points c, h, f , and
d.

(e) 9-NN search from
query points c, h, f , d,
and b.

Fig. 2 Example of cross-like k-NN search when k = 9. Shaded circles are
reachable POIs by 9-NN search.

two encrypted vectors in this technique. Therefore, this tech-
nique requires a somewhat/fully homomorphic encryption that
is a cryptosystem with additive and multiplicative homomorphic
properties instead of the Paillier cryptosystem.

4.5 Drawback of PCQP
Although PCQP achieves high-level security and high accu-

racy, it requires a high computational load in the matrix multi-
plication on the LBS server. As mentioned in Section 4.2, for
a given k-NN query, the server requires k(np − 1) additions and
knp multiplications in the plaintext domain. Traditional homo-
morphic encryption schemes incur a huge number of calculations
even for a simple calculation of plaintexts. Although fast homo-
morphic encryption schemes have been proposed to improve the
calculation speed [18], [19], especially for real-time mobile ser-
vices, the high-cost computation is still a serious problem and
may keep users waiting for a long time in each query. In PCQP,
obviously, multiplication applied across the entire POI-table is
too wasteful to find at most k entries of POI. Focusing on this
point, we propose a lightweight k-NN search scheme to mitigate
the drawback without impairing advantages of PCQP.

5. Proposed Scheme

Here, we propose a lightweight private circular query protocol
(LPCQP) for low-complexity privacy-preserving k-NN search by
dividing and aggregating a POI-table. Our idea is to shift the par-
tial POI-table during the k-NN search whereas PCQP shifts the
entire one. We notice that PCQP multiplies an encrypted ma-
trix by the entire POI-table for circularly shifting although most
POIs are not required for search results. Figure 3 indicates our
technique for partial shifting. In our scheme, the server divides
a POI-table into M sub-tables in advance. When a user issues a
query, he/she chooses the sub-table that involves POIs the user
wants, i.e., the m-th sub-table in Fig. 3. Then the user sends M

encrypted elements with his public-key, where only the m-th el-
ement is the encrypted ‘1’ and the others are the encrypted ‘0’s.
After receiving them, the server multiplies each of them by the
corresponding sub-table. Here, the server can reduce the number
of entries to be calculated to np/M by aggregating them into a
table. Note that the server cannot see which sub-table the user

Fig. 3 Operations on an LBS server in LPCQP.
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Fig. 4 Sequence chart of LPCQP. The additional and modified processes
from the conventional protocol [1] are underlined.

wants since these processes are performed in the encryption do-
main with additive and multiplicative homomorphisms. Thus, our
scheme reduces the computational cost on the server side without
sacrificing the security. We describe how to divide and aggregate
a POI-table in Sections 5.2 and 5.3 in detail.

Advantages of our scheme are as follows:
• The computational cost on the server is significantly reduced

while keeping the high search accuracy and the high security
of PCQP.

• The communication cost and the computational cost on the
user side are reduced to the same level as that of PCQP with
the decomposition technique with a somewhat homomorphic
encryption.

Figure 4 indicates a sequence chart of our proposed protocol.
In the following sections, we first explain the system model and
the addressed problem in this study. Subsequently, we describe
the protocol sequence of LPCQP.

Fig. 5 System model of LPCQP.

5.1 System Model
In this section, we explain the system model and the addressed

problem. Figure 5 indicates our system model that includes the
LBS and adversary models. In Fig. 5, there are three entities,
which are a user, an LBS server, and an adversary. We assume
that the LBS server is untrusted and the adversary has the capabil-
ity to eavesdrop on the network. The user possesses both his/her
private key and public key for encrypting/decrypting the k-NN
query/result. The user’s public key is sent to the LBS server over
the Internet for privacy-preserving k-NN search, so that the LBS
server has only the user’s public key. Hence, the adversary can
also obtain the user’s public key. When the user wants to obtain
nearby POIs, he/she issues a k-NN query to the LBS server over
the Internet. After receiving the query, the LBS server returns
the result to the user. Following the assumption, the adversary
can obtain both query and result. The goal of an untrusted LBS
server and an adversary is to identify the user’s location.

In the above settings, we then explain the addressed prob-
lems in this paper. There are three important issues to be ad-
dressed in privacy-preserving k-NN search: (1) user’s privacy, (2)
search accuracy, and (3) computational and communication costs.
These requirements are not commonly satisfied simultaneously.
Cloaking-based and transformation-based methods provide weak
privacy protection or require third trusted party while achieving
low computational and communication costs and precise search
results. By contrast, PIR-based methods require high compu-
tation and communication costs while achieving strong privacy
protection. The challenge in LPCQP is to fulfill the above three
properties at the same time. In other words, LPCQP offers highly-
accurate k-NN search with a strict privacy requirement while the
computational and communication costs are low.

5.2 Initialization Process
In the initialization process, the server first divides a POI-table

into M sub-tables. The j-th sub-table t j
POI is defined as

t j
POI =

[
I j
i

]
1≤i≤np0

,

I j
i = I(np0( j − 1) + i),

(8)

where np0, I j
i , and Ii denote the number of all entries of a sub-

table calculated as �np/M�, the i-th entry of the j-th sub-table,
and the i-th entry of the original POI-table, respectively. M is
an arbitrary integer value and pre-defined from two to np by the
server depending on the requirements for search accuracy or cost.
The complexity becomes lower as M is larger, but the accuracy
rate also becomes lower then. The reasons are described in Sec-
tions 5.5 and 5.7. For ease of understanding, we give an example
on how to divide the POI-table when np = 4 and M=2. We define
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a POI-table I, which has four POIs, a, b, c, and d, as

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1

I2

I3

I4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

Then the POI-table I is divided into two sub-tables, t1
POI and t2

POI,
using Eq. (8) as follows:

t1
POI =

⎡⎢⎢⎢⎢⎣
I1
1

I1
2

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
I1

I2

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
a

b

⎤⎥⎥⎥⎥⎦, (10)

t2
POI =

⎡⎢⎢⎢⎢⎣
I2
1

I2
2

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
I3

I4

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
c

d

⎤⎥⎥⎥⎥⎦. (11)

As a result, the first half of POIs, a and b, are assigned to the first
sub-table t1

POI and the others, c and d, are assigned to the second
sub-table t2

POI.
Now, let IDtable denote an index of a sub-table in which a POI

is contained. IDtable is added to the lookup-table so that a user
knows which sub-table the user should search. The lookup-table
of our scheme, therefore, contains IDtable, H-index, and H-value

of each POI. Although the processes mentioned above should
be performed only once in advance, they have to be performed
whenever any POI information is updated, inserted, or deleted as
with PCQP.

5.3 Query Process
In the query process, a user first generates a pseudo-random

number t and an np0 × np0 t-offset circular shift permutation ma-
trix P′t, which is defined as follows:

P′t =
[
P′i, j
]
0≤i, j≤np0 − 1

,

P′i, j =

⎧⎪⎪⎨⎪⎪⎩
1 ( j = (i + np0 − t) mod np0)
0 (otherwise)

.
(12)

Before sending P′t to the server, the user encrypts it with his/her
public-key and pseudo-random numbers r = {r1, · · · , rnp0 } as
Epk(P′t; r) in order to hide the amount of shifts. Next, the user
obtains the index of the sub-table, i.e., m, by retrieving from the
lookup-table. The user, then, generates a vector qm

M defined as

qm
M =
[
qi
]
1≤i≤M ,

qi =

⎧⎪⎪⎨⎪⎪⎩
1 (i = m)
0 (otherwise)

.
(13)

qm
M is used for specifying which sub-table a user searches. It

is also encrypted with the user’s public-key and pseudo-random
numbers r′ = {r′1, · · · , r′M} as Epk(qm

M; r′) and sent to the server.
After receiving them, the server multiplies each element of
Epk(qm

M; r′) by each entry of the corresponding sub-table. That
is, the j-th sub-table t j

POI becomes t′ jPOI defined as

t′ jPOI = Epk(q j; r′j) ×c Epk(t j
POI)

=
[
Epk(q j; r′j) ×c Epk(I j

i )
]
1≤i≤np0

.
(14)

As a result, all entries of sub-tables except the m-th sub-table be-
come zero in the plaintext domain. Then, the server aggregates

all t′ jPOI into a table t′POI as follows:

t′POI = t′1POI +c t′2POI +c · · · +c t′MPOI

=
[

I′i
]
1≤i≤np0

,

I′i = Epk(q1; r′1) ×c Epk(I1
i )

+c Epk(q2; r′2) ×c Epk(I2
i )

+c · · · +c Epk(qM; r′M) ×c Epk(IM
i ).

(15)

Here, I′i is still encrypted and satisfies

Dsk(I′i ) = Im
i . (16)

Therefore, each entry in an aggregated table becomes correspond-
ing entry of the specified sub-table in the plaintext domain. Note
that the server cannot obtain any information regarding the user’s
location and the sub-table since qm

M and P ′t are encrypted with
the user’s public-key and distinct random numbers against each
element. In our scheme, the server multiplies Epk(P′t; r) instead
of Epk(Pt; r) by t′POI for circularly shifting. Therefore, as com-
pared with PCQP, our scheme reduces the computational cost on
the shift process without sacrificing security. Finally, the server
returns the result set R, and the user obtains the result by decrypt-
ing it with sk.

5.4 Cross-Like k-NN Search
In PCQP, additional query points are selected in the decreas-

ing order by the differences between H-values. However, it may
contain duplicated entries of POI in the search result set, espe-
cially when a user is near the boundary between groups. This
is because that it may be skewed towards a specific group. We,
therefore, propose a group-based query point selection method
for LPCQP.

At first, the user obtains the querying point Q0 and candidates
of additional query points, Q1, · · · , Q4 from the lookup-table as
with PCQP. In Fig. 2, these are the 50th cell, the 49th cell, the
51st cell, the 55th cell, and the 61st cell, respectively. Each cell
has H-value and IDtable. Next, query points that belong to the un-
selected groups are chosen with priority from the candidates set
Q. If the number of the chosen points is more than one, the point
whose H-value is farthest is chosen. The H-value of the chosen
point is added to the result set H and removed from the candi-
dates set Q. This process is repeated until the cardinality of the
result equals to the number of additional queries nq. Finally, the
user obtains a set of H-values, H . This algorithm efficiently se-
lects query points without depending on a specific group, and thus
the search accuracy increases. Algorithm 1 indicates a pseudo
code of the group-based query point selection method.

5.5 Computational Cost
In this section, we discuss the computational cost on the server

in LPCQP. In the following, we argue the computational cost in
the plaintext domain since it depends on the encryption scheme
the system uses. For example, the Paillier cryptosystem [3] cal-
culates the addition of plaintexts by multiplying the encrypted
them, whereas the NTRU cryptosystem [4] can compute them by
adding the ciphertexts. For this reason, the terms ‘addition’ and
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Algorithm 1 Group-based query point selection
Input: Q0,Q = {Q1, · · · ,Q4}, nq

Output: H = {H-value1, · · · ,H-valuenq }
1: H,G0,G1,G2,G3,G4 ← ∅
2: for i← 1 to 4 do

3: G0 ←G0 ∪ Qi.IDtable

4: end for

5: if G0 ∩ Q0.IDtable � ∅ then

6: G1 ←G1 ∪ Q0.IDtable

7: G0 ←G0 \ Q0.IDtable

8: end if

9: repeat

10: j← 0

11: while Gj = ∅ do

12: j← j + 1

13: end while

14: Initialize H′

15: k ← 1

16: for i← 1 to |Q| do

17: if Gj ∩ Qi.IDtable � ∅ then

18: H′[k].H-value← Qi.H-value

19: H′[k].distance← |Q0.H-value − Qi.H-value|
20: H′[k].IDtable ← Qi.IDtable

21: H′[k].index← i

22: k ← k + 1

23: end if

24: end for

25: Sort H′ in descending order based on distance

26: H ←H ∪ H′[1].H-value

27: Gj+1 ←Gj+1 ∪ H′[1].IDtable

28: Gj ←Gj \ H′[1].IDtable

29: Q←Q \ QH′[1].index

30: until |H| = nq

‘multiplication’ mean +c and ×c, respectively, in this section.
In the initialization process of LPCQP, the server divides a

POI-table into sub-tables in addition to the initialization process
of PCQP. This extra process is negligible since its cost is sig-
nificantly low as compared with encryption/decryption or calcu-
lation of ciphertexts with homomorphism. In the query process,
the server first multiplies the encrypted qm

M by the corresponding
sub-table and thus it requires np multiplications. Next, the server
aggregates sub-tables and thus it requires np0(M − 1) additions.
The server, finally, shifts the aggregated table by multiplying P′t

and thus it requires k(np0 − 1) additions and knp0 multiplications.
Here, if a single-bit SHE/FHE is adopted in LPCQP, the en-

crypted j-th sub-table t′ jPOI in Eq. (14) can be constructed from
C j

0 and C j
1 defined as:

C j
0 = Epk(q j; r′j) ×c Epk(0). (17)

C j
1 = Epk(q j; r′j) ×c Epk(1). (18)

By constructing t′ jPOI from C j
0 and C j

1 instead of using Eq. (14), the
number of multiplications required in the pre-process becomes
2M. This technique omits the redundant multiplications in the
pre-process and thus it more reduces the computational cost when
M < np/2. Note that this technique can be adopted when the pro-
tocol is implemented with a single-bit homomorphic encryption.

Table 1 summarizes the computational costs of PCQP and
LPCQP. From Table 1, we can find that the computational cost

Table 1 Comparison of the computational cost on the server between PCQP
and LPCQP.

Table 2 Comparison of the communication cost between PCQP and
LPCQP.

on the shifting process in LPCQP becomes 1/M compared with
that in PCQP. However, LPCQP requires the additional cost for
aggregating sub-tables. Since the pre-process is performed only
once, the additional cost for pre-process can be negligible when
k is large.

5.6 Communication Cost
As described in Section 5.3, the size of P ′t0, j is 1/M of that of

P t
0, j. In other words, our scheme can also reduce the communi-

cation cost for sending a query. Let lc denote the bit-length of
an encrypted entry of POI information. In PCQP, a user sends
P t

0, j as lcnp bits to the server, and its size becomes 2lc
√

np bits by
adopting the decomposition technique described in Section 4.4.
On the other hand, in LPCQP, a user sends P ′t0, j and qm

M , i.e.,
lc(np0 + M) bits. Obviously, our scheme can reduce the commu-
nication cost from that of the basic PCQP by choosing a certain
number M since np is generally large. In particular, the communi-
cation cost of our scheme becomes O(

√
np) as well the technique

in Section 4.4 when M =
√

np. Incidentally, the user receives
a fixed-length (i.e., lck bits) result set from the server regardless
of the scheme. Table 2 summarizes the communication costs of
PCQP and LPCQP.

5.7 Search Accuracy
In our scheme, np POIs are aggregated into a table with np0

POIs. This causes losing (np − np0) entries of POI. The more
tables are divided, the less accurate the search results get. We
demonstrate that in the case of np = 9 and M = 3 by using
Fig. 6. In Fig. 6 (a), nine POIs (a, b, c, d, e, f , g, h, and i) and
a querying user are located on the map. The map is encoded into
a one-dimensional space, which is indicated as the dotted line.
Here, these POIs are sorted in a POI-table in the ascending order
of H-index on the Moore curve and divided into three sub-tables
as shown. When the user queries k-NN search with k = 3, the
user first obtains the index of a sub-table containing the nearest
POI. In this example, e is the nearest H-index to the user; hence
the user obtains the 2nd sub-table in Fig. 6 (b). Therefore, sub-
tables on the server are aggregated into a table with entries of the
2nd sub-table as shown in Fig. 6 (b). Here, the server returns the
three encrypted POIs (d, e, and f ). Note that c and g are nearer
than d to the user on the map as shown in Fig. 6 (a). However,
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(a) Nine POIs and a user are lo-
cated.

(b) POI-table are divided and sub-tables are aggregated into a table with
entries of 2nd sub-table.

Fig. 6 Example of losing some POI information by aggregating sub-tables.

it is impossible to obtain them by k-NN search even if k is large
since the encrypted entries of c and g become zero in the plain-
text domain. For this reason, some entries are out of search results
and the number of such entries becomes large when M is large.
Therefore, we choose a certain number M for balance between
accuracy and complexity. We evaluate the relationship between
search accuracy and the number of sub-tables M in Section 6.

5.8 Security Analysis
We discuss the security of the proposed scheme in this section.

Lien et al. study privacy issues in k-NN search and show that
the correlation attack and the background knowledge attack may
violate the user’s privacy in k-NN search [1]. The correlation at-
tack utilizes some queries/results obtained through eavesdropping
over the network and the background knowledge attack adopts
prior knowledge about the user such as age or occupation to infer
the user’s location. Following the assumption in Ref. [1], we con-
sider the correlation attack and the background knowledge attack
in the paper. In addition to the above attacks, we consider the off-
line keyword guessing attack [20] and the inference attack [21]
as attacks which may also threaten the user’s privacy on search
over the encrypted data. Both of these attacks utilize a trapdoor
which is generated from a search word with the user’s private key
for search over the encrypted data and it does not reveal any in-
formation about the search word. The off-line keyword guessing
attack calculates trapdoors for commonly used words to guess the
content of encrypted documents. The inference attack identifies a
trapdoor for an arbitrary word by combining access patterns with
background knowledge about the content of documents. Our ob-

jective is to introduce an efficient scheme for privacy-preserving
k-NN search; therefore, the encryption strength (e.g., required
key length against attacks) is outside a consideration in this study.

The correlation attack: In our scheme, a user sends
Epk(P ′t0, j; r) and Epk(qm

M; r′) instead of Epk(P t
0, j; r). They are en-

crypted with distinct random numbers and the random numbers
are scrambled by the user every time the user queries. Therefore,
the server cannot correlate queries issued by the user.

The background knowledge attack: Our scheme does not
transfer any plaintext data except the shifted location calculated
by the user for k-NN search. Obviously, the shifted location can-
not be the sensitive information since the shift amount is ran-
domly chosen by the user and it varies every time the user queries.
Therefore, no sensitive information about the user is leaked to the
server, and thus our scheme is secure against this attack.

The off-line keyword guessing attack: In our scheme, a user
never sends a trapdoor of a certain keyword (i.e., user’s location)
to a server. In addition, location data stored on a server is not
sensitive information about the user. Therefore, any adversary or
untrusted server cannot guess the user’s location by off-line key-
word guessing attack.

The inference attack: The inference attack exploits the user’s
access pattern, e.g., a document which contains the queried key-
word. However, no information about the user’s access pattern
will be leaked to a server and an adversary since P ′t0, j and qm

M are
encrypted with distinct random numbers and the random numbers
are scrambled by the user every time the user queries. Therefore,
our scheme is robust to this attack.

Next, we discuss the requirements for a homomorphic encryp-
tion in LPCQP. As shown in Table 1, our scheme requires some
operations in the encryption domain. Contrary to this, one ci-
phertext is added to an another one M + np0 − 1 times and it is
multiplied by an another one twice in total. Hence, in LPCQP, a
homomorphic encryption scheme which guarantees M + np0 − 1
additions and two multiplications is required.

6. Results

We evaluate the k-NN search of our scheme in terms of the
computational cost, the communication cost, and the search ac-
curacy. Our scheme is implemented in C language and Java lan-
guage with Scarab library*1 and performed on a laptop computer,
which has Intel Core i5 1.8 GHz processor and 4 GB memory.
Scarab library is based on the work by Gentry [6], and Smart and
Vercauteren [22]. The library supports a single-bit SHE/FHE us-
ing large integers. Here, our scheme requires only two multipli-
cations for one encrypted data as mentioned in Section 5.8. Since
the noise of an SHE is mainly caused by multiplication, it is ac-
ceptable in LPCQP. We, therefore, do not use the bootstrapping
scheme for the fast computation. In our experiments, the key
lengths of a public-key and a private-key are 288 bytes and 32
bytes, respectively. In addition, one bit is encrypted as 16 bytes
data.

We use three POI datasets: a uniform dataset, a Gaussian
dataset, and a real-world dataset. POIs are uniformly distributed

*1 http://hcrypt.com/scarab-library/
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(a) Uniform. (b) Gaussian. (c) Real-world.

Fig. 7 Distribution of POIs in three different datasets.

in the uniform dataset in a square map and normally distributed
from randomly chosen twenty points in a square map with
σ = 0.06 in the Gaussian dataset, respectively. On the other
hand, POIs in the real-world dataset are obtained from Open-
StreetMap*2 in a 10 km × 10 km area surrounding Tokyo, Japan.
OpenStreetMap provides POI data in the world as extensible
markup language (XML). The XML data contains IDs, names,
latitudes and longitudes, and types of POIs. We extract the lat-
itudes and longitudes as the positions of POIs from the data for
the real-world dataset. Note that we do not consider the other at-
tributes in this experiment. Each dataset contains 10,000 POIs.
Figure 7 indicates the distribution of POIs of each dataset. The
information about one POI is represented as 64 bytes data.

We experimentally evaluate the performance of our k-NN
search scheme by comparing PCQP and the dual curve query res-
olution (DCQR) [12] for different values of M and k and the three
datasets. DCQR is a transformation-based privacy-preserving k-
NN search with a TTP. The reason why we chose DCQR for
comparison is because this method is a well-studied k-NN search
scheme with a space-filling curve. M and k vary from 10 to
500 and from 1 to 50, respectively. Khoshgozaran et al. suggest
that the average number of POIs which are assigned to the same
H-value should be two or less for practical use [12]. Thus, we
set the curve order of the Moore curve to seven that satisfies the
above condition against our datasets. In each experiment, queries
are issued at randomly chosen 1,000 locations on the map and the
results are averaged.

6.1 Computational Cost
Table 3 indicates the computational time of each scheme and

Fig. 8 indicates the total computational time for a query versus k.
Our scheme without redundant multiplications described in Sec-
tion 5.5 is represented as optimized LPCQP in Table 3 and Fig. 8.
Note that our scheme returns at most np0 results even if a user re-
quires more than k POIs; therefore, the computational time of our
scheme is not indicated in Fig. 8 when M = 500 and k > 20. From
Table 3, we can see that our scheme requires heavy computation
on the pre-process, i.e., aggregating sub-tables in the encryption
domain, whereas the shifting process is significantly reduced. For
this reason, in particular when k is small, the total computational
time does not exactly become 1/M although the computational
time on the shifting process becomes 1/M. However, this cost can
be reduced by 96% or more by omitting redundant multiplications
as shown in Table 3. That is, omitting redundant multiplications
makes LPCQP more lightweight, and thus the total computational
time can be reduced even if k is small, e.g., k = 1. From Fig. 8, we

*2 http://planet.openstreetmap.org/

Table 3 Computational time for k-NN search on the server.

Fig. 8 Total computational time on the server versus k.

can see that our scheme in any M significantly reduces the total
computational time. In particular, optimized LPCQP can reduce
99% of that required in the conventional scheme when M ≥ 100
and k is large. Even if M = 10, our scheme can reduce 90% of
that. These results indicate that the reduction rate follows the the-
oretical one. However, the total computational time of LPCQP
without applying the optimization technique is larger than that of
PCQP when k = 1. As mentioned in Section 5.5, the optimization
technique can be applied to LPCQP with a single-bit SHE/FHE.
Hence, our scheme with a multi-bit SHE/FHE cannot reduce the
computational cost when k = 1 because of the heavy cost in the
pre-process.

6.2 Communication Cost
Table 4 indicates the communication cost for a query with two

additional queries (nq = 2). From Table 4, we can see that our
scheme in any M reduces the communication cost. In particu-
lar, the communication cost for sending a query can be reduced
by 98% as with the conventional scheme with the decomposition
technique when M = 100 (i.e., M =

√
np).

We denote by the total communication cost the sum of the com-
munication cost for sending a query with two additional queries
and that for receiving its results. Figure 9 indicates the decreas-
ing rate of the total communication cost of LPCQP to that of
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Table 4 Communication cost for a k-NN query.

Fig. 9 The decreasing ratio of the total communication cost of LPCQP to
that of PCQP.

Table 5 Computational cost for generating a k-NN query.

PCQP. As shown in Fig. 9, the decreasing rate of the total com-
munication cost decreases when k gets larger. There exist two
reasons for this result. The first reason is that the communica-
tion cost of results increases proportionally to k. The second one
is that the data size of POI information is larger than that of an
element of a shift matrix, i.e., ‘0’ or ‘1’. Thus, the decreasing
rate further increases when k or the size of POI information gets
smaller. In addition, large np makes the decreasing rate high be-
cause the size of a shift matrix becomes large.

Here, reducing the calculation cost for encrypting a query is
required especially for a mobile application. Table 5 indicates
the required time for encrypting a shift matrix and a group vector.
As shown in Table 5, the computational time on the user is also
reduced because the size of a shift matrix becomes 1/M. In this
experiment, the computational cost for generating a query is re-
duced by 98% when M = 100. From this result, LPCQP reduces
not only the communication cost but also the computational cost
on the user side.

6.3 Search Accuracy
We evaluate two metrics, accuracy rate and displacement, to

evaluate the quality of k-NN search results referring to [12]. The
accuracy rate and the displacement are defined as how exactly
nearby POIs are retrieved and how close the ground-truth result
set and the query result set, respectively. Let G = {oG

1 , · · · , oG
k }

and R = {oR
1 , · · · , oR

k′ } denote the ground-truth result set and the
query result set obtained by k-NN search, respectively. The accu-
racy rate of k-NN search, racc, is defined as

racc =
|R ∩ G|
|G| , (19)

where |R| denotes the cardinality of the set R. Let R′ =
{oR′

1 , · · · , oR′
k } denote the set of k-nearest POIs of R from the

queried point. Then, the displacement of k-NN search, ldis, is
defined as

ldis =
1
k

⎛⎜⎜⎜⎜⎜⎜⎝
k∑

i=1

∣∣∣
∣∣∣q − oR

i
′∣∣∣
∣∣∣ −

k∑

i=1

∣∣∣
∣∣∣q − oG

i

∣∣∣
∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎠ , (20)

where ||q − oR
i
′|| denotes the Euclidean distance between the

fixed query point q and the location of a POI oR
i
′. For instance,

racc = 0.5 means that the result set contains k/2 near POIs and
k/2 far POIs from the user whereas ldis = 10 [m] means that each
POI in the result set is farther from the user than each of k-nearest
POIs by 10 m on an average. Here, the conventional scheme re-
turns at least k POIs in total for a query, and thus k ≤ k′. In
contrast, the condition above is not always satisfied in LPCQP
because our scheme may return less than k POIs when M is large.
For this reason, the displacement cannot be calculated in LPCQP
when M = 500 and k > 20. Our objective is to keep high ac-
curacy rate and low displacement of PCQP while reducing the
computational cost.

We also evaluate two query point selection methods in cross-
like search. The one is the H-value-based selection technique
used in PCQP (mentioned in Section 4.3) and the other is the
group-based selection technique proposed in Section 5.4. The
former one is represented as LPCQP and the latter one is repre-
sented as LPCQP+ in the following. Note that the computational
cost on the server and the communication cost of these schemes
are same.
6.3.1 Parameter Tuning

We first tune the two parameters nq and M to find optimal val-
ues for high-accurate and low-complexity k-NN search. In this
setting, we use the real-world dataset.

Figure 10 (a) and (b) represent the accuracy rate and the dis-
placement of LPCQP with varying the number of additional
queries nq when k = 20, respectively. From Fig. 10, we can see
that the more additional queries are issued in any cases, the more
accurate the search results get. Obviously, the quality of k-NN
search is further enhanced by issuing more additional queries;
however, the computational cost and the communication cost are
proportionally increased as mentioned in Section 4.3. We notice
that there is little difference between the quality of search with
two additional queries and that with four additional queries, and
hence we set the number of additional queries nq to two in the
following experiments.
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(a) Accuracy rate.

(b) Displacement.

Fig. 10 Accuracy rate and displacement versus nq.

(a) Accuracy rate.

(b) Displacement.

Fig. 11 Accuracy rate and displacement versus M.

Figure 11 (a) and (b) represent the accuracy rate and the dis-
placement of LPCQP versus k, respectively. As shown in Fig. 11,
the quality of k-NN search gets worse as M gets larger. The rea-
son is that there is too much loss from some POI entries near the
user from aggregating sub-tables as mentioned in Section 5.7. In
particular, the accuracy rate is no longer exact when M = 500
and k is large because LPCQP can return up to np0 POIs to the
user. That is, there is a trade-off between the quality of results

Fig. 12 Ratio k/np0 versus α.

and the computational cost on the server. Additionally, we can
see that there are variations in both metrics when the window
size is changed. This is because that the querying points of ad-
ditional queries are changed according to k in cross-like search.
Although it is difficult to choose the optimal M, we find the M

that most reduces the computational cost with required quality of
k-NN search. For the given accuracy rate of our proposed scheme,
r LPCQP

acc , and that of PCQP, r PCQP
acc , we define the ratio α as:

α =
r LPCQP

acc

r PCQP
acc

. (21)

As the definition above, α = 0 means that the proposed scheme is
not accurate at all while α = 1 means that ours achieves the same
accuracy as that of the conventional one achieves. In order to
provide high-accurate and low-complexity k-NN search, we find
the maximum M that achieves α ≥ 0.95. Note that the optimal M

varies depending on np and k. Here, we use the ratio k/np0 for de-
ciding the optimal M since the search accuracy relies on k against
np. The server can adjust this ratio by choosing a certain M under
the condition that k is specified by the user and np is pre-defined
for the service. Figure 12 represents the ratio k/np0 versus α.
As shown in Fig. 12, there is a correlation between k/np0 and α,
and thus the server can control α against pre-defined np and k.
From this result, k/np0 should be 0.5 or less at least to achieve
α ≥ 0.95. In other words, the decreasing accuracy rate of LPCQP
is suppressed to 5% or below when np0 ≥ 2k. Therefore, we use
M = 100 that is the maximum M satisfies the above condition
when np = 10,000 and k ≤ 50 in the following simulation.
6.3.2 Accuracy Rate

In this section, we compare our scheme where M = 100, 200
with PCQP and DCQR in terms of the accuracy rate. Figure 13
indicates the accuracy rate versus k for the three datasets. From
Fig. 13, we can find that the ratio α is kept to 0.95 or above re-
gardless of the dataset even if k is large when M = 100. Note that
the accuracy rate of LPCQP is still higher than that of DCQR al-
though that is lower than that of PCQP. From this result, we can
say that LPCQP keeps high accuracy of PCQP while reducing
the computational cost of that. Furthermore, LPCQP+ achieves
higher accuracy rate than LPCQP for all datasets. Especially for
the uniform and Gaussian datasets, LPCQP+ achieves α ≥ 0.95
when M = 200 whereas α of LPCQP is 0.91-0.93 then. From
this result, we can say that the group-based query point selection
method improves the quality of k-NN search in LPCQP.
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(a) Uniform.

(b) Gaussian.

(c) Real-world.

Fig. 13 Search accuracy racc versus k.

6.3.3 Displacement
We also compare our scheme with the related works in terms

of the displacement. Figure 14 indicates the displacements ver-
sus k for the three datasets. From Fig. 14, we can find that the
displacement of our scheme increases when M gets larger. That
is, the displacement is also gets worse in LPCQP. Especially for
the Gaussian dataset, the displacement of LPCQP is larger than
that of DCQR whereas those of LPCQP are still smaller than that
of DCQR regardless of k for the uniform and real-world datasets.
This is because that the cross-like k-NN search mentioned in Sec-
tion 4.3 obtains POIs far from the user to reduce duplicated POIs.
For this reason, LPCQP returns the information about the distant
POIs as well as near POIs for the skewed POI map. Algorithm 1
also decreases the displacement of LPCQP. Especially for the
uniform dataset, when k = 50, the displacements are reduced by
18% and 32% when M = 100, 200, respectively.

(a) Uniform.

(b) Gaussian.

(c) Real-world.

Fig. 14 Displacement ldis versus k.

From these results, our proposed scheme can reduce both the
computational and the communication costs while keeping the
high quality of k-NN search in PCQP. In our experiments, allow-
ing a 5% reduction in search accuracy, the computational costs
on the server and the user are reduced by up to 99% and 98% re-
spectively and the communication cost is reduced by at least 27%.
As a result, LPCQP provides highly-accurate and low-complexity
privacy preserving k-NN search for an LBS.

7. Conclusion

In this paper, we have proposed a low-complexity privacy-
preserving k-NN search scheme by dividing and aggregating a
POI-table with additive and multiplicative homomorphisms. Our
scheme is as secure as the conventional scheme because all pro-
cesses on the server are performed in the encryption domain. We
evaluate the computational time, the communication cost, and the

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.1

search accuracy of our scheme with three POI datasets; a uni-
form dataset, a Gaussian dataset, and a real-world dataset. The
results show that our scheme reduces the computational cost and
the communication cost of k-NN search while maintaining high
search accuracy without sacrificing security whereas the conven-
tional scheme with additive and multiplicative homomorphisms
can reduce only the communication cost. Furthermore, the com-
putational cost is reduced more by omitting the redundant multi-
plications in the pre-process. In our environment, the computa-
tional cost on the pre-process is reduced by 96% or more regard-
less of M by applying the optimization technique, and then the
total computational costs on the server and the user are reduced
by up to 99% and 98% respectively and the total communication
cost is reduced by at least 27% by allowing a 5% reduction in
search accuracy when M = 100.

Acknowledgments This work is partly supported by the
Grant in Aid for Scientific Research (No.26420369) from Min-
istry of Education, Sport, Science and Technology, Japan.

References

[1] Lien, I.-T., Lin, Y.-H., Shieh, J.-R. and Wu, J.-L.: A Novel Pri-
vacy Preserving Location-Based Service Protocol With Secret Circu-
lar Shift for k-NN Search, IEEE Trans. Information Forensics and Se-
curity, Vol.8, No.6, pp.863–873 (2013).

[2] Moore, E.H.: On Certain Crinkly Curves, Transactions of the Ameri-
can Mathematical Society, Vol.1, No.1, pp.72–90 (1900).

[3] Pascal, P.: Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes, Advances in Cryptology – EUROCRYPT ’99,
Lecture Notes in Computer Science, Vol.1592, pp.223–238, Springer
Berlin Heidelberg (1999).

[4] Hoffstein, J., Pipher, J. and Silverman, J.: NTRU: A ring-based pub-
lic key cryptosystem, Algorithmic Number Theory, Lecture Notes in
Computer Science, Vol.1423, pp.267–288, Springer Berlin Heidelberg
(1998).
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