
IPSJ SIG Technical Report

Synchronous Boolean Finite Dynamical Systems and
Minimum Circuit Size Problem

Mitsunori Ogihara1,a) Kei Uchizawa2,b)

Abstract: We study synchronous Boolean finite dynamical systems (synchronous BFDSs) consisting of some finite
number of objects, where a local transition function on each object is chosen from a simple basis B. Specifically, we
focus on the case where the basis B is one of {AND}, {OR} and {XOR,NXOR}. We show that, in these settings, the
following two problems are randomized polynomial-time reducible to Minimum Circuit Size Problem: (i) Given an
n-object synchronous BFDS F and two state configurations a and b, do there exist time steps s and t, such that the
state configuration of F on a at step s is equal to the state configuration of F on b at step t? (ii) Given an n-object
synchronous BFDS F , an initial state configuration a, and an integer t, is the state configuration sequence generated
by F starting from a contains a cycle having length greater than or equal to t?

1. Introduction
The finite dynamical system is a system consisting of some

finite number of objects. The objects have initial state assign-
ments, and their states are updated over discrete time by a lo-
cal state-update functions that take as input the states of the ob-
jects in the system. The system has been used as a mathematical
model for time-dependent systems and can contain in itself other
multi-object computational models, such as cellular and graph
automata and Hopfield networks. Consequently, the behavior of
finite dynamical system receives much attention of researchers,
and much work has been done to explore its behavioral proper-
ties ([3], [4], [5], [9], [10], [11]).

In this paper, among the various settings of the finite dy-
namical systems, we consider a class of finite dynamical sys-
tems, called synchronous boolean finite dynamical systems (syn-
chronous BFDSs, for short), and investigate the computational
complexity of its specific behavioral properties.

For any positive integer n, a synchronous BFDS of n objects
is an n-tuple F = (f1, f2, . . . , fn) such that f1, . . . , fn are boolean
functions of n variables. Let B be a finite set of basis functions.
We say that F has basis B if each function of F is chosen from
the basis B *1.

For an n-object synchronous BFDS F = (f1, f2, . . . , fn), we
define a state configuration (or simply a configuration) of F
as an n-dimensional boolean vector. We use the vector nota-
tion x = (x1, x2, . . . , xn) to denote a state configuration, where

1 Department of Computer Science, University of Miami 1365 Memorial
Drive Coral Gables, FL 33146, USA

2 Faculty of Engineering, Yamagata University,
Jonan 4-3-16, Yonezawa, Yamagata, 992-8510 Japan

a) ogihara@cs.miami.edu
b) uchizawa@yz.yamagata-u.ac.jp
*1 In general, the definition of bases allows mixing of a function family and

a single Boolean function. See [12] for more detailed definition.

x1, . . . , xn are boolean variables. The action of F on an state con-
figuration x is defined as:

F (x) = (f1(x), f2(x), . . . , fn(x))

In other words, the elements of F (x) are obtained by apply-
ing the n boolean functions f1, . . . , fn concurrently on the vari-
ables x1, . . . , xn. Given an initial state configuration x0 =

(x0
1, x

0
2, . . . , x

0
n), the synchronous BFDS defines n sequences of

boolean values {xt
i}, 1 ≤ i ≤ n and t ≥ 0 by iterative applica-

tions of F on the initial state configuration vector:

for all t ≥ 0, xt+1 = F (xt),

where for all t ≥ 0, xt = (xt
1, x

t
2, . . . , x

t
n).

In the paper [12], we consider specifically the bases B that are
chosen from function families AND,NAND,OR,NOR,XOR,
and NXOR, and study the computational complexities of the fol-
lowing three decision problems:
(1) Convergence(B): Given a system F and an initial state con-

figuration a, decide whether the system converges to any
fixed point.

(2) PathIntersection(B): Given an n-object system F and two
state configurations a and b, do there exist time steps s and t,
such that the state configuration of F on a at step s is equal
to the state configuration of F on b at step t?

(3) CycleLength(B): Given a system F , an initial state con-
figuration a, and an integer t, decide whether the state con-
figuration sequence generated by the system starting from
a contains a cycle having length greater than or equal to t.
Note that the complement of this problem with t = 2 is Con-
vergence(B).

We showed in [12] that the complexities of the three problems
strongly depend on what functions B contains. More precisely,
we prove that the three problems are each PSPACE-complete if
the set B contains NAND, NOR or both AND and OR; but the

1ⓒ 2016 Information Processing Society of Japan

Vol.2016-AL-156 No.5
2016/1/22

IPSJ SIG Technical Report

Convergence Problem is solvable in polynomial time, the Path In-
tersection Problem is in UP, and the Cycle Length Problem is in
UP∩coUP if the set B is one of {AND}, {OR} and {XOR,NXOR},
which strongly suggests that these are unlikely to be even NP-
hard in these cases (assuming P 6= NP).

In this paper, we focus on the latter two problems, Path Inter-
section Problem and Cycle Length Problem, and strengthen the
observation that these are unlikely to be NP-hard if the set B is one
of {AND}, {OR} and {XOR,NXOR} by proving results that relate
the problems to the Minimum Circuit Size Problem (MCSP) of
Kabanets and Cai [8], where the MCSP asks the size of a small-
est circuit that computes a given boolean function specified by the
exact input-output table. More formally, we prove that Path Inter-
section Problem is in SZK, the class of languages having statis-
tically zero-knowledge interactive proof system. This result im-
plies that the problem is randomized polynomial-time reducible
to the MCSP, since SZK ⊆ RPMCSP [2]. We also show that Cy-
cle Length Problem is randomized polynomial-time reducible to
MCSP. Since Kabanets and Cai [8] provide evidence that MCSP
is unlikely to be NP-hard, e.g., in terms of strong circuit lower
bounds of the linear exponential time E, the NP-hardness of these
two problems would imply strong circuit lower bounds of E.

The rest of the paper is organized as follows: In Section 2.2,
we formally define PathIntersection and CycleLength. We also
give definitions of Minimum Circuit Size Problem and statisti-
cal zero-knowledge proof systems. In Section 3, we reduce Path
Intersection Problem to MCSP. In Section 4, we reduce Cycle
Length Problem to MCSP.

2. Preliminaries
2.1 Path Intersection Problem and Cycle Length Problem

For any n-state synchronous BFDS F = (f1, f2, . . . , fn), there
are exactly 2n possible state configurations. This implies that in
an n-state synchronous BFDS, regardless of which initial state
configuration x0 it starts, the state configuration sequence gener-
ated from x0 enters a cycle; that is, in the sequence there exist
indices s and t, 0 ≤ s < t, such that xs = xt. Clearly, for all such
pairs (s, t), it holds:

for all i ≥ 0, xs+i = xt+i.

Therefore, there is the smallest value of s for which there exists
some t > s such that xs = xt and that, for that smallest value of s,
there exists the smallest value of t > s such that xs = xt. Let s0

and t0 respectively be the values of s and t thus defined. Then we
have:
• t0 ≤ 2n and
• for all i and j, 0 ≤ i < j ≤ t0 − 1, xi 6= x j.

We say that F on x enters a cycle (or enters a loop) at step s0 and
its cycle has length t0 − s0. We call s0 the tail length of F on x.
We define LF (x0) to be the length of the cycle t0 − s0.

We now formally define PathIntersection and CycleLength.
Let B be a boolean function basis.
(1) PathIntersection(B) is the problem of deciding, given a syn-

chronous BFDS F having basis B and two initial state con-
figurations a and b of F , whether there exist some s and t,
0 ≤ s, t ≤ 2n − 1, such that F s(a) = F t(b).

(2) CycleLength(B) is the problem of deciding, given a syn-
chronous BFDS F having basis B, an initial state configura-
tion a of F , and an integer t, whether the cycle length of F
on a, i.e., LF (a), is greater than t.

The following lemma plays key role in our reductions pre-
sented in Section 3 and 4.

Lemma 1 ([12]). Let B be one of {AND}, {OR}, and
{XOR,NXOR}. Given an n-object synchronous BFDS F over
basis B, a state configuration a ∈ {0, 1}n, and an integer k ≥ 0,
we can compute F k(a) in time polynomial in n + log k.

2.2 Minimum Circuit Size Problem, statistical zero-
knowledge interactive proof systems, and randomized
reductions

We assume that the reader is familiar with introductory-level
complexity classes (see, e.g., Hemaspaandra and Ogihara [7], for
reference). The Minimum Circuit Size Problem (MCSP) [8] is
defined as follows: Given a truth table of a k-variable Boolean
function f (i.e., a string of n bits where n = 2k) together with an
integer m, decide whether f is computable by a boolean circuit of
m or fewer gates. Kabanets and Cai [8] introduce the problem and
show evidence that the problem is unlikely to be polynomial-time
solvable and evidence that the problem is unlikely to be NP-hard.
The papers [1], [2] show that several problems that are suspected
to reside between P and NP, such as Graph Isomorphism and Fac-
toring, are reducible to MCSP and show that SZK, the class of
languages having statistically zero-knowledge interactive proof
system, is probabilistic polynomial-time reducible to MCSP. Be-
low we present this last result.

Let Π be a promise problem [6], that is, a membership prob-
lem defined over a polynomial-time decidable domain. Let ΠY

and ΠN be respectively be the set of Yes-instances and the set of
No-instances of Π, where ΠY ∪ ΠN ∈ P and ΠY ∩ ΠN = ∅. A so-
lution R to the promise problem Π satisfies: for all x ∈ ΠY ∪ ΠN ,
x ∈ ΠY if and only if x ∈ R.

Let S be a pair of probabilistic Turing machines P and V such
that V is called the verifier and is is polynomial time-bounded
and P is called the prover and is not polynomial time-bounded
Given a common input x, P and V take turns in sending mes-
sages to each other. The computation lasts until V either accepts
or rejects. Each machine computes its message based upon the
input x, its internal computing history including the probabilis-
tic choices, and the messages that have been so far sent between
them. The pair (P,V) is said to be an interactive proof system
for a promise problem Π = (ΠY ,ΠN) if the following conditions
are satisifed: (i) For all inputs x, the number of communication
rounds is bounded by some fixed polynomial in |x|; (ii) For all
x ∈ ΠY , V accepts with probability at least 1 − 1/2|x|. (iii) For all
x ∈ ΠN , for all probabilistic machines P∗ including P, V accepts
with probability at most 1/2|x|.

Given an interactive proof system (P,V), an input x to the sys-
tem, and one computational path π of P and V on input x from the
start of computation to an end (that is, the moment V either ac-
cepts or rejects x), consider a string that encodes the entire portion
of the path visible to V . Such a string consists of the messages

2ⓒ 2016 Information Processing Society of Japan

Vol.2016-AL-156 No.5
2016/1/22

IPSJ SIG Technical Report

exchanged between P and V and the probabilistic choices made
by V and excludes the probabilistic choices made by P. We call
this encoding the view of V with P of path π. Let View(P,V)(x) de-
note the random variable representing the views of V with P as
the prover on input x.

An interactive proof system is said to be a statistical zero-
knowledge interactive proof system if there exists a probabilistic
polynomial-time machine S that simulates the views of V with
P as the prover with high probability as follows: There exists a
polynomial p(n) such that for all x ∈ ΠY , the output S of x, de-
noted by S (x), satisfies:∑

y

∣∣∣Pr[S (x) = y] − Pr[View(P,V)(x) = y]
∣∣∣ ≤ 1

p(|x|)
,

We define SZK to be the class of all promise problems
with satistical zero-knowledge interactive proof systems. A
promise problem Π (or a decision problem Π) is is randomized
polynomial-time reducible to a decision prblem Q, if there exists
a randomized polynomial-time oracle Turing machine N such that
for all x, if x ∈ ΠY , NQ on input x accepts with probability greater
than or equal to 1/2, and if x ∈ ΠN , NQ on input x rejects with
probability 1. We define RPQ to be the set of all promise problems
randomized polynomial-time reducible to Q.

In [2], Allender and Das prove that every problem in SZK is
randomized polynomial-time reducible to MCSP.

Theorem 1. SZK ⊆ RPMCSP.

3. PathIntersection and MCSP
In this section, we show that PathIntersection(B) and Cycle-

Length(B) are reducible to MCSP when B is one of {AND},
{OR}, and {XOR,NXOR}.

For PathIntersection, we prove that the problem is randomized
polynomial-time reducible to MCSP.

Theorem 2. Suppose B is one of {AND}, {OR}, and
{XOR,NXOR}. Then PathIntersection(B) belongs to RPMCSP.

Theorem 2 clearly follows from Theorem 1 and the following
lemma.

Lemma 2. Let B be one of {AND}, {OR}, and {XOR,NXOR}.
Then PathIntersection(B) belongs to SZK.

Proof. Since SZK is known to be closed under comple-
ment [13], it suffices to show that the complement of PathInter-
section(B) belongs to SZK.

Let x = (F , a0, a1) be an input whose membership in PathIn-
tersection(B) is to be tested. We design the following protocol
to show that the problem is in SZK: Let n be the number of vari-
ables in the system F . We may assume that the encoding of the
input has length no more than n3; i.e., |x| ≤ n3.

The prover and the verifier repeat the Steps 1-3 below 2n3

times. The verifier accepts if and only if none of the repetitions
lead to rejection.
Step 1 The verifier uniformly selects z ∈ {0, 1}, and an integer

k, 1 ≤ k ≤ 2n+2n2
, and sends b = F k(az) to the prover. Note

that, by Lemma 1, b is polynomial-time computable.
Step 2 If there exists an integer k′ such that b = F k′ (a0), the

prover sends c = 0 to the verifier; otherwise, the prover sends
c = 1 to the verifier.

Step 3 If c 6= z, the verifier rejects immediately.
We show that the above protocol forms an interactive proof

system.
First suppose that no pair (s, t) exists such that F s(a0) =

F t(a1). There is exactly one z′ ∈ {0, 1} such that for some
k′, 0 ≤ k′ ≤ 2n+2n2

, it holds that F k′ (az′) = b. That unique value
of z′ should be equal to the value of z. The prover has only to
compute this z′ by using exhaustive search for example, and send
it to the verifier, who must accept it upon receiving it it according
to the protocol. Thus, in this case, the verifier can be made to
accept with probability 1.

Next, suppose that there is a pair (s, t) such that F s(a0) =

F t(a1). This means that the cycle that the system enters when
started from a0 is the same as the cycle that the system enters
when started from a1. Let H be the set of all configurations ap-
pearing in this cycle and let ` = ‖H‖ be the length of the cy-
cle. For z ∈ {0, 1}, let gz be the smallest integer g such that
F g(az) ∈ H. We have that all of g0, g1, and ` are at most 2n.
Then, since the value of k is greater than 2n, for each choice
of c, by selecting the value of k according to the protocol, the
verifier generates a distribution over H. For each z ∈ {0, 1} and
for each h ∈ H, let qz(h) be the probability that h is chosen as
az. Then for each z, qz(h) is either 2−n−n2

· b(2n+2n2
− gz)/`c or

2−n−n2
·e(2n+2n2

− gz)/`e.
Since 0 ≤ gz ≤ 2n and 0 ≤ ` ≤ 2n, we have

2−n−2n2
· b(2n+2n2

− gz)/`c ≥ 2−n−2n2
· ((2n+2n2

− gz)/` − 1)

≥ 2−n−2n2
· ((2n+2n2

− 2n)/` − 1)

≥ 2−n−2n2
· (2n+2n2

− 2n − `)/`

≥ 2−n−2n2
· (2n+2n2

− 2n − 2n)/`

= 2−n−2n2
· (2n+2n2

− 2n+1)/`

= 1/` − 2−2n2+1/`

≥ 1/` − 2−2n2+1, and

2−n−2n2
· d(2n+2n2

− gz)/`e < 2−n−2n2
· ((2n+2n2

− gz)/` + 1)

≤ 2−n−2n2
· (2n+2n2

/` + 1)

= 1/` + 2−n−2n2

< 1/` + 2−2n2+1.

This gives that for all h ∈ H,

|q0(h) − q1(h)| < 2 · 2−2n2+1 = 2−2n2+2.

A strategy of a prover can be described as follows: given h ∈ H
select c = 0 with probability α(h) and c = 1 with probability
1 − α(h), where 0 ≤ α(h) ≤ 1. Then the probability that the
prover is able to guess the value of z correctly is:

1
2

∑
h∈H

q0(h)α(h) + q1(h)(1 − α(h))

3ⓒ 2016 Information Processing Society of Japan

Vol.2016-AL-156 No.5
2016/1/22

IPSJ SIG Technical Report

=
1
2

∑
h∈H

q1(h) + (q0(h) − q1(h))α(h)

=

1
2

∑
h∈H

q1(h) +
1
2

∑
h∈H

(q0(h) − q1(h))α(h)

=
1
2

+
1
2

∑
h∈H

(q0(h) − q1(h))α(h)

≤
1
2

+
1
2

∑
h∈H

|q0(h) − q1(h)|α(h)

≤
1
2

+
1
2

∑
h∈H

|q0(h) − q1(h)|

≤
1
2

+ ` · 2−2n2+2

≤
1
2

+ 2n · 2−2n2+2

≤
1
2

+ 2−n2

Since the protocol is repeated 2n3 times, the probability that the
prover is able to guess correctly the value of z in all repetitions is
no more than (1/2 + 2−n2

)2n3
< 2−n3

. Since the length of input
encoding is no more than n3, we have that the probability that the
verifier accepts is less than 2−|x| as desired. Thus, the problem has
an interactive proof system.

To prove that this system is a zero-knowledge interactive proof
system, consider a simulator that mimics the action of the veri-
fier by selecting z and k accordingly and generates c = z as the
message from the provider. For every positive instance, the dis-
tribution of the view thus generated is identical to the distribution
generated by the prover defined in the above. According to [13],
this argument is sufficient to show that PathIntersection(B) is in
SZK.

4. CycleLength and MCSP
We here consider CycleLength. Although we do not know that

CycleLength is in SZK, we can directly prove that the problem
is reducible to MCSP following an argument similar to the ones
in [1], [2].

The following theorem plays a key role in the reductions.

Theorem 3 ([1]). Let L be a language of polynomial density such
that, for some ε > 0, for every x ∈ L, KT (x) ≥ |x|ε . Let f (y, x)
be computable uniformly in time polynomial in |x|. There exists a
polynomial-time probabilistic oracle Turing machine N and poly-
nomial q such that for any n and y

Pr
|x|=n,s

[f (y,NL(y, f (y, x), s)) = f (y, x)] ≥
1

q(n)
,

where x is chosen uniformly at random and s denotes the internal
coin flips of N.

In [1], it is also shown that MCSP is the desired language L
that satisfies the conditions given in the theorem.

Using Theorem 3, we now show that CycleLength belongs to
ZPPMCSP.

Theorem 4. Suppose B is one of {AND}, {OR}, and
{XOR,NXOR}. Then, CycleLength(B) belongs to ZPPMCSP.

Proof. Let F be a system and a be an initial configuration, as
an input of CycleLength. We compute

w = F 2n
(a).

Clearly, w is a configuration on the cycle originated from a.
We define f as a function that takes as input F , x ∈ {0, 1}n and

an integer k and outputs the configuration F k(x):

f (x, k) = F k(x).

By Lemma 1, f is computable in time polynomial in log k. Thus,
by Theorem 3, there exists a probabilistic oracle Turing machine
N and polynomial q such that for any n and x,

Pr
k,s

[f (x,NMCSP(x, f (x, k), s)) = f (x, k)] ≥
1

q(n)
, (1)

where k is chosen uniformly at random from 0 ≤ k ≤ 2n, and s de-
notes the internal coin flips of N. By choosing h, 0 ≤ h ≤ 100 ·2n,
uniformly at random, we make 100q(n) independent executions
of NMCSP(w, f (w, h), s)). The inequality (1) and the Chernoff

bound imply that with high probability we can obtain a pair of
integers h and h′ such that h 6= h′ and

F h(w) = F h′ (w) (2)

Since we can check in polynomial time whether Eq. (2) holds, we
can avoid errors. Let z = |h′ − h|. Clearly, the cycle length LF (a)
is a factor of z.

Since Factoring is known to be in ZPPMCSP [1], we can obtain
all the prime factors of z. Let d1, d2, . . . , dm be the prime factors
of z, which may not be pairwise distinct. Note that m ≤ log n. We
now apply the following test for z: For every i, 1 ≤ i ≤ m, check
whether F z/di (w) 6= F z(w) holds. If z passes the test, then z is
clearly the desired cycle length, and so we output z. Otherwise,
that is, there exists an index i′ such that F z/di′ (w) = F z(w), then
we set z = z/di′ , and apply the test for the new z with the factors
other than di′ . We repeat the procedure until z passes the test.
Since m ≤ log n, our entire algorithm runs in polynomial time,
and thus the theorem follows.

References
[1] E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, and D. Ron-

neburger. Power from random strings. SIAM Journal on Computing,
35(6):1467–1493, 2006.

[2] E. Allender and B. Das. Zero knowledge and circuit minimization.
In Proceedings of the 39th International Symposium on Mathematical
Foundations of Computer Science, pages 25–32, 2014.

[3] C. L. Barrett, H. S. Mortveit, C. M. Reidys. Elements of a theory
of simulation II: Sequential dynamical systems. Applied Mathematics
and Computation, 107(2–3):121–136, 2000.

[4] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, and R. E. Stearns. Complexity of reachability problems
for finite discrete dynamical systems. Journal of Computer and System
Sciences, 72(8):1317–1345, 2006.

[5] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J.
Rosenkrantz, R. E. Stearns, and P. T. Tošić. Gardens of Eden and fixed
points in sequential dynamical systems. In Proceedings of Discrete
Models: Combinatorics, Computation, and Geometry, pages 95–110,
2001. American Mathematics Society.

[6] S. Even, A. L. Selman, and Y. Yacobi. The complexity of promise
problems with applications to public-key cryptography, Information
and Control, 6(2): 159–173, 1984.

[7] L. A. Hemaspaandra and M. Ogihara. A Complexity Theory Compan-
ion. Springer-Verlag, 2001.

4ⓒ 2016 Information Processing Society of Japan

Vol.2016-AL-156 No.5
2016/1/22

IPSJ SIG Technical Report

[8] V. Kabanets and J. Cai. Circuit minimization problem. In Proceedings
of the 32nd ACM Symposium on Theory of Computing, pages 73–79,
2000.

[9] S. Kosub. Dichotomy results for fixed-point existence problems
for boolean dynamical systems. Mathematics in Computer Science,
1(3):487–505, 2008.

[10] S. Kosub. and C. M. Homan. Dichotomy Results for Fixed Point
Counting in Boolean Dynamical Systems. In Proceedings of the Tenth
Italian Conference on Theoretical Computer Science, pages 163–174,
2007.

[11] R. Laubenbacher and B. Pareigis. Equivalence relations on finite dy-
namical systems. Advances in Applied Mathematics, 26(3):237–251,
2001.

[12] M. Ogihara and K. Uchizawa. Computational Complexity Studies of
Synchronous Boolean Finite Dynamical Systems. Proc. of the 12th
Annual Conference on Theory and Applications of Models of Compu-
tation, pages 87–98, 2015.

[13] T. Okamoto. On Relationships between statistical zero-knowledge
proofs. Journal of Computer and System Sciences, 60(1): 47–108,
2000.

5ⓒ 2016 Information Processing Society of Japan

Vol.2016-AL-156 No.5
2016/1/22

