
Efficient Graph Matching Method for LUT-Networks

Hossein Izadi Rad1,a) AmirMasoud Gharehbaghi2,b) Masahiro Fujita1,2,c)

Abstract: We introduce a new approach for structural LUT matching based on Subgraph Matching. In LUT networks,
same numbers of LUTs are matchable with one another regardless of their programs. Using this method, a new LUT
network can be implemented on top of another LUT network with similar topology. One of the applications of this
method could be IP reuse. First, we find all the possible matching candidates based on the conflicting criteria and
generate a Conflict Graph. Then, we extract the Maximum Independent Set on the conflict graph with our proposed
approximate algorithm. Finally, we improve the results iteratively in a controlled manner by considering the neigh-
bours of the circuit elements. Our extensive experiments on ISCAS85 shows efficiency of our approach. Using this
method, it takes less than 2 minutes to match the largest circuits of ISCAS85 with more than 2900 logic gates.

1. Introduction
Today’s industrial applications are gaining the advantages of

FPGAs in many hardware designs, especially when integrating
them with other hardwares. Some of the advantages are: 1. Eas-
ier design integration with Intellectual Properties (IPs), 2. Free-
dom of changing the design for new protocol standards and func-
tionality requirements, and 3. Scalling the performance by em-
bedding IPs [1]. Advanced FPGAs have large resources of Con-
figurable Logic Blocks (CLB), embedded microprocessor, RAM
blocks, ADC/DAC converters, multi-bit multipiers, configurable
interconnects and etc. CLBs are usualy consists of LookUp Ta-
bles (LUTs), flip-flops, carry chain and arithmatic logic units, and
multiplexers [2]. In this work we focus on LUT netlist represent-
ing the given circuits. In other words, the given circuit is mapped
to LUT netlist.

Finding common subcircuits among multiple circuits has many
applications in the design phase as well as maintenance of de-
signs. Designers can reuse the existing results of synthesis, veri-
fication, test generation, etc., from one circuit to another; hence,
it avoids redoing the same tasks. In addition, finding similarities
and differences among multiple LUT networks has other applica-
tions in design maintenance, fraud detection, reverse engineering,
redundancy detection, and so forth. Each of the above-mentioned
applications has a specific goal. Therefore, the matching engine
should be general and flexible enough to be adapted according to
the desired solution.

In this paper, we have considered the problem of finding com-
mon subcircuits, having similar structure, among multiple LUT
networks. To solve the problem, we have introduced a new effi-

1 Dept. of Electrical Engineering and Information Systems, The Univer-
sity of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

2 VLSI Design and Education Center, The University of Tokyo, 2-11-16
Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

a) izadi@cad.t.u-tokyo.ac.jp
b) amir@cad.t.u-tokyo.ac.jp
c) fujita@ee.t.u-tokyo.ac.jp

cient approach based on graph algorithms.
The basic idea is to generate graphs corresponding to the LUT

netlists and find the common subgraphs. The subgraph matching
problem is considered to be an NP-Complete problem. We pro-
pose a two-step approximate solution. In the first step, we find
all the possible matching candidates by excluding those which
are in conflict with each other. The conflicting criteria can be
defined and changed based on the application of matching. In
this way, we generate a Conflict Graph from the LUT netlists to
be matched. One of the main advantages of generating a con-
flict graph is that it allows us to easily define different criteria for
matching, making our approach more general and flexible to meet
the requirements of different applications.

As an example, we can think of a very straightforward match-
ing criteria that is defined as each LUT in a netlist can only be
matched with an LUT of same number of inputs. For example a
4-input LUT can only be matched with a 4-input LUT. However,
we may define a more relaxed criteria for matching that allows
matching an LUT with another one with different number of in-
puts. For example, a 4-input LUT can be matched with a 5-input
LUT. This kind of matching is specially useful when we have a
slightly modified circuit and we want to match it to the previous
circuit structure. The modification may be because of a bug fix,
or an Engineering Change Order (ECO).

In the second step, we find the Maximum Independent Set
(MIS) in the conflict graph with help of our proposed approxi-
mation algorithm. The MIS shows all the common subcircuits
among the input circuits. Our proposed MIS algorithm is based
on the Ramsey algorithm [3] that is the basis of many other MIS
algorithms. We have introduced different heuristics to improve
the Ramsey algorithm, both in terms of the quality of the results
and runtime, as also shown in our experimental results. The run
time complexity of proposed algorithm is O(n3/(logn)2).

Finally, we have improved the result of matching by consider-
ing the neighbors of the LUTs iteratively, in a controlled manner.

1ⓒ 2016 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2016-ARC-218 No.8
 Vol.2016-SLDM174 No.8

2016/1/19

The basic idea is that in the conflict graph, we include only the
LUTs that their neighboring LUTs up to N levels are also can-
didates for matching. Accordingly, the possibility of picking up
wrong LUTs as matching candidates decreases; as a result, the
size of the common subcircuit may increase. We start by consid-
ering the first level neighbors (N = 1), and gradually increase the
level as long as the increase in the size of the common subcircuit
is satisfactory and the runtime is acceptable. In this paper, we call
this approach Controlled Look-ahead.

We have performed experiments on ISCAS85 [4] circuits. We
have shown that in practice the runtime of our method is near
linear. Furthermore, comparing our results to the optimum solu-
tion that is obtained by an exact algorithm, we conclude that the
average size of the identified common subcircuit is around 9%
smaller, but the average processing speed is two to three orders of
magnitude faster.

The rest of the paper is organized as follows. In Section 2, we
overview on the Graph Matching problem definition and the pre-
vious work. Section 3 presents our proposed method. Section 4
gives the experimental results. Section 5 concludes the paper and
gives some future directions.

2. Graph Matching Problem
The problem we are dealing with in this paper is subcircuit

matching, which is also known as subcircuit recognition. This
problem can be considered as graph matching problem by repre-
senting circuits as graphs. Graph matching is a classical problem
in graph theory that belongs to NP-class of algorithms [6]. In
this problem we have two graphs and we would like to under-
stand how similar they are, and where those similarities reside.
There are two categories of graph matching problems. The first
category tries to find out whether two given graphs are exactly
the same or not; which is also known as Graph Isomorphism. In
the second category, the matching problem is subgraph matching
in which the cardinality of the set of vertices are not necessar-
ily the same. In subgraph matching problem, the goal is to find
a mapping H : V1 → V2 such that (u, v) ∈ E1 if and only if
(H(u),H(v)) ∈ E2. When a mapping such as H exists, this is
called an Homomorphism, and two graphs are called Homomor-
phic. This can be considered as quest for the largest subgraph
in the smaller graph within the bigger one. For the formal def-
inition of Isomorphism and Homomorphism please refer to [6].
Intuitively, graph homomorphism (subgraph matching) is a more
complex problem than graph isomorphism (graph matching).

Many subgraph isomorphic algorithms have a search-based ap-
proach [8] [9]. They usually use two fundamental operations
to extract the mapping. The first one is node-to-node mapping,
which tries to search exhaustively on nodes to map them. The
second one tries to preserve the connection of adjacent nodes.
Ullmann’s algorithm [12] is the basic algorithm for many stud-
ies on graph matching. This algorithm is basically a Depth First
Search (DFS) algorithm in addition to some other refinements.
The algorithm is actually a brute-force enumeration procedure
that attempts to do a tree search for each node to reduce the num-
ber of successor nodes to be searched, leading to the reduction of
total computing time. This approach is not only inefficient due to

blind search each node, but limited with respect to implementa-
tion problem due to space limitation for refinement in memory.

Another major approach for graph matching algorithm is based
on Corneils’ algorithm [13], which is a typical Breadth First
Search (BFS) during the procedure of re-labeling the nodes asso-
ciated with their neighbor nodes. Originally, it focused on Graph
Isomorphism problem and was extended with some ideas in sub-
circuit recognition problem. This algorithm is used as the kernel
of a famous subcircuit recognition algorithm, SubGemini [14].
As the first step, this algorithm runs a preprocessing step on a
representative and reordered representation of the input graphs.
Then, it tries to solve the problem with the transformed graphs.
This procedure can only provide an incomplete answer to the iso-
morphism problem and for some cases it cannot decide if the
two input graphs are isomorphic or not. Additionally, SubGemini
and other similar work are used for transistor level netlists which
have different characteristics with gate-level netlists. For exam-
ple, in transistor level netlist there is no connection that can bridge
the nets, then we can consider the transistor netlists as bipartite
graphs, but it is not correct for gate-level netlists.

3. The Proposed Method
Our problem is subcircuit matching with a general approach.

The proposed framework is flexible enough to provide an efficient
solution for the target applications, and fast enough for matching
on large circuits.

Although the basic approach of this paper is mainly about find-
ing subcircuits in LUT netlists, an efficient solution can also be
applied to other kind of graphs we are dealing with in hardware
and software design flow. In some applications we need to match
a subcircuit with its slightly structurally different subcircuit.
For example, a 3-input LUT can be considered as structurally-
different functionally-equivalent with a 2-input LUT. What we
need is a flexible framework capable of defining desired rules of
similarity depending on the applications. A promising idea would
be reducing the complexity of the original problem with a prepro-
cessing step which can be refined in later iterations. Similarity
rules can be applied in a preprocessing step, which tries to find
matchable candidates and exclude the conflicting ones. Our idea
is to do this by building a conflict graph out of the given graphs.
This basic structure can be refined in further iterations for more
accurate results.

Here, we present our proposed method. In the first step, we
create a new graph out of the two graphs that we want to find
matching. This new graph is called Conflict Graph (CG). All
the rules for similarity can be considered while building the CG.
We add all the matching candidates as vertices of CG and the
conflicts between them by edges. The conflict graph has edges
between all vertices that are conflicting based on our desired def-
inition of conflict. This means that we do not want a solution re-
turned which contains vertices that are connected by an edge and
this type of solution is called Independent Set (IS). In the second
step, we solve the circuit matching problem by solving a different
problem, called Maximal Set of Independent Sets (MSIS), on the
conflict graph. In addition to the maximal matching region, the
size of the MSIS tells us how good the match is -the bigger the

2ⓒ 2016 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2016-ARC-218 No.8
 Vol.2016-SLDM174 No.8

2016/1/19

answer, the larger the total matching regions.

3.1 Making Conflict Graph
Given two graphs to be matched, as G1 = (V1, E1) and G2 =

(V2, E2) where V j is a set of vertices, and E j is a set of edges. As-
sume the number of vertices in G1 is N and the number of vertices
in G2 is M.

We form the conflict graph GCG = (VCG, ECG) by adding up to
N×M vertices to GCG as follows. Consider a pair of vertices, one
drawn from the set V1 (call it Vi) and the other drawn from the
set V2 (call it Vα). We create a vertex Vi,α ∈ GCG if the type of Vi

is compatible with the type of Vα and they have the same number
of fanins. Nonetheless, we can define any arbitrary condition to
select potential matching points. We can consider the vertex Vi,α

as being a potential matching point between the two input graphs.
Next, we add edges to GCG between vertices for which there

is a conflict. We add edges between two vertices Vi,α and V j,β if
i = j or α = β, because each LUT can be included in just one
subcircuit. In addition, we can add other edges based on the defi-
nition of conflict criteria. For example, if the inputs of a LUT are
all from primary inputs, we do not want to match it with another
LUT having inputs from internal signals.

Once this is done, we have our conflict graph computed and we
are ready for the next step. In terms of computational complexity,
generating the conflict graph is O(N × M).

Fig. 1 is a simple example illustrating the procedure of making
conflict graph for two given LUT netlists.

3.2 Maximum Independent Set
Finding MIS is one the classical problems in graph theory. This

problem is known to be NP-hard even for some restricted classes
of graphs [15]. At the same time, there are some solutions for
specific classes of graphs which are efficient. The best known ex-
act algorithm [16] which has a depth-first search approach, has
the complexity of O(3(n/3)). We have re-implemented a fast and
well-known algorithm [17] to check the efficiency of other ap-
proximation solution for small graphs. The complexity of this
algorithm is O(V ×E ×µ), which VandE are the size vertices and
edges respectively, and µ is the size of MIS.

The natural heuristic is Greedy algorithm, which selects a pivot
node v and search in N′(v) the set non-neighbor vertices of v. This
results in a rapid accumulation of the independent set recursively
looking at non-neighborhoods. The main concern here is that we
completely ignore the neighborhoods of the pivot node, which
may have much larger independent set. In other words, if we
choose a bad pivot node, we may ignore many vertices in the fi-
nal independent set.

Another idea is based on the Ramsey algorithm [3] for MIS.
Similar to Greedy, we choose a vertex and search in the non-
neighborhood. But this time we also search for the neighbor ver-
tices of the pivot vertex, and find whichever may result in a big-
ger IS. The Ramsey algorithm takes a common approach which
is called excluding subgraphs. In [3], the authors show that no
algorithm using the idea of excluding subgraphs, can do signif-
icantly better than their presented Ramsey-based algorithm. We
can see the pseudo code of Ramsey algorithm in Fig. 2. The

Fig. 1 Example of Building the Conflict Graph

Fig. 2 Pseudo Code of Ramsey Algorithm

Ramsey algorithm breaks the problem into a tree-like structure of
subproblems [3]. In one sense, the algorithm transforms the graph
into a binary tree where each internal node is adjacent to all of its
left descendants and non-adjacent to all of its right descendants.

The Ramsey algorithm has been used by NetworkX, a state-
of-the-art graph manipulation tool-set. As shown in our exper-
iments, the quality of results for NetworkX is not good for our
applications. Therefore, we have proposed an approximation al-
gorithm based on Ramsey, to improve the quality of results, as
presented in the next subsection.

3.3 The Proposed Approximation Algorithm
Here, we present the formal description of the algorithm. In

the following we define terminology used for description of algo-
rithms.

3ⓒ 2016 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2016-ARC-218 No.8
 Vol.2016-SLDM174 No.8

2016/1/19

Fig. 3 Pseudo Code of EIS Algorithm

Fig. 4 Pseudo Code of EVIS Algorithm

If the unordered vertices pair (u, v) is an edge in G, we say that
u is a neighbor of v, and the set of neighbor vertices build neigh-
borhood. Given an independent set IS and a vertex v outside IS,
vertex b is an Appendable vertex, if and only if IS ∪ {v} is still an
independent set of G. We define a function ρ(v) the number of all
appendable vertices of an independent set IS.

We define two main operations on the conflict graph, and give
the pseudo code of the algorithm itself. This algorithm has two
main sub-routines. The EIS tries to make the largest IS for a
pivot vertex. The idea is based on the Ramsey algorithm. The
EVIS subroutine tries to exchange the vertices in IS with another
candidates. These candidates are the vertices out of IS those are
neighbors with just one of the vertices in IS. The philosophy be-
hind this exchange is trying to make the IS as large as possible by
enumerating all other possible candidates. The EIS runs after this
exchange and expands the IS.

in Expand Independent Set (EIS) we try to find the largest IS
including the chosen pivot node. Given a graph G with n vertices
and independent set IS of G, if IS has no appendable vertices
no expansion is possible, otherwise for each appendable vertex v
of IS , find the number ρ(IS ∪ {v}) of appendable vertices of the
independent set IS ∪ {v}. Let vmax denote the appendable vertex
such that ρ(IS ∪{vmax}) is a maximum and obtain the independent
set IS ∪ {vmax}. The pseudo code of EIS algorithm is shown in
Fig. 3.

In Exchange Vertex Independent Set (EVIS) sub-routine we ex-
change the vertices out of IS with included vertices and find the
largest IS after that. IS is the independent set of the given graph,

Fig. 5 Pseudo Code of Enhanced SLMIS Algorithm

if there is no vertex v outside IS such that v has exactly one neigh-
bor w inside IS , save IS . If there is a vertex outside IS , find a
vertex such that v has exactly one neighbor w inside IS . Define
IS v,w by appending v to IS and removing w from IS . We do the
EIS procedure on IS v,w and save the resulting independent set.
The pseudo code of EVIS algorithm is shown in Fig. 4.

Our proposed approximation algorithm is shown in Fig. 5,
which uses the two previous procedures for finding the set of lo-
cal maximal independent sets. For each vertex of CG we run EIS
and EVIS and the result is the independent set for that pivot vertex
or IS v. The MIS is the largest IS v found. MIS shows the largest
common subcircuit and the set of all ISs shows all the dissociated
subcircuits.

The EIS algorithm is very similar to Ramsey algorithm pre-
sented in [3], in terms of structure and computation complexity.
Therefore, we claim that EIS algorithm has the same run time
complexity order, O(n/(logn)2). As for the EVIS algorithm the
run time complexity is O(n2/(logn)2). Therefore, the run time
complexity of our main approximation algorithm, in the worst
case, is O(n3/(logn)2). However, we can see in experimental re-
sults that for real IP circuits the run time scales near-linearly by
the size of circuit.

3.4 Enhanced Controlled Look-Ahead Algorithm
In this section, we show our enhanced algorithm by improving

the approximation. It takes the number of iterations from user
to enhance the results. In each iteration, the input is the conflict
graph of the previous iteration and the output is a new conflict
graph with less or equal number of vertices. We try to make a new
conflict graph by going forward or backward towards primary in-
puts or primary outputs. After that we add conflict edges, in order
to decrease the number of possibilities for matching LUTs. As a
result, we may have better performance ratio with acceptable time
overhead. In this method we consider primary inputs and primary
outputs (PIs and POs) as unique node types. PIs have no input but
may have one or more outgoing edges, and POs do not have any
outputs but have just one incoming edge. What we described as
the proposed method is zero-step look-ahead (0-LA). Actually by
increasing the number of iterations, we are doing path matching.
For example in 1-step look-ahead we are trying to match 2-LUTs
paths, while in 2-step look-ahead these are 3-LUTs paths, and so
on.
3.4.1 One-Step Look-Ahead Algorithm (1-LA)

In 1− LA we have the conflict graph of 0− LA step, 0− LACG
(Zero-Step Look-Ahead Conflict Graph), in hand and we try to

4ⓒ 2016 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2016-ARC-218 No.8
 Vol.2016-SLDM174 No.8

2016/1/19

build a new conflict graph, 1 − LACG, as output. In the first step,
for each Vi, Vα ∈ E0−LACG , we decide to expand the path first
backward and then forward.

In the second step, we try to add new vertices to 1 − LACG.
Assume that in the first step we decided to go backward; then
we analyze the LUTs which inputs of Vi are coming from with
the LUTs which inputs of Vα inputs are coming from. If there
is no mismatch between the inputs of Vi and the inputs of Vα we
add some new nodes in 1 − LACG. At the end of this step, we
have created all the vertices in 1 − LACG. In the third step, we
add edges to 1 − LACG between the vertices for which there is a
conflict. This step is very similar to what we discussed in section
3.1 about adding conflict edges to conflict graph, but with slight
modification.
3.4.2 N-Step Look-Ahead Algorithm (N-LA)

In N − LA we have the conflict graph of the (N − 1) − LA
step, (N − 1) − LACG, in hand and we try to build a new con-
flict graph, N − LACG as output. Building N − LACG with
(N − 1) − LACG is very similar to what we did for creating
1 − LACG from 0 − LACG. The difference is that the vertex
of (N − 1) − LACG is like {v11, v12, . . . , v1w} and {v21, v22, . . . , v2w}

which w ≤ N. We will go forward or backward and will have a
N + 2 frame containing a path of N + 1, which has been detected
in (N − 1) − LA.

Although, the N can be as big as the length of the critical path
of the circuit, by observing the experimental results we can see
that 2 − LA approximation provide acceptable performance ratio
with reasonable run time overhead.

4. Experimental Results
We have conducted a series of experiments on all of the IS-

CAS85 circuits [4] to show the efficiency as well as effectiveness
of our method.

We have implemented our approximation algorithm as well as
our enhanced approximation algorithm in Java. We call the base
approximation algorithm (without look-ahead) zero-step look-
ahead algorithm (0-LA). The enhanced approximation algorithm
is currently implemented for 1-step look-ahead (1-LA) and 2-step
look-ahead (2-LA). Moreover, we have implemented the algo-
rithm that identifies the exact solution (Exact) as the reference
[16].

We used ABC tool-set [5] for mapping the verilog circuits into
LUT netlist. The benchmark is given in bench format [10]. Us-
ing the commands strash and if -k 4 the benchmark is mapped to
4-input LUT netlist. The result is an LUT netlist with 1,2,3 or 4-
inputs. However, in some cases 1-input LUTs are used as buffer
between PIs and POs, or internal signals and POs. In such cases,
we removed the buffer LUTs and connect signals directly. There-
fore, only the LUTs with functional logic (2,3 or 4-input LUTs)
are considered for matching process. Fig. 6 shows the ISCAS85
benchmarks and their characteristics. The total number of LUTs
and non-buffer LUTs are shown in this figure.

As for c2670 benchmark, we found a GND signal in LUT
netwrok. The OutYgreaterXEqual signal is an error correction
signal, checking the result equality of two Carry Look-ahead
Adders (CLAs) [4]. Because two CLAs have similar function-

ality, this signal is reported as always 0 after mapping by ABC.
We removed this signal for matching experiments.

All the experiments are conducted on a server with dual Xeon
2.9GHz processor with 128GB memory running Linux kernel
2.6.32 (64 bits).

In the first experiment, we have compared each ISCAS85 cir-
cuit against topologically the same circuit. Then the matched sub-
circuit should have the same number of vertices as the input cir-
cuits. Fig. 6 shows the run time and performance ratio of exact
and approximation algorithms. 1-LA has increased the runtime
compared to 0-LA by 24.5% on average. 2-LA has increased
the runtime compared to 1-LA by 28.5% on average, and com-
pared to 0-LA by 45.7% on average. We can compare the quality
of the approximation algorithms in terms of performance ratio.
All three approximation methods have the performance ratio of
100%.

Fig. 7 shows the runtime of the algorithms for different bench-
marks in logarithmic scale. As it can be seen, the Exact algorithm
runtime is two to three orders of magnitude more than our approx-
imation algorithm; hence, not practical for larger benchmarks.

Fig. 8 shows the runtime of the approximation algorithms for
different benchmarks based on the Conflict Graph nodes. As the
result, the proposed approximation algorithm has a sub-linear run
time complexity.

In the second experiment, we compared some ISCAS85 bench-
marks with structrally-different but functionally-similar netlists.
We compared the LUT size of Maximum Common Sub-circuit
with exact and approximation algorithms. For example, we com-
pared c499 vs. c1908, a 32-bit SEC circuits and 16-bit SEC/DEC
circuits respectivly. The largest sub-circuit found has 50 LUTs.

Fig. 9 shows the comaparison between different circuits and
the LUT size of largest sub-circuit found by each algorithm.

Fig. 10 shows the performance ratio of approximation algo-
rithms for each comparison.

5. Conclusions and Future Work
We addressed the problem of finding the maximum common

subcircuit among LUT netlists. By performing extensive experi-
ments on ISCAS85 circuits. Comparing our results for ISCAS85
circuits to the optimum solution, the average size of the identi-
fied common subcircuit is around 10% smaller, but the average
processing speed is two to three orders of magnitude faster. Our
future work includes improving both performance of the algo-
rithm and the quality of the results for LUT netlists by searching
for cones instead of paths. Moreover, we are going to incorporate
logical transformations in order to identify more common subcir-
cuits.

References
[1] Philip H.W. Leong, Recent Trends in FPGA Architectures and Appli-

cations, 4th IEEE International Symposium on Electronic Design, Test
& Applications , 2008.

[2] Mario Vestias, Horacio Neto. TRENDS OF CPU, GPU AND FPGA
FOR HIGH-PERFORMANCE COMPUTING, 24th International Con-
ference on Field Programmable Logic and Applications (FPL), 2014.

[3] R. Boppana and M. M. Halldorsson, Approximating Maximum Inde-
pendent Sets by Excluding Subgraphs, Springer BIT Numerical Math-
ematics, Vol. 32, pp. 180-196, 1992.

[4] http://web.eecs.umich.edu/ jhayes/iscas.restore/

5ⓒ 2016 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2016-ARC-218 No.8
 Vol.2016-SLDM174 No.8

2016/1/19

Fig. 6 Performance Ratio and Run Time of Algorithms on ISCAS85 Circuits

Fig. 7 Run Time of Algorithms in Logarithmic Scale

Fig. 8 Run Time of Aprox. Algorithms based on the Conflict Graph Size

Fig. 9 Comparing Different Circuits with Similar Functionlaity

Fig. 10 Performance Ratio of Approx. Algorithms in Comparing Different
Circuits with Similar Functionlaity

[5] http://www.eecs.berkeley.edu/ alanmi/abc/

[6] D. A. Basin, A Term Equality Problem Equivalent to Graph Isomor-
phism, Elsevier Information Processing Letters, Vol. 51, pp. 6166,
1994.

[7] M. M. Halldorsson and J. Radhakrishnan, Improved Approximations
of Independent Sets in Bounded-Degree Graphs, Algorithm Theo-
rySWAT’94, Vol. 824, 1994, pp. 195-206, 1994.

[8] V. Lipets, N. Vanetik, and E. Gudes. Subsea: an efficient heuristic al-
gorithm for subgraph isomorphism, Springer Journal of Data Mining
and Knowledge Discovery, Vol. 19, pp. 320-350, 2009.

[9] L. P. Cordella, P. Foggia, C. Sansone, and Mario Vento, A (sub)graph
isomorphism algorithm for matching large graphs, IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 26, pp. 1367-1372,
2004.

[10] A. Mishchenko, N. Een, R. Brayton, M. Case, P. Chauhan, and N.
Sharma, Semi-Canonical Form for Sequential AIGs, Conference on
Design, Automation and Test in Europe, pp. 797-802, 2013.

[11] R. M. Karp, Reducibility among Combinatorial Problems, 50 Years of
Integer Programming 1958-2008, Springer, pp. 219-241, 2010.

[12] J. R. Ullmann, An Algorithm for Subgraph Isomorphism, Journal of
the ACM, Vol. 23, pp. 31-42, 1976.

[13] R. C. Read and D. G. Corneil, The Graph Isomorphism Disease, Jour-
nal of Graph Theory, Vol. 1, pp. 339-363, 1977.

[14] M. Ohlrich, C. Ebeling, E. Ginting, and L. Sather, SubGemini: Identi-
fying SubCircuits using a Fast Subgraph Isomorphism Algorithm, De-
sign Automation Conference, pp. 31-37, 1993.

[15] V.E. Alekseev, Polynomial algorithm for Finding the Largest Inde-
pendent Sets in Graphs Without Forks, Elsevier Journal of Discrete
Applied Mathematics, pp. 316, 2004.

[16] E. Tomitaa, A. Tanakaa, and H. Takahashia, The worst-case time com-
plexity for generating all maximal cliques and computational exper-
iments, Elsevier Journal of Theoretical Computer Science, pp. 2842,
2006.

[17] Sh. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa A new algo-
rithm for generating all the maximal independent sets, SIAM Journal
of Computing, pp. 505-517, 1977.

6ⓒ 2016 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2016-ARC-218 No.8
 Vol.2016-SLDM174 No.8

2016/1/19

