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Abstract: Formula-based fault localization approach is an algorithmic method that is able to provide fine-grained
information account for identified root causes. The method combines the SAT-based formal verification techniques
with the Reiter’s model-based diagnosis theory. This paper adapts the formula-based fault localization method, and
introduces a new program encoding, called full flow-sensitive trace formula. This encoding is particularly useful for
programs with multiple faults. Furthermore, we improve the efficiency of computing the potential root causes by using
the push & pop mechanism of the Yices solver. We implemented the method in a tool, SNIPER, which was applied to
some benchmarks. All single and multiple faults were successfully identified and discriminated.
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1. Introduction

Debugging is one of the most expensive tasks of software
development. A challenging activity in debugging is fault lo-
calization, which consists of identifying root cause locations of
a program that shows faulty behavior. Automatic fault local-
ization was introduced to help software engineers tackle this
task. Automatic fault localization of imperative programs is
a well-known problem, and has been studied from various ap-
proaches (cf., Refs. [8], [9], [24], [27]). Among these, coverage-
based or spectrum-based debugging [11] is considered a promis-
ing method. It is an empirical method that calculates ranking
orders between the program statements or spectrums to show that
a particular fragment of code is more suspicious than the others.
The method, however, needs a lot of both successful and fail-
ing executions to calculate the statistical measures. Generating
an unbiased input test data set is a major challenge. In addition,
the causal explanation of results is not clear in regard to program
semantics.

The formula-based fault localization method uses only failing
executions, and is more systematic than the coverage-based ap-
proach. This is because it has a logical foundation developed in
the model-based diagnosis (MBD) theory [20]. However, exist-
ing tools following the formula-based method, such as BugAs-
sist [12] or Wotawa’s tool [26] mainly consider single-fault pro-
grams. Nevertheless, in practice it is common to have more than
one fault in a program. Automatic fault localization of multi-
fault programs is not an easy task. DiGiuseppe et al. [6] empiri-
cally studied the coverage-based fault localization on multi-fault
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programs and concluded that at least one of the faults could be
effectively localized. However, the method is not effective for
localizing simultaneously all the faults. Contrarily, the MBD the-
ory considers the case of artifacts with multiple faults, but it needs
more work for the case of imperative programs.

Furthermore, existing formula-based methods do not guaran-
tee to cover all the root causes. It is partly because the complete
enumeration of root causes requires a high computational effort.
Its complexity grows exponentially with the size of the program,
the number of test cases used and the number of faults in the pro-
gram.

This paper reports a new formula-based automatic fault lo-
calization method, which follows the maximum satisfiability
(MaxSAT) approach as in Refs. [12], [22]. Our method uses a full
flow-sensitive trace formula in order to consider control-oriented
faults and programs with multiple faults. We adapt a new enu-
meration algorithm [18] and ensure obtaining all the root causes
efficiently by using the Yices SMT solver [7] in an incremental
fashion with its push & pop mechanism. Furthermore, our ap-
proach uses a fault localization algorithm that can work on a set
of failing test cases. In most cases it is not enough to use a single
failing program path to reproduce behavior caused by the multi-
ple faults.

This paper makes three contributions. First, we reformulate
systematically the problem of automatic fault localization for im-
perative programs from a view point of formula-based approach.
Second, we present an efficient method for identifying root causes
of faults in multi-fault programs. The key point of this method is
the way we encode programs. Our encoding, called full flow-
sensitive trace formula, is essentially equivalent to the program’s
control flow graph (CFG). In addition, our method uses a full
MCS enumeration algorithm working on different failing test

This paper is a revision of the conference presentation [14].
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cases. The results, which are potential root causes collected from
different failing test cases, are combined in order to facilitate the
identification of root causes by the software engineers. Third, we
experimentally show that multiple faults in a program are suc-
cessfully detected by our method.

This paper is organized as follows. Section 2 presents the back-
grounds of the work. Section 3 discusses issues on the fault lo-
calization of multi-fault programs. Section 4 provides basic defi-
nitions. Section 5 presents our approach for localizing faults au-
tomatically. Section 6 reports experiments on two benchmarks,
which is followed by Section 7 for the summary and directions
for future work.

2. Automatic Fault Localization Methods

This section introduces technical backgrounds of the automatic
fault localization of imperative programs.

Program slicing [24] was introduced for localizing faults, and
was empirically shown effective [13]. The average code size re-
duction (CSR) of program slices is around 30% [2]; such amount
of program code needs to be inspected to find real root causes.
Coverage-based or spectrum-based debugging (cf., Ref. [11]) cal-
culates ranking orders between program statements or spectrums
to show that a particular fragment of code is more suspicious than
the others. The method needs many successful and failing execu-
tions to calculate the statistical measures. Generating unbiased
input test data set is a major challenge.

The formula-based automatic fault localization method essen-
tially combines the SAT-based formal verification techniques [19]
with the model-based diagnosis (MBD) theory. The MBD the-
ory establishes a logical formalism of the fault localization prob-
lem [20]. The model is presented as a formula expressed in suit-

able logic. The formula is unsatisfiable as it represents an artifact
containing faults. The MBD theory distinguishes conflicts and
diagnoses. Conflicts are the erroneous situations represented by
minimal unsatisfiable subsets (MUSes) of the unsatisfiable for-
mula. Conflicts constitute a set of program fragments containing
faults, and thus are to be compared with the identified slices in
the program slicing approach. Diagnoses are the fault locations
to be identified and are minimal correction subsets (MCSes). The
MBD theory states that MUSes and MCSes are connected by the
hitting set relationship. Therefore, the problem is to enumerate
either all MUSes or all MCSes. Such sets can be calculated auto-
matically if the formula is represented in decidable fragments of
first-order theory.

The MBD methods, including the model-based debug-
ging [26], first calculate MUSes and then obtain MCSes. An
early work [25] used graph-based algorithms to compute a static
slice of programs in order to obtain MUSes. Later, MUSes were
obtained by calculating irreducible infeasible subsets of con-
straints [26]. Both methods resulted in rather large MUSes for
the TCAS benchmark [10], [21].

An alternative approach to obtain MCSes was employed in the
fault localization of VLSI circuits [22]. The method reduces the
fault localization problem to maximum satisfiability of the un-
satisfiable formula in propositional logic and calculates maximal
satisfiable subsets (MSSes). An MCS is the complement of an

MSS [16]. This idea was applied to the fault localization prob-
lem of imperative programs and implemented in a tool, BugAs-
sist [12]. It uses an iterative localization algorithm to obtain the
MCSes, from which the CSR is calculated. The CSR is smaller
than the case of program slicing approaches. The algorithm, how-
ever, does not guarantee the enumeration of all the MSSes, which
means that it may miss some faults. Furthermore, when multi-
ple runs of the fault localization are needed, BugAssist combines
MCSes by putting all its atomic elements (clauses) in a single
set. For example the set of MCSes {{1, 2, 3}, {4, 5, 6}} becomes
{1, 2, 3, 4, 5, 6}. Such combination looses information contained
in the calculated MCSes because MCSes obtained for the same
error-inducing inputs are all merged together. This makes the
debugging of multi-fault programs difficult for the software engi-
neers.

3. Multi-fault Programs

3.1 Problem
Dealing with programs with multiple faults is one of the impor-

tant issues in automated fault localization methods. Most of the
current fault localization approaches focus on single-fault pro-
grams and are not effective for multi-fault programs. For ex-
ample, coverage-based debugging methods are unable to locate
multiple faults simultaneously. This was empirically studied by
DiGiuseppe et al. [6]. They showed that the presence of multi-
ple faults caused interferences, which inhibits the effectiveness
of the method. It is, however, true that at least one fault can be
localized. Denmat et al. state that the coverage-based technique
Tarantula [11] makes implicit hypotheses requiring independence
of multiple faults (every failure is caused exclusively by a sin-
gle fault) and when these hypotheses do not hold, the technique
does not provide “good result” [5]. Zheng et al. assert that tra-
ditional coverage-based technique “cannot distinguish between
useful bug predictor and predicates that are secondary manifesta-
tions of bugs” [28].

The MBD theory [20] generally considers the multiple fault
cases. For simplicity, consider a case where a set M of MUSes
is extracted from an unsatisfiable formula and each MUS in M

refers to a particular error, a single fault. Then, M may con-
tain, in principle, many conflicts because many elements (clauses)
are included. MCSes, calculated using the minimal hitting set of
MUSes, contain elements (clauses) representing multiple faults.

In order to study the characteristics of multiple faults in detail,
we classify the types of faults that can be found in multi-fault
programs in three categories:
• Data flow-dependent faults
• Control-dependent faults
• Independent faults

Figure 1 depicts an example of control flow graph (CFG) for each
of the above types of faults. Informally, a faulty statement Y is
data flow-dependent on a faulty statement X if the result of Y de-
pendent on X. A faulty statement Y is control-dependent on a
faulty branch condition X of a conditional branch statement if the
outcome of X determines whether Y should be executed or not.
In a special case of the control-dependent faults, the fault X may
hide the fault Y , which means that it is impossible to generate a
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Table 1 The types of trace formula used in formula-based fault localization and their specificities.

Trace Formula Type Authors Encoding Formula Construction
Size Method

Flow-insensitive
BugAssist [12]
2011

Counterexample Very small BMC or testing

Flow-sensitive
Christ et al. [3]
2013

Counterexample +
Partial control flow

Small Static analysis

Full Flow-sensitive
Lamraoui et al. [14]
2014

CFG / SSA Large Static analysis

Spectrum-based
Tarantula [11]
2005

Testing

Trace Formula Type
Single Fault Types Multi-fault Types

Data Flow Control Flow Data-dependent Control-dependent Independent
Flow-insensitive �� � �� � ��
Flow-sensitive �� �� �� � ��
Full Flow-sensitive �� �� �� �� ��
Spectrum-based �� �� � � �

Fig. 1 The different types of multiple faults.

test case that executes the fault Y and detects the existence of Y .
We call such special case, nested faults. Lastly, a faulty statement
Y is independent of a faulty statement X if Y and X are neither
control-dependent nor data flow-dependent.

3.2 Importance of Trace Formulas
In formula-based fault localization methods, a program under

test is encoded in a trace formula (TF). The efficiency and pre-
cision of the fault localization algorithm are highly dependent on
the way this formula is encoded. Depending on both the multi-
fault type and the way the faulty program is encoded, the faults
may or may not be localized. Table 1 summarizes the encoding
methods in existing work and our proposal.

A simple approach [12] consists of encoding a TF from a
counterexample obtained using bounded model-checking (BMC)
methods. We call this encoding flow-insensitive TF. Since it rep-
resents a straight-line program fragment that contains faults, it
does not reconstruct information related to the control flow of the
original program. Thus, the formula is small, which makes the
localization efficient. However, because of this lack of informa-
tion, potential root causes in the program control flow cannot be
localized, which means that control-dependent faults cannot be
localized either. For the case of independent faults, it is manda-
tory to repeat the process of counterexample generation in order
to localize all faults because a counterexample represents a single
program path containing one of the independent faults only.

In order to overcome the lack of control flow information in
flow-insensitive TF, a flow-sensitive TF was proposed [3]. Basi-
cally, a flow-sensitive TF is similar to flow-insensitive TF with
the exception that flow-sensitive TF includes some control flow

information along the failing program path. This makes possi-
ble the localization of faults that lie in the control flow. Since a
flow-sensitive TF represents itself more information, it is larger
and more complex than a flow-insensitive TF. Furthermore, as in
flow-insensitive TF, it is necessary to construct many TF in or-
der to deal with independent faults because the flow-sensitive TF
does not encode all execution paths [23]. Concerning data flow-
dependent faults, they can be identified with both flow-insensitive
and flow-sensitive TF. This is because these trace formulas en-
code data flow information of the target failing path, which in-
cludes the faults.

For multi-fault programs with nested faults (for recall, a spe-
cial case of control-dependent faults), both flow-insensitive and
flow-sensitive TF cannot be successful to identify them. This is
essentially because flow-insensitive and flow-sensitive TF do not
encode full control-dependencies.

In this work we introduce a new trace formula encoding called
full flow-sensitive TF, which is essentially equivalent to the pro-
gram’s CFG (see Section 5.3 for details). The data flow and con-
trol flow of the input program are fully encoded in the formula.
In order to faithfully represent all potentially possible executions
of the input program, both of these flows must be encoded. When
both flows are properly encoded, multi-faults as described above,
including nested faults, can be localized by our method. The dis-
advantage is that full flow-sensitive TF is large and complex be-
cause it represents the whole program. Hence, we introduce in
Section 5.4 an efficient algorithm for computing diagnoses with
full flow-sensitive TF.

3.3 Failing Test Inputs
In some cases, multiple faults can lie in one program path. In

such a situation, a single test input is enough to localize all the
faults. In some cases of data flow-dependent faults or control-
dependent faults, the use of full flow-sensitive TF can sometimes
locate different faults with a single test input. We will discuss this
later in regard to the Bekkouche’s Benchmark (Section 6.2).

When faults are independent, it usually requires to have mul-
tiple test inputs in order to successfully identify all faults. Addi-
tionally, if faults are localized in different failing paths, a method
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to combine the results obtained from these paths is needed in
order to show to the programmers that there are more than one
fault to look at in the faulty programs. A basic MCS enumeration
method that uses a single failing test case only is not sufficient
when dealing with multi-fault programs whose faults are spread
in different program paths or execution paths. The association of
Algorithm 1 and the combination method of Definition 5 of this
paper allow the efficient combination of root causes (MCSes),
each obtained from different failing paths.

4. Preliminaries

This section provides basic definitions on formula-based auto-
matic localization method. Definitions of the basic concepts such
as MUS, MCS, MSS, and hitting set, are found in the literature
(cf., Ref. [16]).
Root Causes In fault localization, the faults are identified by lo-
calizing their root causes. A root cause is the fundamental reason
for the occurrence of a failing program execution. In the MBD
theory, a root cause is represented by an MCS, and multiple root
causes by MCSes. In practice, root causes help the program-
mers fix buggy programs. We conceptually distinguish real root
causes and spurious root causes. Real root causes are program
fragments that correct the program completely or partially when
they are appropriately modified. In contrast, spurious root causes
are program statements that when modified or removed do not fix
the program with regard to the programmer’s intention. In this
paper, we sometimes refer to either real root causes or spurious
ones, but such distinction is concerned with the so-called high-
level design decision of programmers. They are not distinct in
view of the fault localization algorithm. In particular, the injected
faults in the benchmark problems (Section 6) are considered real

root causes.
Failing Program Paths Let ϕAL be a formula EI ∧ TF ∧ AS

in conjunctive normal form (CNF) where EI is a formula that
encodes the error-inducing inputs, TF is a trace formula that en-
codes all the possible program paths, and AS is a formula that
encodes the assertion the program must satisfy. The formula AS

can be the post-condition or the test oracle. The formula EI rep-
resents the input arguments, which take some particular values
that make TF violate AS. The detailed representation of TF is
irrelevant here, and will be introduced in Section 5.3.
Fault Localization Problem Since ϕAL encodes failing program
paths with EI, the formula ϕAL is unsatisfiable. By definition, EI

and AS are supposed to be satisfied. The trace formula TF is re-
sponsible for the unsatisfiability. It is exactly the situation that the
program contains faults. The fault localization problem is to find
a set of clauses in TF that are responsible for the unsatisfiability.
Such clauses are found in minimal unsatisfiable subsets (MUSes)
of ϕAL. MUSes of the unsatisfiable formula are erroneous situ-
ations (conflicts) similar to failing static slicing. A slice is a set
of instructions of a program that can affect a variable v at a line
l, a slicing criterion. It is a subset of instructions obtained from
the whole program. If the slicing criterion refers to a violation of
an assertion, then the obtained slice is a subset of program state-
ments that directly affect the assertion violation. Thus, the slice
contains root causes. However, finding root causes in lengthy

slices is difficult because many statements are included.
In the following definitions C is a set of clauses, which consti-

tutes a CNF formula ϕ. We use C and ϕ interchangeably.
Definition 1 (Minimal Unsatisfiable Subset) M ⊆ C is a

Minimal Unsatisfiable Subset (MUS) iff M is unsatisfiable and
∀c∈M:M\{c} is satisfiable.

Definition 2 (Minimal Correction Subset) M ⊆ C is a Min-
imal Correction Subset (MCS) iffC\M is satisfiable and ∀c ∈ M :
(C\M) ∪ {c} is unsatisfiable.
An MCS is a set of clauses such that C can be corrected by re-
moving an MCS from C. Therefore, an MCS is considered to
represent a root cause.

Definition 3 (Hitting Set) H is a hitting set of Ω iff H ⊆ D

and ∀S ∈ Ω : H ∩ S � ∅.
Let Ω be a collection of sets from some finite domain D, a hitting
set of Ω is a set of elements from D that covers (hits) every set in
Ω by having at least one element in common with it. A minimal
hitting set is a hitting set from which no element can be removed
without losing the hitting set property.

Definition 4 (Maximal Satisfiable Subset) M ⊆ C is a
Maximal Satisfiable Subset (MSS) iff M is satisfiable and ∀c ∈
C\M : M ∪ {c} is unsatisfiable.
By definition, an MCS is the complement of an MSS (MSS�) [16].
Fault Localization Problem Revisited The fault localization
problem is to find MCSes of ϕAL. Two approaches are possible. A
classical model-based debugging method first calculates MUSes
of ϕAL and then obtains MCSes using the hitting set of MUSes.
The formula-based method adapted in this paper first calculates
MSSes of ϕAL and then obtain MCSes by taking the complement
of MSSes. In both approaches, enumerating all MCSes is manda-
tory to cover all the root causes.
Example Using the example in Listing 1, we explain the above
concepts. In line 6, there is an error in the computation of the
absolute value. The absolute value of x is equal to x*1 (with x
negative), which violates the assertion at line 8 which expects abs
to be greater or equal to zero.

Listing 1: A function that computes an absolute value.

1 int absValue(int x) {
2 int abs;
3 if(x>=0) {
4 abs = x;

5 } else {
6 abs = x * 1; // should be: abs=x*-1;

7 }

8 assert(abs>=0);

9 return abs;
10 }

A failing trace can be obtained with an input value equal to -1.
The error-inducing input extracted from the failing trace is en-
coded in EI and takes the following form: EI = (x0 = −1). The
static single assignment (SSA) form of the function body (lines 2
to 7) is encoded in TF, as shown below. For recall, SSA form is
a relation on program variables, which requires that each variable
is assigned exactly once, and every variable is defined before it is
used. See Section 5.1 concerning the mapping of clauses in TF

to the original line numbers.
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TF = (guard0 = (x0 ≥ 0))︸�������������������︷︷�������������������︸
line 3

∧ (abs1 = x0)︸��������︷︷��������︸
line 4

∧ (abs2 = x0 × 1)︸�������������︷︷�������������︸
line 6

∧

((guard0 ∧ (abs3 = abs1)) ∨ (¬guard0 ∧ (abs3 = abs2)))︸����������������������������������������������������������������������︷︷����������������������������������������������������������������������︸
line 3

The assertion in line 8 is encoded in AS as follows: AS = (abs3 ≥
0).

We obtain two MSSes and two MCSes below. The set elements
represent the line numbers of the program in Listing 1. We create
a set containing the two MCSes. The minimal hitting set of the
resulting set gives us a set containing two MUSes, which are the
conflicts:

MSS0 = {6} MCS0 = MSS�
0 = {3, 4}

MSS1 = {3, 4} MCS1 = MSS�
1 = {6}

MCSes = {MCS0,MCS1} = {{3, 4}, {6}}
MUSes = MCSesMHS = {{4, 6}, {3, 6}}

We here obtained two diagnoses; one with the line numbers 3 and
4, another with 6. The diagnosis {3, 4} indicates that both lines 3
and 4 should be corrected at a time. For example, if we change
the statement in line 3 to be x<0 and the statement in line 4 to be
abs=-x then, for the input x=-1, the program becomes correct.
The diagnosis {6} indicates that line 6 only has to be modified
to correct the program for the input x=-1. Software engineers
are free to choose between these two diagnoses. From the diag-
noses, we obtain two conflicts; one with the line numbers 4 and
6, another with 3 and 6. If we only need a set of potential root
causes, we may extract the line numbers from either MCSes or
MUSes to have a set, for example, {3, 4, 6}. The results are the
same regardless of using MCSes or MUSes since only the line
numbers are significant. It is what BugAssist [12] does to calcu-
late the CSR. Note that with such a combination method, it is
difficult, especially in the case of multi-fault programs, to know
how many elements of the set have to be considered to fix the
entire program.
Partial Maximum Satisfiability The maximum satisfiability
(MaxSAT) problem for a CNF formula is to find an assignment
that maximizes the number of satisfied clauses. Any solution to
MaxSAT problem is also an MSS. However, every MSS is not
necessarily a solution to MaxSAT [18].

In the partial MaxSAT (pMaxSAT) problem for a CNF for-
mula, some clauses are declared to be soft, or relaxable, and the
rest are declared to be hard, or non-relaxable. The problem is
to find an assignment that satisfies all the hard clauses and the
maximum number of soft clauses.

5. SNIPER

5.1 Tool Overview
We implemented our method in a tool called SNIPER [14]

(SNIPER is Not an Imperative Program Errors Repairer). Fig-
ure 2 depicts an overview of SNIPER. Since SNIPER includes
in itself the LLVM [15] and Yices [7] libraries, the tool can be
considered as standalone. The advantage of a standalone tool is
that we have full control at each stage. This makes it possible for
SNIPER to collect several information leading the error localiza-
tion to be precise and extensive.

SNIPER takes as input a source program with some specifica-

tions (cf., pre- and post-condition). This input program is trans-
lated to an intermediate representation (IR) with clang and then
pre-processed as explained in Section 5.2. From this IR, we con-
struct the TF formula and the AS formula. Because we work at
the bytecode level (IR), we need to go back to the original source
code after identifying root causes. Basically, we want to know
the line number (in original source code) for a given LLVM in-
struction. To do this we add debugging options using the -g
command-line option with the command clang. We can now
retrieve the corresponding line number of any LLVM instruction.
When encoding LLVM instructions, we tag each clause of the
trace formula with the line number of the corresponding LLVM
instruction.

Regarding the formulas that represent the error-inducing in-
puts (EIes), they are generated from failing test cases given as
input. Then, using the TF formula, the AS formula and the set
of error-inducing input formulas EIes we compute a set of diag-
noses (MCSes) (see Section 5.4 for details) and combine them to
obtain a set of complete diagnoses (see Section 5.5 for details).
The complete diagnoses, which is a concept introduced in this
paper, are output to the user under the form of source code lines
marked with potential root causes.

5.2 Program Pre-processing
Before the program is encoded into a trace formula, it must

be pre-processed. The input is an ANSI C program *1 that is se-
quential. Pre-processing a program starts by translating it to an
LLVM [15] intermediate representation (IR) with clang. The
resulting IR is then transformed into a loop-free IR that con-
tains a single function. Most of these operations are standard
in the bounded model-checking (BMC) of imperative programs
(cf., Refs. [4], [17]). First, all function calls are inline-expanded,
meaning that the call instructions are replaced by the callee func-
tion bodies. The second step consists of unrolling all loops to a
specified bound, and unfolding all recursive functions a certain
number of time. Finally, the IR is put in static single assignment
(SSA) form. At this point the IR contains a single local function
with arithmetic, comparison, φ (join), and branching instructions
only.

5.3 Full Flow-sensitive Trace Formula
We describe how we translate a pre-processed LLVM IR *2 to

a partial SMT formula. Our encoding takes into account both the
control and data flow of programs. We can produce full flow-
sensitive trace formulas.
5.3.1 Data Flow

The arithmetic and comparison instructions in LLVM take two
arguments and return one result. We restrict the type of variables
to integers and Booleans. Let OP be a set of operators. The
arithmetic and comparison instructions are encoded in equality
constraints as follows:

r = (x Δ y) Δ ∈ OP

*1 The version of SNIPER used for this paper supports a subset of ANSI C
only.

*2 For sake of simplicity we omit some details about the IR [15].
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Fig. 2 SNIPER tool flow.

where r is the result of the computation of the variables x and
y. In the case of comparison operators, the result r is a Boolean
variable, called a guard, that will be used in the representation of
the control flow.
5.3.2 Control Flow

A function definition contains a list of basic blocks, forming
the control flow graph (CFG) of the function body. Each basic
block consists of a labeled entry point, a series of φ nodes, a list
of instructions, and ends with a terminator instruction such as a
branch or function return.

Let BB be the set of all basic blocks. Let T ⊆ BB×BB be a sub-
set of all transitions between the basic blocks. For each transition
(bbi, bb j) ∈ T with bbi, bb j ∈ BB, we have a Boolean variable tij
that is true iff the control flow goes from bbi to bb j. The set of
predecessors of a basic block bb j is equal to:

pred(bb j) = {bbi ∈ BB | (bbi, bb j) ∈ T }
Let on(bbi) with bbi ∈ BB be the enabling condition that is true iff
the basic block bbi is executed. The value of on(bbi) is computed
as:

on(bbi) =
∨

bb j∈pred(bbi)
on(bb j) ∧ tji

Unconditional branches between basic blocks are encoded by set-
ting the transition variable to the value of the enabling condition

of the basic block where the branch occurs:

on(bbi) = tij

Conditional branches make the control flow jump from a basic
block bbi to either a basic block bb j if the guard g is true, or to a
basic block bbk otherwise:

(tij = g) ∧ (tik = ¬g)
As is usual in SSA representation, φ nodes join together values
from a list of its predecessor basic blocks. Each φ node takes a
list of (value, label) pairs to indicate the value chosen when the
control flow transfers from a predecessor basic block with the as-
sociated label. Below, the encoding of a φ node, where the new
symbol xi refers to the variable x in bbi.
∨

x j∈pred(bbi)
(xi = x j) ∧ tji

The CFG takes the formula below. The entry basic block in a
function is immediately executed on entrance to the function and
has no predecessor basic blocks. Its enabling condition on(entry)
is always true. ϕon is the formula that encodes the enabling con-

ditions for all basic blocks, ϕuncond is the conjunction of all con-
straints on unconditional branches, ϕcond is the conjunction of all

constraints on conditional branches, and ϕphi is the conjunction
of the constraints encoding the φ nodes.

ϕCFG ≡ on(entry) ∧ ϕon ∧ ϕuncond ∧ ϕcond ∧ ϕphi

The whole trace formula for the IR, TF, takes the form below.
ϕCFG is the formula that encodes the control flow of the program
and ϕarith/comp is the conjunction of the constraints encoding the
arithmetic and comparison instructions.

TF = ϕCFG︸︷︷︸
hard

∧ϕarith/comp︸�����︷︷�����︸
soft

The clauses that encode the CFG of the program are marked as
hard because they represent the skeleton of the program and we
do not want the solver to relax these clauses. The rest of the
clauses are set as soft (relaxable) because they contribute to the
computations of the program, and are then susceptible to be root
cause candidates. Note that with our encoding we can identify
root causes related to the control flow. For recall, the control flow
of an imperative programs refers to the order in which the indi-
vidual instructions are executed or evaluated. This order is con-
trolled by branch instructions within the program. The outcome
of a branch is made upon its condition’s value, which is calculated
by a comparison instruction. The trace formula presented herein
encodes each comparison instruction as soft. Hence, in situation
in which the obtained trace formula encodes a faulty control flow,
when enumerating MCSes (see Section 5.4 for details), the solver
can relax some clauses related to comparison instructions. When
relaxing one of such clauses, the outcome of the branch using the
result of this comparison instruction can be inverted (for example,
taking the true edge instead of the false edge). In other words, the
solver can manipulate the control flow so that it becomes correct
in view of the provided program specification.

5.4 Computing Diagnoses
Algorithm 1 implements by using pMaxSMT the AllMCS

function, which finds all the MCSes (diagnoses) of TF. This algo-
rithm makes use of the push & pop mechanism of Yices [7]. The
push operation saves the current logical context on the stack. The
pop operation restores the context from the top of the stack, and
pops it off the stack. Any changes to the logical context (adding
or retracting predicates) between the matching push and pop op-
erators are flushed, and the context is completely restored to what
it was right before the push. This mechanism is very useful in
our method because we apply many small modifications (lines 19
and 30) to the context C. It does not need to create a completely
new context between the calls to the solver. We can just flush the
modifications and reuse the same context basis many times.
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Algorithm 1 AllDiagnoses
Input: a set of error-inducing inputs E, a trace formula ϕTF and a

formula ϕAS that encodes the assertions the program must sat-
isfy.

Output: D a set of sets of diagnoses (MCSes)
1: ϕW ← ϕTF � ϕW is the working formula
2: AV ← ∅
3: ϕsoft ← ∅
4: � Create a set of unit soft clauses
5: for each w ∈ ϕW , w tagged as soft do
6: AV ← AV ∪ {ai} � ai is a new auxiliary var. created
7: ϕsoft ← ϕsoft ∪ {(¬ai)}
8: wA ← (w ∨ ai)
9: � Remove w and add wA as hard

10: ϕW ← ϕW \ {w} ∪ {(wA)HARD}
11: end for
12: if AV = ∅ then
13: return ∅ � No MaxSMT solution
14: end if
15: D← ∅
16: C ← ϕW ∪ ϕsoft ∪ ϕAS � Add the formulas in the context
17: for each ei ∈ E do
18: push(C) � Save the context
19: C ← C ∪ ei � Add the error-inducing input in the context
20: M ← ∅
21: while true do
22: (st, ϕMSS,A)← pMaxSMT(C) � Solve the context
23: � “ϕMSS” is an MSS if st is true
24: � “A” is a maximal satisfying assignment if st is true
25: if st = true then
26: � The complement of an MSS is an MCS
27: ϕMCS ← CoMSS(ϕMSS)
28: M ← M ∪ {ϕMCS}
29: � Add the blocking constraint
30: C ← C ∪ {(∨A(ai)=true ¬ai)}
31: else
32: break
33: end if
34: end while
35: if M � ∅ then
36: D← D ∪ {M}
37: end if
38: pop(C) � Restore the context (pushed in line 18)
39: end for
40: return D

The MCSes are enumerated for all error-inducing inputs. A set
of MCS (MCSes) can be computed using MaxSAT. Algorithm 1
is based on the MaxSAT-based MCS enumeration algorithm of
Morgado et al. [18]. Morgado’s algorithm enumerates all MCSes
of a given formula. We implement the algorithm with Yices [7].

5.5 Combination of MCSes
Algorithm 1 provides a function that returns MCSes for each

error-inducing inputs given as arguments. Each of these sets are
root cause candidates for one failing execution, which are trig-
gered by the error-inducing inputs associated to the set. The prob-
lem of combining MCSes is to generate sets of fault locations that
can be used to potentially fix all the failing executions induced by
the provided error-inducing inputs. As discussed in Section 3, in-
dependent multiple faults need more than one failing execution.
We call such gathering of sets a complete diagnosis.

Definition 5 (Complete Diagnosis) Given a formal repre-
sentation TF of a program P, a formula AS that encodes the as-
sertion the program P must satisfy, and a set of error-inducing
inputs E, a complete diagnosis Δ is a set of clauses of TF such
that ∀e ∈ E | ({e} ∪ (TF \ Δ) ∪ AS) is satisfiable.

A set C of complete diagnoses can be calculated using a n-

ary pairwise union as defined in Definition 6. Given a n-tuple
R we denote Ri the ith component of R. Let us denote

∏n
j=1 Dj

the cartesian product of D1, ...,Dn, which produces the set of all
ordered n-tuples 〈a1, ..., an〉, where ai ∈ Di for all i, 1 ≤ i ≤ n.
When D is a set of sets of MCSes, each set of C is a complete
diagnosis.

Definition 6 (SetCombine) Let D1, ...,Dn be n sets. Then
the SetCombine C for D is defined as follows:

C =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n⋃

i=1

ai | a ∈
n∏

j=1

Dj

⎫⎪⎪⎪⎬⎪⎪⎪⎭

The potential effectiveness of complete diagnoses generated
from the SetCombine operator is demonstrated empirically with
the experiments of Section 6. Nevertheless, we show below a
property that directly follows Definition 6. This property aims at
showing that the SetCombine operator is sound.

Property 1 shows that the SetCombine operator does not delete
any elements (clauses) from the MCSes output by Algorithm 1,
and does not add extra elements (clauses) to the complete diag-
noses.

Property 1
⋃

Ck∈C
Ck =

⋃
Dj∈D

⋃
ds∈Dj

ds

Proof: For sake of clarity, let us denote C′ =
⋃

Ck∈C Ck (the left
part of the equation) and D′ =

⋃
Dj∈D
⋃

ds∈Dj
ds (its right part).

We must show that C′ = D′. Let us show that x ∈ C′ iff x ∈ D′.
x ∈ C′ iff x ∈ ⋃Ck∈C Ck iff there is a Ck ∈ C such that x ∈ Ck iff
there exist a ∈∏n

j=1 Dj such that x ∈ ⋃n
i=1 ai (using Definition 6),

i.e., ∃i such that x ∈ ai, iff there exists Dj ∈ D such that ds ∈ Dj

such that x ∈ ds iff x ∈ ⋃Dj∈D
⋃

ds∈Dj
ds, i.e., x ∈ D′.

Therefore, C′ = D′. �

Let us illustrate this with an example:

Listing 2: A multi-fault program.

1 void foo(int x) {
2 int y;
3 if(x>0) {
4 y = 1;

5 } else {
6 y = 42;

7 }

8 assert((x<=0 && y==0) || (x>0 && y==42));

9 }

Example When running Algorithm 1 on the TF of program in
Listing 2 with the following error-inducing inputs: x=0 and x=1,
we obtain a set of MCSes and D below.

MCSesa = {{3, 4}, {6}}, MCSesb = {{3}, {4}},
D = {MCSesa,MCSesb}

The root cause locations in MCSesa are related to the failing path
triggered by x=0, and those in MCSesb are related to the failing
path triggered by x=1. The combination of MCSes of D gives us
the following complete diagnoses:
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SetCombine(D) = {{3, 4} ∪ {3}, {3, 4} ∪ {4},
{6} ∪ {3}, {6} ∪ {4}}

= {{3, 4}, {3, 6}, {4, 6}}

A set of fault locations to check is needed to fix all faults in the
program. For example, the set {4, 6} provides information to fix
the program since it combines root causes from the two failing
paths.

6. Experiments

In this section we show the capabilities of SNIPER with some
experiments made on the TCAS benchmark of the Siemens Test
Suite [10], [21] and on a benchmark provided by Bekkouche [1].

Since a fault localization method performs differently depend-
ing on the program nature, we would like to experiment our
method on different kinds of programs. The TCAS program is
mostly composed of comparisons. All program versions in the
TCAS benchmark are the same except that the injected faults are
different. The injected multiple faults are all of type data flow-

dependent faults and independent faults. The benchmark pro-
vided by Bekkouche is composed of various kinds and sizes of
programs. It includes programs with arithmetics, and the faults in
these programs were injected specifically for experimenting au-
tomatic fault localization methods, as opposed to TCAS that was
originally designed for the testing community. The injected mul-
tiple faults are all of type control-dependent faults. Finally, the
TCAS comes with a set of test cases, which is not the case of the
Bekkouche’s benchmark. For the latter, we will generate a set of
test cases by ourselves.

The version of SNIPER used herein uses LLVM version 3.3
and Yices version 1.0.39. All the experiments were carried out
using an Intel Core 2 Duo 2.4 GHz with 4 GB of RAM on the
operating system Mac OS X 10.6 Snow Leopard.

6.1 TCAS Benchmark
One of the Siemens Test Suite tasks is the TCAS, which is

sometimes used in program testing research [10], [21]. The au-
thors of the suite created 41 versions of the program and in each
of these versions one or more faults were injected. The TCAS
task comes with a set of 1,578 test cases. However, no specifica-
tion is given.
6.1.1 Experimental Setup

We used the same experimental setup as described in Ref. [12]
because we compare the experiment results with BugAssist. We
first ran the original program on the test cases in order to get the
correct output values for each test case. These values constitute
the test oracles for the program. As explained in Section 5.5 we
use many error-inducing inputs (failing test cases) in order to deal
with multi-fault programs. For the purpose of this experiment on
the TCAS benchmark, we ran all test cases on each faulty version
to obtain the failing test cases, which are the test cases that give
an output different from the correct output.
6.1.2 Results for Single and Multiple Faults

Table 2 *3 reports the results of running SNIPER on each ver-
sion of the TCAS. The first column of the table shows the version
of the program. The column #Err shows the number of injected

Table 2 Results of SNIPER and BugAssist on the TCAS.

Ver #Err #FTC SNIPER BugAssist
v1 1 131 131 131
v2 1 69 69 69
v3 1 23 23 13
v4 1 25 24∗ 25
v5 1 10 10 10
v6 1 12 12 12
v7 1 36 36 36
v8 1 1 1 1
v9 1 9 9 9
v10 2 14 14 14
v11 2 14 14 14
v12 1 70 70 48
v13 1 4 4 4
v14 1 50 50 50
v15 3 10 10 10
v16 1 70 70 70
v17 1 35 35 35
v18 1 29 29 29
v19 1 19 19 19
v20 1 18 18 18
v21 1 16 16 16
v22 1 11 11 11
v23 1 42 42 41
v24 1 7 7 7
v25 1 3 3 3
v26 1 11 11 11
v27 1 10 10 10
v28 1 76 76 58
v29 1 18 18 14
v30 1 58 58 58
v31 2 14 14 14
v32 2 2 2 2
v34 1 77 77 77
v35 1 76 76 58
v36 1 126 126 126
v37 1 92 92 92
v39 1 3 3 3
v40 2 126 126 126
v41 1 20 19∗ 20

∗ A new option of SNIPER that checks the array index overflow/
underflow can detect the missing one.

fault in this version. The column #FTC shows the number of fail-
ing test cases included in the TCAS benchmark set. The right part
of Table 2 shows the results of SNIPER and BugAssist. The re-
sults of BugAssist were taken from Ref. [12]. Each column shows
the number of time the tools were able to detect at least one of the
injected fault locations.

In total, BugAssist pin-pointed 1,364 times the injected fault
location out of the 1,437 runs (73 misses). SNIPER pin-pointed
the injected fault location 1,435 times out of the 1,437 runs (2
misses). The average ACSR (average code size reduction), which
is the percentage of code given by the tool on average to locate the
faults, of all the versions is 11.00% for SNIPER and 8.00% for
BugAssist [12]. For recall, CSR (code size reduction) is the ratio
of fault locations in a MUS (program slice) to the total number
of lines of code. We obtain a minimum of 2.31% for the version
no.14 and a maximum of 14.01% for the version no.10. SNIPER
was able to identify the exact bug location of all the single fault
programs.

Concerning the multi-fault programs, all the faults that can
be found with the given test cases were successfully localized.
Particularly, the data flow-dependent faults in the version no.32

*3 Versions no.33 and no.38 are omitted from Table 2 in order to compare
the results with BugAssist [12], which does not have entries for them.
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Fig. 3 Results of running SNIPER on the TCAS benchmark with and without push & pop optimization.

could be successfully identified. In the version no.31, the failed
test cases provided in TCAS test suits only cover one of the two
buggy statements. Thereby, the uncovered buggy statement can-
not be in the root causes. This shows that the coverage of the test
input is an important factor in fault localization.

In addition to identifying all the single and multiple faults with
the given test cases, the CSR is almost the same as BugAssist
although SNIPER adapts a complete enumeration algorithm.
6.1.3 Push & Pop Optimization Results

Figure 3 reports the computation times of Algorithm 1 on the
TCAS benchmark with and without the push & pop optimization,
which was explained in Section 5.4. The histograms are separated
in two parts for readability. The bars in gray represent the times
with the optimization disabled and the bars in black represent the
times with the optimization activated.

We can see that the computation time is reduced when using
the optimization. The percentage decrease of the average compu-
tation time is 49%. The large difference can be explained by the
fact that the same formula is solved many times with only some
small modifications between the calls to the solver.

6.2 Bekkouche’s Benchmark
The Bekkouche’s benchmark [1] consists of several C pro-

grams of 15 to 100 lines of code. They contained only pre-
and post-conditions on inputs and outputs with constant values.
We modified the programs by removing these pre- and post-
conditions and adding complete specifications under the form of
post-conditions on program outputs.
6.2.1 Experimental Setup

As explained in Section 5.5 we use many error-inducing inputs
(failing test cases) in order to deal with multi-fault programs. For
the purpose of this experiment on the Bekkouche’s benchmark,
we use a concolic unit testing engine implemented in SNIPER
for generating such inputs. This concolic engine has been run
without any timeout because the programs are not big. In this
experiment, the engine could visit all program paths before ter-
minating.
6.2.2 Results for Single and Multiple Faults

Table 3 lists the results obtained by running SNIPER on each

Table 3 Results of running SNIPER on the Bekkouche’s benchmark.

Programs #SI #EI Found Time (ms)
MinmaxKO 7 2 1/1 35
AbsMinusKO 2 1 1/1 27
AbsMinusKO2 0 3 1/1 38
AbsMinusKO3 2 1 1/1 22
TritypeKO 14 1 1/1 373
TritypeKO2 14 2 1/1 380
TritypeKO2V2 15 2 1/1 367
TritypeKO3 15 2 1/1 542
TritypeKO4 13 1 1/1 236
TritypeKO5 6 8 2/2 622
TriPerimetreKO 13 1 1/1 430
TriPerimetreKOV2 13 1 1/1 583
TriPerimetreKO2 16 1 1/1 332
TriPerimetreKO3 15 2 1/1 656
Maxmin6varKO 419 37 1/1 30,872
Maxmin6varKO2 404 56 1/1 24,365
Maxmin6varKO3 404 56 2/2 26,731
Maxmin6varKO4 403 61 3/3 32,592

benchmark program [1]. The first column of the table shows the
program name. The column #SI shows the number of success-
ful inputs. The column #EI shows the number of error-inducing
inputs. See Section 6.2.1 for details concerning the input gener-
ation method. The Found column lists the number of faults that
SNIPER was able to localize versus the total number of faults in-
jected in the program. The Time column lists the total running
time of SNIPER in milliseconds, including the bitcode loading
time and bitcode preprocessing time of LLVM, the concolic exe-
cution time, the formula encoding time, and the solving time.

For all programs, SNIPER was able to localize all faults.
The multi-fault program Maxmin6varKO3 contains a nested fault,
which is a fault that is masked by another fault. These types
of faults (control-dependent faults in Fig. 1) are especially dif-
ficult to deal with because it is impossible to generate a test
case that covers the masked fault. As explained in Section 3,
coverage-based or spectrum-based debugging methods, such as
Tarantula [11], are unable to locate the second fault in the pro-
gram Maxmin6varKO3.
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Listing 3: Code fragment from program Maxmin6varKO3
showing the two faults (underlined).

1 [...]

2 if ((a>b) && (a>c) && (b>d) && (a>e) && (a>f))

{

3 max = a;

4 if ((b<c) && (c<d) && (b<e) && (b<f)) {

5 min = b;

6 } [...]

7 } [...]

Listing 3 shows a code fragment of program Maxmin6varKO3
showing both faults. The underlined condition in line 2 should be
(a>d) and the underlined condition in line 4 should be (b<d).
Because of the fault in line 2, no failing executions can pass
through the fault in line 4. From a view point of MCS enumer-
ation with pMaxSAT (see Section 5.4 for details), the algorithm
explores for each test input the search space by relaxing minimal
sets of clauses. Given a test input T , if the algorithm finds and
relaxes clauses related to the fault in line 2 for T , it is equivalent
to say that the fault in line 2 was temporally removed. Therefore,
in the next steps of the exploration the algorithm can find clauses
related to the fault in line 4 for the same test input T because it is
now not hidden anymore by the fault in line 2.

Let us consider a concrete scenario of SNIPER on program
Maxmin6varKO3. For an input of (a = 1, b = −2, c = 0, d =
0, e = −1, f = −1) we obtain the following diagnosis:

{..., {(tmp38 = (b > d)), (tmp46 = (c < d))}, ...}.
Since (b = −2) and (d = 0), the variable tmp38 is false. The
solver relaxes the clause (tmp38 = (b > d)), and the variable
tmp38 is assigned to true, then the control flow goes in the “then”
branch. The variable max is assigned to the value 1 (a). Since
(c = 0) and (d = 0), the variable tmp46 is false. The solver re-
laxes the clause (tmp46 = (c < d)), and the variable tmp46 is
assigned to true, then control flow goes in the “then” branch. The
variable min is assigned to the value −2 (b). At this point, min
and max are correctly assigned and the post-condition is satisfied.

Note that the search is only possible with full flow-sensitive TF,
which is equivalent to the program’s CFG (see Section 5.3), be-
cause it encodes alternative paths to the failing path, which means
that the solver (used in Algorithm 1) can relax clauses to force the
control flow to take an alternative path that covers both faults.

7. Summary and Future Work

We presented a new formula-based method for automatic fault
localization, which combined the SAT-based formal verification
techniques with the model-based diagnosis theory. It has two core
algorithms, computing all the diagnoses and combining them. In
addition, we introduced a new way of encoding programs, namely
the full flow-sensitive trace formula. The association of the two
core algorithms and the full flow-sensitive trace formula enables
the localization of root causes of multi-fault programs. SNIPER
adapts partial maximum satisfiability to implement the algorithms
efficiently, which makes use of the push & pop mechanism of
Yices. Furthermore, the multiple faults in the TCAS benchmark
programs and Bekkouche’s benchmark programs could success-

fully be detected by combining a set of the results obtained from
multiple failing program paths.

We have an open question about the generation of adequate test
suites for fault localization. It calls for a new test case generation
method particularly focusing on exercising paths leading to as-
sertion violations. Note that we need only a set of failing traces,
which is different from the coverage-based methods in which un-
biased test suits are needed for both successful and failing traces.
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ACSR . . . . . . . . . . . . . . Average Code Size Reduction
BMC . . . . . . . . . . . . . . . Bounded Model-Checking
CFG . . . . . . . . . . . . . . . Control Flow Graph
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MSS . . . . . . . . . . . . . . . Maximal Satisfiable Subset
MUS . . . . . . . . . . . . . . . Minimal Unsatisfiable Subset
pMaxSAT . . . . . . . . . . Partial Maximum Satisfiability
SAT . . . . . . . . . . . . . . . . Satisfiability Problem
SMT . . . . . . . . . . . . . . . Satisfiability Modulo Theories
SSA . . . . . . . . . . . . . . . . Static Single Assignment
TCAS . . . . . . . . . . . . . . Traffic Collision Avoidance System
TF . . . . . . . . . . . . . . . . . Trace Formula
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