
Electronic Preprint for Journal of Information Processing Vol.24 No.1

Regular Paper

Top-k Similarity Search over Gaussian Distributions
Based on KL-Divergence

Tingting Dong1,a) Yoshiharu Ishikawa1,b) Chuan Xiao1,c)

Received: June 20, 2015, Accepted: October 8, 2015

Abstract: The problem of similarity search is a crucial task in many real-world applications such as multimedia
databases, data mining, and bioinformatics. In this work, we investigate the similarity search on uncertain data mod-
eled in Gaussian distributions. By employing Kullback-Leibler divergence (KL-divergence) to measure the dissimi-
larity between two Gaussian distributions, our goal is to search a database for the top-k Gaussian distributions similar
to a given query Gaussian distribution. Especially, we consider non-correlated Gaussian distributions, where there
are no correlations between dimensions and their covariance matrices are diagonal. To support query processing, we
propose two types of novel approaches utilizing the notions of rank aggregation and skyline queries. The efficiency
and effectiveness of our approaches are demonstrated through a comprehensive experimental performance study.

Keywords: Gaussian distributions, Kullback-Leibler divergence, top-k similarity search

1. Introduction

Probabilistic modeling, which infers probability distributions
from vast amount of data for real-world applications, is being
practiced in a wide range of fields from statistics, machine learn-
ing and pattern recognition [4] to bioinformatics and medical in-
formatics [16]. The research on managing probabilistic model-
based data was pioneered by Deshpande et al. [11], and then re-
ceived considerable attention from the database research commu-
nity [1], [2], [29]. In this paper, we study the problem of process-
ing similarity search queries over probabilistic model-based data,
specifically, over objects represented by Gaussian distributions.
As shown in Fig. 1, given a database of Gaussian distributions G

and a query Gaussian distribution q, our objective is to find top-k
Gaussian distributions from G that are similar to q.

Gaussian distribution, one of the most typical probability dis-
tributions, is widely used in statistics, pattern recognition and ma-
chine learning [4], [13]. Research work on Gaussian distributions
has been conducted over a long period of time, including music
classification [20] and search [26], and image retrieval [5], [12].

For this reason, we focus on similarity search over data mod-
eled in Gaussian distributions, assuming that a large number of
objects, represented by non-correlated Gaussian distributions are
stored in the database. By non-correlated Gaussian distribution,
we mean that all dimensions are independent with each other,
i.e., the covariance matrix of each Gaussian distribution is diag-
onal. In this paper, we focus on non-correlated Gaussian distri-
butions since they are frequently used in machine learning and
statistics. Hereafter, we use the term Gaussian distributions for

1 Nagoya University, Nagoya 464–8601, Japan
a) dongtt@nagoya-u.jp
b) ishikawa@is.nagoya-u.ac.jp
c) chuanx@nagoya-u.jp

Fig. 1 A one-dimensional query example (k = 2).

non-correlated ones. We will report query processing methods
for the general correlated case in another paper because they are
very different. Given a query Gaussian distribution, our task is
to retrieve from the database the Gaussian distributions that are
similar to the query. The top-k Gaussian distributions with the
highest similarity scores are returned as the answer to the query.

In Ref. [5], Böhm et al. considered similarity search on fea-
ture vectors such as structural features of 2-D contours [21],
time series [15] and color histograms in image databases. They
represented the uncertainty of each feature vector using a non-
correlated multidimensional Gaussian distribution. As discussed
in Ref. [4], compared to general Gaussian distributions, the num-
ber of parameters, the storage and computational requirements
can be reduced substantially by using non-correlated Gaussian
distributions. In consequence, the non-correlated Gaussian distri-
bution is often preferred in practical applications [25].

Furthermore, Gaussian mixture models (GMMs), which are
linear combinations of Gaussian distributions, are known for their
ability to model arbitrarily shaped distributions. For instance,
GMMs are used to model driver behaviors for driver identifica-
tion in Ref. [22]. We believe that our work paves the way for
similarity search over GMMs, which will be beneficial for many
real world applications such as finding drivers with similar driv-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

ing behaviors.
To capture the similarity between a data Gaussian distribution

and a query Gaussian distribution, we choose Kullback-Leibler

divergence (KL-divergence) [10], a representative measure for
quantifying the similarity between two probability distributions.
KL-divergence is introduced in Ref. [19], and has then become
the commonest divergence measures used in practice [9].

It is well-known that KL-divergence is a non-metric measure
which violates the properties of a standard distance function in
metric spaces such as the Euclidean space with the Euclidean
distance. Specifically, it is asymmetric and does not satisfy the
triangular inequality. Hence, existing index structures based on
distance functions for metric spaces like M-tree [8] cannot be em-
ployed to solve this problem.

A naı̈ve solution is to sequentially compute the KL-divergence
with the query Gaussian distribution for each Gaussian distri-
bution in the database, and select ones with top-k smallest KL-
divergences. However, this method poses remarkable computing
overhead and hence is not scalable to large datasets. In conse-
quence, we employ the filter-and-refine paradigm to improve the
efficiency of query processing. It first generates a set of promis-
ing candidates and filters unpromising ones without computing
their similarities, and then candidate objects are refined to obtain
the final results.

We propose two types of approaches utilizing the notions of
rank aggregation [14] and skyline queries [6]. The first type pre-
sorts all objects in the database on their attributes and computes
result objects by merging candidates from presorted lists. We
modify the representative threshold algorithm (TA) [14] and pro-
pose two algorithms for efficient query processing. The second
one transforms the problem to the computation of dynamic sky-

line queries [23]. We extend and modify the branch-and-bound
skyline (BBS) algorithm [23], which is proposed to answer sky-
line queries, and develop a novel algorithm to solve this problem.

We note that although there have been several studies on
searching in non-metric spaces [7], [27], [28], [30], they are
mainly developed for the generic class of non-metric similarity
measures in discrete domains. None of them paid particular at-
tention to the case where objects are modeled in Gaussian distri-
butions and KL-divergence is chosen as the similarity measure.
To the best of our knowledge, our work is the first study in simi-
larity search based on KL-divergence over Gaussian distributions.

Our contributions are listed as follows.

(1) We formalize the problem of top-k similarity search based
on KL-divergence over Gaussian distributions, and analyze
mathematically the properties of KL-divergence between
two Gaussian distributions.

(2) We propose two types of approaches to improve the effi-
ciency of query processing using the notion of rank aggrega-
tion and skyline queries.

(3) We demonstrate the efficiency and effectiveness of our
approaches through a comprehensive experimental perfor-
mance study.

The rest of the paper is organized as follows. We formally de-
fine the problem in Section 2. Then we analyze KL-divergence
of Gaussian distributions in Section 3 and propose two types of
approaches in Section 4 and Section 5. Experimental results and
analyses are presented in Section 6. We review related work in
Section 7. Finally, Section 8 concludes the paper.

2. Problem Definition

2.1 Gaussian Distribution
In the one-dimensional space, a Gaussian distribution is de-

scribed by the average μ and the variance σ2:

p(x) =
1√

2πσ2
exp

[
− (x − μ)2

2σ2

]
. (1)

In the d-dimensional space, it is represented by the average vector
µ and the covariance matrix Σ [4]:

p(x) =
1

(2π)d/2|Σ|1/2 exp

[
−1

2
(x − µ)TΣ−1(x − µ)

]
. (2)

|Σ| (resp. Σ−1) is the determinant (resp. inverse matrix) of Σ. (·)T

means the transposition of (·). In this work, we assume that a
large number of objects represented by Gaussian distributions
are stored in the database. For simplicity, objects represented by
Gaussian distributions are called Gaussian objects, and Gaussian
objects in the database are called data Gaussian objects after-
wards.

2.2 Similarity Measure: KL-divergence
Given two continuous probability distributions p1(x) and

p2(x), the Kullback-Leibler divergence (KL-divergence) or rel-

ative entropy [10] between them is

DKL(p1‖p2) =
∫ +∞
−∞

p1(x) ln
p1(x)
p2(x)

dx. (3)

In information theory, KL-divergence DKL(p1‖p2) is inter-
preted as a measure of the inefficiency of assuming that the distri-
bution is p2 when the true distribution is p1 [10]. In other words,
it measures the information lost when p2 is used to approximate
p1. The smaller the KL-divergence is, the more similar the two
probability distributions are. Accordingly, the problem of KL-

divergence-based top-k similarity search over Gaussian distribu-

tions (KLD-Gauss) is actually equivalent to finding top-k Gaus-
sian objects having the smallest KL-divergences with the query
Gaussian object.

KL-divergence satisfies the following properties of standard
distance functions: 1) non-negativity: DKL(p1‖p2) ≥ 0; 2) iden-
tity: DKL(p1‖p2) = 0 if and only if p1(x) = p2(x). However,
it is not symmetric, i.e., DKL(p1‖p2) � DKL(p2‖p1) in general.
Moreover, it violates the notion of triangular inequality, namely,
DKL(p1‖p2) + DKL(p2‖p3) ≥ DKL(p1‖p3) does not necessar-
ily hold. In other words, KL-divergence is a non-metric mea-
sure [28]. Hence, index structures designed for query processing
in metric spaces such as M-tree [8] and iDistance [18] cannot be
applied to accelerate similarity search based on KL-divergence.

As KL-divergence is asymmetric, given a data Gaussian ob-
ject p and a query Gaussian object q, there are two options when

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

using it as the similarity measure between them: DKL(p‖q) or
DKL(q‖p). It is not easy to decide which one to use, and may
vary according to different applications. Both of them are com-
mon in the literature. Thus, in this paper, we study both types.

The naı̈ve approach of solving the KLD-Gauss problem is to
perform a sequential scan over all objects in the database and
compute their KL-divergences for each query. This approach is
obviously too time-consuming and will induce intolerable com-
putation cost for many real-world applications, especially over
large scale databases. To improve the efficiency of query pro-
cessing, we adopt the well-known filter-and-refine paradigm. The
rationale is to avoid unnecessary computations by developing ef-
fective filtering techniques.

In this paper, we propose two types of approaches for filter-
ing. They utilize the notions of rank aggregation [14] and skyline

queries [6], respectively. Below we first present our analysis of
KL-divergence of Gaussian distributions, and then introduce our
approaches.

3. KL-divergence of Gaussian Distributions

Given two one-dimensional Gaussian distributions p1(x) =
N(μ1, σ1) and p2(x) = N(μ2, σ2), their KL-divergence, denoted
as D1

KL(p1‖p2), is as follows [24]:

D1
KL(p1‖p2) =

1
2

⎡⎢⎢⎢⎢⎣ (μ1 − μ2)2

σ2
2

+
σ2

1

σ2
2

− ln
σ2

1

σ2
2

− 1

⎤⎥⎥⎥⎥⎦ . (4)

The two types of KL-divergence,D1
KL(p‖q) andD1

KL(q‖p), are
referred to asD1

KL1 andD1
KL2, respectively.

In the d-dimensional space, given p1(x) = N(µ1,Σ1) and
p2(x) = N(µ2,Σ2), Dd

KL(p1‖p2) is defined by

Dd
KL(p1‖p2) =

1
2

⎡⎢⎢⎢⎢⎢⎢⎣
d∑

i=1

⎛⎜⎜⎜⎜⎜⎝ (μ1,i − μ2,i)2

σ2
2,i

+
σ2

1,i

σ2
2,i

− ln
σ2

1,i

σ2
2,i

⎞⎟⎟⎟⎟⎟⎠ − d

⎤⎥⎥⎥⎥⎥⎥⎦ ,
(5)

where μ1,i (resp. μ2,i) is the i-th (1 ≤ i ≤ d) element of p1 (resp.
p2)’s average vector µ1 (resp. µ2). According to the independence
assumption, Σ1 and Σ2 are diagonal matrices and their diagonal
elements are denoted by σ2

1,i and σ2
2,i, respectively. Obviously,

Dd
KL =

∑d
i=1Di

KL, where Di
KL is the KL-divergence in the i-th

dimension.
Similarly, the two types of Dd

KL, Dd
KL(p‖q) and Dd

KL(q‖p), are
denoted by Dd

KL1 and Dd
KL2, respectively. Since they are sums

of the one-dimensional case, their properties of monotonicity in
each dimension are the same to that of D1

KL1 and D1
KL2, which

will be discussed subsequently.

3.1 D1
KL

(p‖q): D1
KL1

As the smaller D1
KL1 is, the more similar p is to q, we dif-

ferentiate D1
KL1 on p, specifically on μp and σ2

p, and obtain the
following equations:

∂D1
KL1

∂μp
=
μp − μq

σ2
q

(6)

∂D1
KL1

∂σ2
p
=
σ2

p − σ2
q

σ2
pσ

2
q
. (7)

Fig. 2 Property ofD1
KL1.

Fig. 3 Property ofD1
KL2.

By letting both Eq. (6) and Eq. (7) equal to 0, we derive the
following property illustrated in Fig. 2. The arrows indicate de-
creasing directions of KL-divergence. We use (μp − μq)2 as the
horizontal axis to make the figure easy to understand.

Property 1 D1
KL1 is a monotonically increasing function cen-

tered at (μq, σ
2
q) and divided by μp = μq, σ2

p = σ
2
q.

(1) As μp increases,D1
KL1 increases monotonically when μp >

μq, and decreases monotonically when μp < μq.
(2) As σ2

p increases,D1
KL1 increases monotonically when σ2

p >

σ2
q, and decreases monotonically when σ2

p < σ
2
q.

(3) D1
KL1 is minimized at μp = μq, σ2

p = σ
2
q, and its minimum

is 0.
Obviously, D1

KL1 is divisionally monotonous. The closer a
point is to the center (μq, σ

2
q) and the dividing lines μp = μq and

σ2
p = σ

2
q, the smaller D1

KL1 is. In other words, smaller |μp − μq|
and |σ2

p − σ2
q| lead to smallerD1

KL1.

3.2 D1
KL

(q‖p): D1
KL2

Similarly, we differentiateD1
KL2 on μp and σ2

p, and get the fol-
lowing equations:

∂D1
KL2

∂μp
=
μp − μq

σ2
p

(8)

∂D1
KL2

∂σ2
p
=
σ2

p − σ2
q − (μp − μq)2

σ4
p

. (9)

In the same way, by letting both Eq. (8) and Eq. (9) equal to 0,
we can obtain the following property illustrated in Fig. 3. It dif-
fers fromD1

KL1 in that its plane is divided by σ2
p = σ

2
q+ (μp−μq)2

instead of σ2
p = σ

2
q.

Property 2 D1
KL2 is a monotonically increasing function cen-

tered at (μq, σ
2
q) and divided by μp = μq, σ2

p = σ
2
q + (μp − μq)2.

(1) As μp increases,D1
KL2 increases monotonically when μp >

μq, and decreases monotonically when μp < μq.
(2) As σ2

p increases,D1
KL2 increases monotonically when σ2

p >

σ2
q + (μp − μq)2, and decreases monotonically when σ2

p <

σ2
q + (μp − μq)2.

(3) D1
KL2 is minimized at μp = μq, σ2

p = σ
2
q + (μp − μq)2, and

its minimum is 0.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

Similarly, the closer a point is to the center (μq, σ
2
q) and the di-

viding lines μp = μq and σ2
p = σ

2
q + (μp − μq)2, the smallerD1

KL2

is. Hence, smaller |μp − μq| and |σ2
p − σ2

q − (μp − μq)2| indicate
smallerD1

KL2.

4. TA-based Query Processing

The problem of sequential scan lies in that, it has to compute
KL-divergences of all objects in the database, even though only k

of them will be the answer. Based on this observation and mono-
tonic properties of KL-divergence discussed in Section 3, we con-
sider selecting a small number of promising candidate objects by
presorting to avoid computing KL-divergences for unpromising
objects. For example, in the one-dimensional case, we can sort
the database on μ and σ2 in advance, and only consider ones
whose μ and σ2 are close enough to that of q.

This is the basic idea of our first type of approaches, which uti-
lize the notion of rank aggregation [14]. Generally speaking, we
rank objects on each attribute and aggregate ones with high ranks
to obtain the final top-k objects. Below we use the representative
threshold algorithm (TA) [14] for description. To better solve the
KLD-Gauss problem, we propose novel algorithms by modifying
the TA algorithm. Below we first describe the TA algorithm and
then introduce our proposed algorithms.

4.1 The TA Algorithm
TA assumes that a middleware system S aggregates answers

to queries from various subsystems. Each subsystem S i supports
two modes of data access: sorted access and random access. In
the sorted access mode, S obtains the grade of an object in the
sorted list of S i by proceeding through the list sequentially from
the top. On the other hand, random access to S i returns the cor-
responding grade of a given id.

For example, consider a database of images in Table 1 with
two subsystems S color and S shape. S color returns images based
on their colors, and S shape is based on shapes. Given a query of
Q : (color = “red”) ∧ (shape = “round”), S merges images with
high redness grades in S color and high roundness grades in S shape

to obtain images satisfying the query.
Assume that Q requests top-3 images based on the score func-

tion sQ(x) = min{sred(x), sround(x)}, where sred(x) (resp. sround(x))
denotes the redness (resp. roundness) grade of image x. The left
table lists top-5 images with their grades in each subsystem. As-
sume we retrieve one image by each sorted access. First, we ob-
tain {sred(x1) = 0.96, sround(x2) = 0.95}. Other grades of x1 and
x2, sround(x1) = 0.76 and sred(x2) = 0.91, can be obtained via ran-
dom access. Thus, sQ(x1) = 0.76 and sQ(x2) = 0.91. The two im-
ages are both added into a result set R = {(x2, 0.91), (x1, 0.76)}. At
the same time, the threshold τ is kept τ = min{0.96, 0.95} = 0.95.

Table 1 An example of the TA algorithm.

Top images of subsystems
Rank sred(xi) sround(xi)

1 (0.96, x1) (0.95, x2)
2 (0.91, x2) (0.92, x3)
3 (0.85, x4) (0.85, x5)
4 (0.81, x3) (0.83, x4)
5 (0.72, x5) (0.76, x1)

Top images in result
Rank sQ(xi), attribute

1 (x2, 0.91), red
2 (x4, 0.83), round
3 (x3, 0.81), red

This is the possible best score of all images unprocessed. Once
scores of images in R are all no smaller than τ, the algorithm stops
and returns R.

Next, sred(x2) = 0.91 and sround(x3) = 0.92 are retrieved. Since
x2’s score has already been computed, we do random access only
for x3 and compute its score sQ(x3) = 0.81. Then x3 is added into
R and τ is updated to 0.91. In the next step, since x4 has a better
score than x1, we update R = {(x2, 0.91), (x4, 0.83), (x3, 0.81)} and
τ = 0.85. Finally, as x3 and x4 have already been processed, we
only need to update τ = 0.81. At this point, τ is no better than any
of images in R, i.e., no image unprocessed can have a better score
than that in R. Therefore, the algorithm terminates and returns R

as shown in the right table of Table 1. For ease of understanding,
we associate each score with its corresponding attribute, i.e., red
or round.

4.2 The Proposed Algorithms
To utilize TA, we redefine sorted access and random access

for the KLD-Gauss problem. Given an object id, random access

returns the corresponding average vector and covariance matrix.
We design two types of sorted access. The first one retrieves
μp, j or σ2

p, j (1 ≤ j ≤ d) and object id in the ascending order of
|μp, j − μq, j| or |σ2

p, j − σ2
q, j| (or |σ2

p, j − σ2
q, j − (μp, j − μq, j)2|, omit

afterwards). The second one gives access to D j
KL (1 ≤ j ≤ d)

and object id in the ascending order of D j
KL. They are called

CompleteTA (CTA) and PartialTA (PTA), respectively, and will
be detailed subsequently.
4.2.1 The CTA Algorithm

For CTA, we presort the database on μp, j and σ2
p, j (1 ≤ j ≤ d),

and get 2d sorted lists. For example, in Table 2 the left table
shows a list of 12 one-dimensional objects, and the right table
shows their sorted orders on μi and σ2

i (called S μ and S σ2 , re-
spectively). In the multidimensional case, for each dimension j,
we sort all objects on both μi, j and σ2

i, j and get 2d sorted lists:
(S μ,1, S σ2 ,1), . . . , (S μ,d, S σ2 ,d). By default, in each dimension j,
the sorted access to each list of average returns an object p with its
average μp, j in the ascending order of |μp, j − μq, j|, and the sorted
access to each list of variance returns another object g with its
variance σ2

g, j in the ascending order of |σ2
g, j − σ2

q, j|.
Algorithm 1 shows the straightforward application of the TA

algorithm using the redefined random access and sorted access.
The algorithm runs by dimensions. In each dimension j, we re-
trieve an object ga with its average μa, j by sorted access to the
list of average. The average value of the retrieved object, μa, j, is

Table 2 An example dataset and its sorted orders.

gi μi σ2
i

g1 2 2.5
g2 3.5 2.1
g3 5 2.7
g4 7 2.4
g5 9 2.5
g6 8 1.8
g7 4 0.7
g8 6 1.2
g9 6.4 1.1
g10 9 0.8
g11 8.5 0.2
g12 10.6 0.5

Order S μ S σ2

1 (2, g1) (0.2, g11)
2 (3.5, g2) (0.5, g12)
3 (4, g7) (0.7, g7)
4 (5, g3) (0.8, g10)
5 (6, g8) (1.1, g9)
6 (6.4, g9) (1.2, g8)
7 (7, g4) (1.8, g6)
8 (8, g6) (2.1, g2)
9 (8.5, g11) (2.4, g4)

10 (9, g10) (2.5, g1)
11 (9, g5) (2.5, g5)
12 (10.6, g12) (2.7, g3)

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

Algorithm 1 The straightforward CTA algorithm

1: Initialize the top-k list R and the query q (μq, σ
2
q);

2: repeat

3: foreach dimension j do

4: SortedAccessavg()→ (μa, j, ga);

5: SortedAccessvar()→ {(σ2
v, j, gv), (σ

2
v, j, gv

)};
6: if Any of ga, gv, gv

has not been accessed then

7: Do RandomAccess and calculate its KL-divergence;

8: Update R;

9: end if

10: end for

11: Let μ j, σ
2
j , σ

2
j be the last values accessed by SortedAccess;

12: μ← {μ j |1 ≤ j ≤ d}; σ2 ← {σ2
j |1 ≤ j ≤ d}; σ2 ← {σ2

j |1 ≤ j ≤ d};
13: τ← min{CalcKLD(μ, σ2), CalcKLD(μ, σ2)};
14: until |R| = k and KL-divergences in R are all no greater than τ;

15: return R;

closest to that of the query, μq, j, i.e., |μa, j − μq, j| is the smallest.
If there is a tie, i.e., there are two objects ga and ga′ satisfying
|μa, j − μq, j| = |μa′ , j − μq, j| = Δμ, we can break it randomly since
the algorithm relies on τ and the computation of τ depends on Δμ
not μa, j or μa′ , j.

On the other hand, because of the asymmetry of KL-divergence
discussed in Section 2, each sorted access to the list of variance
should return two objects in the two directions ofσ2

v, j : σ2
v, j ≥ σ2

q, j

and σ2
v, j : σ2

v, j < σ
2
q, j (one in each direction) instead of one object

to ensure correctness. We explain it using the following example.
Consider a query q with μq = 5, σ2

q = 1 and k = 3. In the first
step, while we retrieve (5, g3) from S μ, from S σ2 both (1.1, g9)
and (0.8, g10) need to be retrieved (in bold) to ensure correctness
because we do not know which of them will have a smaller KL-
divergence with respect to q. If we retrieve only (1.1, g9) and find
(5, 0.8) has a smaller KL-divergence than that of (5, 1.1) with re-
spect to q when computing τ, τ will be larger than it is supposed
to be and this may lead to a wrong result. In other words, we
start processing from the entries in bold and continue searching
in both directions.

If an object is accessed for the first time by sorted access, we
obtain its average vector and covariance matrix by random ac-
cess and calculate its KL-divergence (Line 6–7). For example,
we do random access for g3, g9 and g10, and compute their KL-
divergences (D1

KL1 is used for computing KL-divergences in this
example).

Then we update the top-k list R as follows. When |R| < k, the
object with its KL-divergence is added to R directly. When |R|
achieves k, if its KL-divergence is better than any entry in R, we
add it into R and delete the entry with the largest KL-divergence
so that R only maintains the best k objects. Meanwhile, we com-
pute the threshold τ using the last accessed average and variance
values (Line 11–13). As τ is the best KL-divergence of all objects
unseen, the algorithm terminates when KL-divergences in R are
all no greater than τ.

We show the processing steps of the example query in Ta-
ble 3. Continuing with the example, we update R = {(g3, 0.35),
(g9, 0.98), (g10, 8.01)}. At the same time, we compute KL-
divergences of (5, 1.1) and (5, 0.8) with respect to the query (5, 1),
and update τ as the smaller one, which is 0.002.

Table 3 Query processing using the straightforward CTA.

Step Retrieved objects R τ

1 g3, (g9, g10) (g3, 0.35), (g9, 0.98), (g10, 8.01) 0.002
2 g7, (g7, g8) (g3, 0.35), (g8, 0.508), (g7, 0.53) 0.508
3 g8, (g6, g12) (g3, 0.35), (g8, 0.508), (g7, 0.53) 0.597

Table 4 Query processing using the improved CTA.

Step Retrieved objects R τ

1 g3, g9 (g3, 0.35), (g9, 0.98) 0.002
2 g7, g8 (g3, 0.35), (g8, 0.508), (g7, 0.53) 0.508
3 g8, g10 (g3, 0.35), (g8, 0.508), (g7, 0.53) 0.512
4 g9, g7 (g3, 0.35), (g8, 0.508), (g7, 0.53) 1.01

In the second step, (4, g7) from S μ, (1.2, g8) and (0.7, g7) from
S σ2 , are retrieved. Since KL-divergences of g7 and g8 are smaller
than that of g9 and g10, we update R as {(g3, 0.35), (g8, 0.508),
(g7, 0.53)} and τ = 0.508. In the last step, we retrieve (6, g8) from
S μ, (1.8, g6) and (0.5, g12) from S σ2 . R stays the same, but τ is
updated to 0.597. Finally, as all the objects in R have no greater
KL-divergences than τ, we stop searching and return R.

In each step, as the straightforward algorithm retrieves two ob-
jects with respect to the variance in a brute-force way, it tends to
do many unnecessary accesses. We avoid them by considering
the priority of the object in each direction and access only one in
each step. We derive the following lemma to guide the algorithm
(see the proof in A.1).

Lemma 1 (1) Assume |μp, j−μq, j| = |μp′ , j−μq, j| (1 ≤ j ≤ d)
andσ2

p,m = σ
2
p′ ,m (1 ≤ m ≤ d,m � j). Ifσ2

p, j > σ
2
q, j,σ

2
p′ , j < σ

2
q, j,

and (σ2
p, j − σ2

q, j) ≤ (σ2
q, j − σ2

p′ , j), thenDKL(p||q) < DKL(p′||q).
(2) Assume |μp, j − μq, j| = |μp′ , j − μq, j| (1 ≤ j ≤ d) and
σ2

p,m = σ
2
p′ ,m (1 ≤ m ≤ d,m � j). If σ2

p, j > σ
2
q, j + (μp, j − μq, j)2,

σ2
p′ , j < σ

2
q, j + (μp′ , j − μq, j)2, and (σ2

p, j − σ2
q, j − (μp, j − μq, j)2) ≤

(σ2
q, j + (μp′ , j − μq, j)2 − σ2

p′ , j), thenDKL(q||p) < DKL(q||p′).
Based on Lemma 1, during the bidirectional search over the

variance, when an object p with σ2
p, j > σ

2
q, j is obtained, we only

need to consider another object p′ with σ2
p′ , j < σ

2
q, j, if σ2

p′ , j is
nearer to σ2

q, j (or σ2
q, j+ (μp′ , j−μq, j)2) than that of p. For example,

in the first step, in S σ2 when comparing (1.1, g9) with (0.8, g10),
since (1.1 − 1) ≤ (1 − 0.8), we only retrieve g9 and delay the re-
trieval of g10. In other cases, we compare their KL-divergences
using the current average value μ j obtained, i.e., KL-divergences
of (μ j, σ

2
p, j) and (μ j, σ

2
p′ , j), and select the one with a smaller KL-

divergence with respect to q.
We show the running steps of the improved CTA algorithm

in Table 4. At first, we retrieve (5, g3) from S μ. Meanwhile,
we retrieve (1.1, g9) from S σ2 based on Lemma 1 as explained
above. Accordingly, we update R and τ. Then we continue to
retrieve (4, g7) from S μ. Since (1.2 − 1) ≤ (1 − 0.8), we retrieve
(1.2, g8) from S σ2 based on Lemma 1 and update R and τ accord-
ingly. In the third step, when comparing (1.8, g6) with (0.8, g10)
in S σ2 , because they do not satisfy Lemma 1, we compute their
KL-divergences using the current average value μ8 = 6. In other
words, we compare KL-divergences of (6, 1.8) and (6, 0.8) with
respect to (5, 1). Then g10 is selected. As we can see, while the
straightforward CTA algorithm accessed 7 objects, the improved
one only retrieved 5 objects with one additional step.
4.2.2 The PTA Algorithm

For PTA, in each dimension we construct a two-dimensional

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

R-tree of all data Gaussian objects. When a query q comes, by
using the skyline-based approach described in Section 5, we can
obtain the top objects with the smallest Di

KL with respect to q in
each dimension i (detailed in Section 5.6). The PTA algorithm
is similar to the CTA algorithm, except that we retrieve objects
based on Di

KL instead of μi and σ2
i with respect to q, and τ is

calculated by τ =
∑d

i=1Di
KL.

Next, we introduce another approach, which transforms the
KLD-Gauss problem to dynamic skyline queries [23] by using the
notion of skyline queries [6].

5. Skyline-based Query Processing

In this section, by utilizing the properties of KL-divergence and
Gaussian distributions, we propose another approach for solv-
ing the KLD-Gauss problem. We extend and modify the BBS
(Branch-and-Bound Skyline) algorithm [23], which is proposed
to answer skyline queries. Below we first introduce the concept
of skyline queries and the BBS algorithm, and then describe our
extensions and the proposed algorithm.

5.1 Skyline Queries and Dynamic Skyline Queries
Given a dataset D, a skyline query [6] returns all the objects

not dominated by others within D. pi is said to be dominated by
p j, if p j is better than pi on at least one attribute, and better than
or equals to pi on other attributes. A common example is, given a
list of hotels with prices and distances from a beach, to find ones
having the lowest prices and the shortest distances. A hotel with
$200 and 1 km from the beach is preferable to (dominate) the one
of $250 and 1.5 km.

A dynamic skyline query, a variation of a skyline query, re-
turns all the objects that are not dynamically dominated with re-
spect to a set of dimension functions f1, f2, . . . , fm specified by the
query [23]. Each function fi takes as parameters a subset of the
n attributes in the original n-dimensional space. The objective is
to return the skyline in the new m-dimensional space defined by
f1, f2, . . . , fm.

Continuing with the hotel example, assume for each hotel we
store its x and y coordinates and price c (3-dimensional) infor-
mation in the database. Dynamic skyline queries can be used
to retrieve hotels that are closest to a specified location (xu, yu)
and price cu. In other words, closeness functions are defined by
f1 =

√
(x − xu)2 + (y − yu)2, and f2 = |c − cu|. Note that (xu, yu)

and cu normally vary with queries.
In Ref. [23], Papadias et al. proposed the BBS algorithm for

processing skyline queries. They proved that BBS is I/O opti-
mal; that is, it accesses the least number of disk pages among
all algorithms based on R-trees. Hence, the following discussion
concentrates on this technique.

5.2 The BBS Algorithm
Consider the task of computing the skyline of the example

dataset in Table 2, i.e., finding objects with the smallest averages
and variances. According to BBS, we construct an R-tree to index
all objects. Each Gaussian object is inserted into the R-tree as a
two-dimensional point (μi, σ

2
i). Its image and hierarchical struc-

ture are shown in Fig. 4 and Fig. 5. Each group of objects, i.e.,

Fig. 4 R-tree image.

Fig. 5 R-tree structure.

an R-tree node, is represented by an MBR (Minimum Bounding
Rectangle).

A priority queue Q is employed to maintain entries (R-tree
nodes or Gaussian objects) to be accessed in the ascending or-
der of mindist. The mindist of an entry, is the smallest cityblock
(L1) distance of its MBR to a reference point. For example, the
mindist of N1 to the origin O is calculated by summing up the
length of OA and AB, where B is the lower-left point of N1, and
A is the projection of B on the μp-axis. The mindist of a Gaussian
object to O, e.g., g1 = (2, 2.5), is simply its L1 distance to O, i.e.,
2 + 2.5 = 4.5.

We use the example in Fig. 4 to illustrate the algorithm. After
expanding the root node, entries in Q are {(N1, 3.8), (N2, 4.2)}.
Then we expand N1 and insert N11, N12 into Q. Q becomes
{(N11, 4.1), (N2, 4.2), (N12, 8.8)}. When expanding N11, since g3

is dominated by g1 (and g2), it is rejected. After expanding N2, Q

= {(g1, 4.5), (N21, 4.7), (g2, 5.6), (N22, 8.7), (N12, 8.8)}.
Next g1 is added into a candidate set S as the first skyline

object. Since N21 is not dominated by g1, it is expanded and
g7 is inserted into Q. Then Q = {(g7, 4.7), (g2, 5.6), (N22, 8.7),
(N12, 8.8)}. g7 and then g2 are both added into S because g7 is not
dominated by g1, and g2 is not dominated by g7 and g1. Subse-
quently, expanding N22 leads to another candidate g11. The last
entry N12 will not be expanded as it is dominated by g7. Finally,
S = {g1, g7, g2, g11} is returned as the skyline result.

BBS can be applied to compute dynamic skylines by expand-
ing entries in Q according to mindist in the dynamic space [23].
In others words, we compute mindist with respect to the query
object q instead of the origin O. Dynamic skylines can be com-
puted in the same way except that the mindist of each entry in
Q will be changed (each mindist is computed on-the-fly when the
entry is considered for the first time). Assuming f1 = |μp−μq| and
f2 = |σ2

p − σ2
q|, the dynamic skyline result of the query q = (5, 1)

in Fig. 4 is {g3, g8, g9}.

5.3 Transformation and Extension
According to Section 3, the closer μp is to μq, σ2

p is to σ2
q,

the smaller KL-divergence is. This is analogous to a dynamic
skyline query by assuming f1 = |μp − μq|, f2 = |σ2

p − σ2
q| (or

f2 = |σ2
p−σ2

q− (μp−μq)2|). Hence, we transform the KLD-Gauss

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

problem to computing the dynamic skyline with respect to q.
In Ref. [23], BBS is applied directly to compute dynamic sky-

lines. However, we note that since KL-divergence is asymmet-

ric over σ2
i , the two subspaces divided by σ2

p = σ
2
q (or σ2

p =

σ2
q + (μp − μq)2) should be treated separately when we use BBS.

In each dimension, we need to maintain two priority queues, and
merge two result sets to obtain the final top-k objects. This is
obviously inefficient and would incur extra computation cost.

Note that a straightforward method is to use iterative skyline
computation according to the property that the top-1 object, based
on any monotone ranking function, must be one of the skyline ob-
jects [17]. After deleting the top-1 object from our consideration,
we recompute dynamic skyline objects. Then we select the top-
2 object among them. Top-3, 4, . . . , k objects are computed in a
similar way. This method would also lead to heavy cost.

The two concerns motivate us to propose a more efficient ap-
proach. We develop our ideas by extending the BBS algorithm.
For ease of presentation, we describe our approach using D1

KL1

and present necessary modifications in Section 5.5.
Because of the asymmetry of KL-divergence, we can only de-

termine the dominance relationship between an object and each
entry in the same subspace where the object locates, and cannot
conclude whether it dominates any entry in the other subspace
directly. For example, in Fig. 4 we can directly determine that g8

dominates N12. However, we do not know whether g8 dominates
g7 or N22. As a result, the dynamic skyline in each subspace has
to be computed separately.

In order to reduce the cost caused by separate subspace compu-
tation, we consider enhancing the filtering power of each object
from the subspace where it locates to the other subspace. If the
dominance relationship between the two subspaces can be deter-
mined, we only need to maintain one priority queue and compute
the two dynamic skylines together. To this end, for each point in
one subspace, we find its counterpoint in the other subspace so
that it can be used for filtering in that subspace.

This idea is confirmed by the properties of KL-divergence dis-
cussed in Section 3.1. Since KL-divergence shows monotonic-
ity in both sides of σ2

p = σ
2
q and is minimized at σ2

p = σ
2
q, for

each point g in one subspace there must be one and only one
corresponding point g′ that satisfies μg′ = μg and D1

KL(g′‖q) =
D1

KL(g‖q). We call g′ the equal-KLD point of g. The two equa-
tions produce σ2

g′ − σ2
q lnσ2

g′ = σ
2
g − σ2

q lnσ2
g. Because of its

complexity, there is no analytical solution for σ2
g′ . We compute

σ2
g′ numerically by the Newton method and use its approxima-

tion (a slightly larger value to ensure correctness) instead. For
example, the equal-KLD point of g8 = (6, 1.2) is g′8 = (6, 0.82),
which can be used to filter entries such as N22 additionally (i.e.,
g′8 dominates N22).

We formally define the equal-KLD point as follows.
Definition 1 (equal-KLD point) Given a Gaussian point g, g′

is the equal-KLD point of g, if g′ satisfiesD1
KL(g′‖q) = D1

KL(g‖q).
Accordingly, we extend the definition of dynamically dominate

to dynamically KLD-dominate as follows.
Definition 2 (dynamically KLD-dominate) Given a Gaus-

sian point g and an entry e, g dynamically KLD-dominates e, if
g’s equal-KLD point g′ dynamically dominates e.

For example, by computing g8’s equal-KLD point g′8 =
(6.01, 1.1), we can conclude that g8 dynamically KLD-dominates

g9 = (6.4, 1.1) since g′8 dynamically dominates g9. As g is an
equal-KLD point of itself, we can equally say g dynamically

KLD-dominates e, if g dynamically dominates e. The relation-
ship of g dynamically KLD-dominates e guarantees that the KL-
divergence of g is smaller than that of any object within e.

To reduce the overhead of iterative skyline computation, we
modify the way of dominance checking that the BBS algorithm
does. We sort all candidates in the ascending order of KL-
divergence. For each entry in the priority queue, we check the
dominance relationship from the k-th candidate to the last one in-
stead of checking all candidates as BBS does. If all entries are
dynamically KLD-dominated by these “inferior” (from k to the
last) candidates, the “superior” top-(k-1) and the first “inferior”
candidates will be the final top-k result.

5.4 The Proposed Algorithm: SKY
Based on the discussion above, we propose the SKY algorithm

shown in Algorithm 2. An R-tree is employed to index averages
and variances of all Gaussian objects in the database. Given the
constructed R-tree, a query Gaussian object q, and a constant k,
the algorithm returns the top-k Gaussian objects having the small-
est KL-divergences with q.

The algorithm begins from the root node and continues until
all entries in the priority queue Q are processed. When check-
ing the top entry e of Q against the candidate set S (Line 6), if
|S | < k, we add it to S if it is an Gaussian object, and expand
it in the case of an R-tree node. Otherwise (i.e., |S | ≥ k), we
sort S in the ascending order of KL-divergence, and compare e

against “inferior” candidates in S , i.e., from the k-th candidate
until the last one. In this way, we can avoid the expensive itera-
tive dynamic skyline computation. We reject e if it is dynamically

KLD-dominated by S . If not, it is either added into S with its di-
vergence (when e is a Gaussian object) or expanded (when e is

Algorithm 2 Skyline-based query processing algorithm
1: procedure KLD Query SKY(R-tree, q, k)

2: Q← (0,Root); � Initialize Q with the Root of R-tree

3: S ← ∅; � Initialize the candidate set

4: while Q is not empty do

5: e← Q.top(); Q.pop();

6: Check e against S ;

7: if e is not dynamically KLD-dominated by S then

8: if e is a Gaussian object g then

9: Add g and its KL-divergence into S ;

10: else � e is an R-tree node N

11: foreach child Ni do

12: Check Ni against S ;

13: if Ni is not dynamically KLD-dominated by S then

14: Q.push(Ni, mindist(Ni));

15: end if

16: end for

17: end if

18: end if

19: end while

20: return top-k of S ;

21: end procedure

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

an R-tree node). In the expansion of an R-tree node N, we check
each of its child nodes Ni against S and insert Ni to Q if Ni is not
dynamically KLD-dominated by S . Finally, the top-k candidates
of S will become the result.

Another problem is that, there still will be quite a long list of
entries in Q waiting for dominance checking. In order to prune
non-promising entries, for each “inferior” candidate p, we derive
its maximum mindist (mmdist) using the Lagrange multiplier.

maximize
μp ,σ

2
p

mmdist = |μp − μq| + |σ2
p − σ2

q|

subject to
1
2

⎡⎢⎢⎢⎢⎢⎣ (μp − μq)2

σ2
q

+
σ2

p

σ2
q
− ln
σ2

p

σ2
q
− 1

⎤⎥⎥⎥⎥⎥⎦ = C.

To guide the algorithm based on mmdist, we further derive the
following lemma (see the proof in A.2).

Lemma 2 Any entry (Gaussian object or R-tree node) whose
mindist is larger than mmdist of an object g will be dynamically

KLD-dominated by g.
According to Lemma 2, we only need to consider entries with

mindist < mmdist so that the searching process can be finished
early. We note that this filtering technique only works for D1

KL1.
In other cases, all entries in Q have to be processed.

We use the example in Fig. 4 to illustrate our algorithm in the
case of D1

KL1. Assume k = 3. After expanding the root node,
Q = {(N2, 0), (N1, 0.8)}. Then we expand N2 and Q = {(N21, 0),
(N1, 0.8), (N22, 3.7)}. Next, N21 is expanded and g7, g8, g9 are
inserted into Q. Entries in Q are {(N1, 0.8), (g8, 1.2), (g7, 1.3),
(g9, 1.5), (N22, 3.7)}.

After expanding N1, Q is {(N11, 1.1), (g8, 1.2), (g7, 1.3),
(g9, 1.5), (N12, 2.8), (N22, 3.7)}. Then N11’s child objects g1, g2,
g3 are inserted into Q. Thus, Q = {(g8, 1.2), (g7, 1.3), (g9, 1.5),
(g3, 1.7), (g2, 2.6), (N12, 2.8), (N22, 3.7), (g1, 4.5)}.

The top three entries g8, g7, g9 with KL-divergences are added
into S successively and S = {(g8, 0.51), (g7, 0.53), (g9, 0.98)}.
At the same time, we compute the mmdist of g9, which is 4.03,
and keep δ = 4.03. Next, since g3 is not dynamically KLD-

dominated by g9, it is inserted into S and S = {(g3, 0.35),
(g8, 0.51), (g7, 0.53), (g9, 0.98)}. The mmdist of g7 is 2.40 < 4.03.
Thus, δ is updated to 2.40. Since the mindist of g2 is larger than δ,
the algorithm stops and returns {(g3, 0.35), (g8, 0.51), (g7, 0.53)}.

5.5 Extending the Skyline-based Approach
The case of D1

KL2 can be processed similarly except the filter-
ing technique based on mmdist cannot be applied. In the multi-
dimensional case, the algorithm is the same to the one shown in
Algorithm 2. A 2d-dimensional R-tree is constructed to index
d-dimensional Gaussian objects in the database. The following
definitions and computations will replace their counterparts in the
one-dimensional case: (1) mindist =

∑d
i=1(|μp,i−μq,i|+|σ2

p,i−σ2
p,i|)

(2) Compute equal-KLD point based on Dd
KL1 or Dd

KL2. (3) An
object g dynamically KLD-dominates an entry e, if g’s equal-KLD

point g′ dynamically dominates e in all dimensions.

5.6 Application to the PTA Algorithm
As discussed in Section 4.2.2, in each dimension PTA accesses

the top objects with the smallest Di
KL using the skyline-based

Table 5 A two-dimensional example dataset.

gi μi,1 σ2
i,1 μi,2 σ2

i,2

g1 6.0 0.8 5.8 2.0
g2 6.0 3.0 6.4 1.6
g3 8.2 1.2 3.1 1.6
g4 2.5 3.4 4.7 0.9

Fig. 6 R-tree image (d = 1).

Fig. 7 R-tree image (d = 2).

method SKY. Since PTA performs multiple sorted accesses in
each dimension, we need to maintain all dominated entries in-
stead of rejecting them as SKY does. We associate each “infe-
rior” candidate with all entries dominated by it, and release them
for further processing when this candidate becomes “superior” in
the next sorted access.

We use the following example two-dimensional dataset shown
in Table 5 to illustrate the PTA algorithm. We construct an R-tree
in each dimension. Their R-tree images in the first dimension and
the second dimension are shown in Fig. 6 and Fig. 7, respectively.

Consider the same query q = (5.0, 2.0; 6.0, 1.5) with k = 2.
Assume that we retrieve two objects in each dimension. At
first, in the first dimension after expanding the root node in
Fig. 6, we obtain Q1 = {(N1, 1.0), (N2, 1.8)} where Q1 is a pri-
ority queue maintaining entries (R-tree nodes and Gaussian ob-
jects) to be processed in the ascending order of their mindists
from q. Then we expand N1 and insert its two child Gaus-
sian objects, g2 and g4, into Q1 = {(N2, 1.8), (g2, 2.0), (g4, 3.9)}.
Next, we expand N2 in the same way and obtain Q1 =

{(g2, 2.0), (g1, 2.2), (g4, 3.9), (g3, 4.0)}. The next entries, g2 and
g1, are added into the candidate set S 1 successively with their
KL-divergences in this dimension, S 1 = {(g2, 0.297), (g1, 0.408)}.
At the same time, we compute the mmdist of g1 and assign it to
δ1 = 3.904. Since the mindist of the next entry g4 is smaller
than δ1, i.e., 3.9 < 3.904, we continue to check g4. When check-
ing it against S 1, we find that g4 is dynamically KLD-dominated

by g1. Hence, we add it to the dominating list of g1, and obtain
S 1 = {(g2, 0.297), (g1, 0.408, {(g4, 3.9)})}. At this time, we have
Q1 = {(g3, 4.0)}. Since the mindist of the next entry g3 is larger
than δ1, based on Lemma 2 we stop searching and return g2 and
g1 with the second smallest D1

KL = 0.408.
In the second dimension, we calculate the smallest D2

KL in the
same way as D1

KL in the first dimension. After expanding the root
node in Fig. 7, we obtain Q2 = {(N2, 0.1), (N1, 1.3)}. Then we ex-
pand N2 and obtain Q2 = {(g2, 0.5), (g1, 0.7), (N1, 1.3)}. Next, we
add g2 and g1 into S 2 successively with their KL-divergences in

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

this dimension, S 2 = {(g1, 0.036), (g2, 0.054)}. At the same time,
we compute the mmdist of g2 and assign it to δ2 = 0.897. Since
the mindist of the next entry in Q2 = {(N1, 1.3)} is larger than δ2,
again based on Lemma 2 we stop searching and return g1 and g2

with the second smallest D2
KL = 0.054.

What follows is that the algorithm will compute the overall KL-
divergences of g2 and g1 in the two dimensions (0.35 and 0.44),
respectively, and update τ = D1

KL + D2
KL = 0.462. Since the sec-

ond smallest KL-divergence 0.44 is larger than τ, we first release
(g4, 3.9) from S 1 to Q1 and delete the entries of g1 and g2 from S 1

and S 2, and then repeat the same process in the next round until
the kth smallest KL-divergence is no larger than τ.

6. Experiments

6.1 Experimental Setup
We generate both data Gaussian distributions and query Gaus-

sian distributions randomly under the same setting. Each average
value is generated from (0, 1000), and each variance value is gen-
erated from (0, 100). The parameters tested in our experiments
and their default values (in bold) are summarized in Table 6. To
test the effect of data distribution, we also generate three datasets
with independent, correlated, and anti-correlated distributions, re-
spectively, using the standard skyline data generator in Ref. [6].

We compare our TA-based algorithms CTA, PTA and skyline-
based algorithm SKY, with the sequential scan methods SS and
the extended BBS algorithm BBS. In each dimension i (1 ≤
i ≤ d), BBS processes objects in the two subspaces divided by
σ2

p,i = σ
2
q,i (or σ2

p,i = σ
2
q,i + (μp,i − μq,i)2) separately. In other

word, it maintains 2d priority queues and compute each top ob-
ject by merging candidate objects from these priority queues.

During the preprocessing, we build a 2d-dimensional R-tree
for SKY and BBS. Each Gaussian distribution is inserted as a 2d-
dimensional point, consisting of the d-dimensional average vector
and d-dimensional variance vector. For PTA, we construct d two-
dimensional R-trees. Each two-dimensional R-tree maintains the
average and variance value in the i-th dimension (1 ≤ i ≤ d),
and provides sorted access to the ranked Di

KL and object id (see
Section 4). Random access is supported by an Gaussian object
list in the order of object id. All R-trees and lists are stored in the
secondary memory.

In each experiment, we run 100 queries and use the average
runtime for performance evaluation. We do not consider I/O
access because the system tends to load all indices into main
memory upon reading and the runtime is mainly spent on CPU.
All experiments are conducted using a workstation with Intel
Xeon(R) CPU E3-1241 v3 (3.50 GHz), RAM 16 GB, running
Ubuntu 12.10 LTS.

6.2 Performance Evaluation
We first compare SKY with BBS. While SKY takes about 0.02

Table 6 Parameters for testing.

Parameter Testing Range
k 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
data size 1 k, 10 k, 100 k, 1000 k, 10000 k
dimension 1, 2, 3, 4, 5
distribution independent, correlated, anti-correlated

seconds using both the first type and the second type of KL-
divergence (called KLD1 and KLD2 afterwards), BBS takes 2.45
seconds for KLD1, and 0.23 seconds for KLD2. This demon-
strates the effectiveness of our extension and modification to the
basic BBS algorithm. Because of the uneven property of KLD2
shown in Fig. 3, most of objects are assigned to the same prior-
ity queue. Consequently, BBS spends less time using KLD2 than
that using KLD1. We leave BBS out of our consideration in the
following experiments because of its clear inefficiency.
6.2.1 Effect of k

Intuitively, a larger k incurs more cost, since retrieving more
objects potentially leads to more computations. The constantly
increasing runtime of PTA, CTA and SKY shown in Fig. 8 fol-
lows this intuition. SS is an exception of this intuition since it
computes KL-divergence for all data Gaussian objects regardless
of k. CTA and SKY outperform SS over all k, and PTA performs
better than SS when k < 100 for KLD1 (k < 60 for KLD2). The
difference is that PTA displays the most significant increase while
the runtime of CTA rises more slowly, and SKY still keeps the low
runtime as k increases. Even when k is 100, the runtime of SKY

is only 12% of that of SS.
That’s because the TA-based approaches, CTA and PTA, re-

trieve many objects iteratively based on their partial information
in each dimension (average, variance or KL-divergence), and they
need to retrieve much more objects with a larger k. On the other
hand, SKY retrieves less objects based on their full information
in all dimensions and thus costs less runtime. Especially, PTA

needs to maintain all intermediate entries and compute the dy-
namic skyline to retrieve candidate objects in each dimension.
Thus, it takes even more runtime than CTA, which retrieves can-
didates more easily by sorted access to presorted lists.
6.2.2 Effect of Data Size

Figure 9 shows the scalability of the four approaches. All of
them consume more runtime with a larger data size. SS exhibits
the worst scalability to large scale datasets, while SKY demon-
strates the best. The performance of PTA and CTA is between
them with that CTA performs better.

When the data size increases, the density of objects in the space
becomes larger. This means that there will be more objects with

Fig. 8 Effect of k.

Fig. 9 Effect of data size.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

Fig. 10 Effect of dimension.

Fig. 11 Improvement with increasing data size.

Fig. 12 Effect of data distribution.

similar averages, variances or KL-divergences in one dimension
but different in other dimensions. As a result, PTA and CTA suf-
fer more from ineffective retrievals and thus perform worse than
SKY, which has better scalability due to its more effective re-
trieval by R-tree. Especially, SKY and CTA outperform SS when
the data size is larger than 10 k and are much better with the in-
creasing data size.
6.2.3 Effect of Dimensionality

As shown in Fig. 10, dimensionality affects the proposed ap-
proaches greatly, while it has little effect on SS. Since PTA and
SKY both utilize R-trees for indexing and the performance of R-
tree degrades with the increasing dimension d, their runtime rises
very fast. The runtime of PTA rises even faster since in each di-
mension it retrieves objects based on partial information and this
results in much more ineffective retrievals, i.e., it retrieves much
more unpromising objects. CTA spends more runtime with in-
creasing d due to the similar reason as PTA that it does much
more ineffective retrievals.

When d is larger than 3, they deteriorate significantly and are
defeated by SS. This indicates that our proposed approaches are
more efficient in low dimensions less than 4. Moreover, their per-
formance will be improved with a larger data size. For example,
as shown in Fig. 11, when d = 3, the advantage of CTA and SKY

over SS is more obvious when the data size increases from 1000 k
to 10000 k.
6.2.4 Effect of Data Distribution

In Fig. 12, we show the effect of data distribution on the four
approaches. Generally, the runtime of all approaches does not
vary greatly over the three different distributions. CTA shows the
most apparent decrease over correlated and anti-correlated dis-
tributions since it depends directly on the average or variance of

each object in each dimension. Correlations mean that objects
are concentrated in the center and thus decrease the number of
ineffective retrieval on average. It is clear that SKY has the best
performance. This demonstrates the capability of our proposed
approaches over different data distributions.
6.2.5 Index Construction

As preprocessing, we build R-trees and lists to support efficient
query processing. In each experiment, we build a 2d-dimensional
R-tree for SKY and BBS, and d two-dimensional R-trees for PTA.
When using the default dataset (d = 2, data size = 1000 k), the
index construction time is about 5 seconds for building a four-
dimensional R-tree, and is about 7 seconds for building 2 two-
dimensional R-trees. The lists include an object list for random
access in CTA and PTA, and d sorted lists for sorted access in
CTA and PTA. The time for building these two kinds of lists us-
ing the default dataset is about 1 second and 9 seconds, respec-
tively. When the data size or d varies, the construction time varies
proportionally. In view of the performance improvement shown
in previous sections, the preprocessing cost of our proposed ap-
proaches is rather low.

7. Related Work

In this work, we proposed query processing approaches for
top-k similarity search over Gaussian distributions based on KL-
divergence, a non-metric similarity measure. Skopal et al. [28]
surveyed the domains employing non-metric functions for simi-
larity search, and methods for efficient and effective non-metric
similarity search. To improve the searching efficiency, a class of
approaches adopt the indexing strategy based on analytic prop-
erties. They analyze the properties of a specific similarity func-
tion, and develop special access methods for that function. An-
other advantage is their ability to support both exact and approxi-
mate search. Our work falls into this category and supports exact
search.

Other approaches are based on statistical methods. For the
efficiency, they perform costly preprocessing by suitably clus-
tering or transforming the original database into another space
such as the metric space based on the distance distribution
statistics, so that existing metric indexing methods can be em-
ployed [7], [27], [28]. One drawback is that they cannot pro-
vide exact results. Furthermore, expensive preprocessing is often
needed prior to the indexing itself. On the contrary, our proposed
approaches have low preprocessing cost and support exact simi-
larity search.

As a general class of similarity measures including KL-
divergence, Bregman divergence has also led to a stream of re-
search work to develop various algorithms. For example, [3] pro-
posed clustering approaches with Bregman divergence. Zhang
et al. [30] developed a prune-and-refine-based searching method
for Bregman divergence, which is close to our work, but it
works only for discrete probability distributions (described by d-
dimensional vectors) in finite domains. Moreover, they consid-
ered only the first type of asymmetric divergences.

In Ref. [5], an index structure called Gauss-tree was proposed
for similarity search over multivariate Gaussian distributions.
They also assumed non-correlated Gaussian distributions. Al-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

though their problem is very similar to ours, they defined a differ-
ent similarity measure as follows. For a d-dimensional Gaussian
distribution g, they used Nμg, j ,σg, j (x j) to represent its probability
density function in each dimension j, which is a one-dimensional
Gaussian distribution with two parameters, the average μg, j and
the variance σ2

g, j. Given a database DB and a query Gaussian
distribution q, the similarity of g in DB and q is defined as:

P(g|q) =
p(q|g)∑

w∈DB p(q|w)
(10)

where

p(q|g) =
d∏

j=1

∫ +∞
−∞

Nμq, j ,σq, j (x j) · Nμg, j ,σg, j (x j)dx

=

d∏
j=1

Nμq, j ,σq, j+σg, j (μg, j) (11)

Here, p(q|g) represents the probability density for observing
q under the condition that we already observed g. The condi-
tions that maximize Eq. (11) are μg, j = μq, j and σg, j → 0 not
σ2
g, j = σ

2
q, j. Hence, we think Eq. (10) is not a proper similarity

measure for two Gaussian distributions.

8. Conclusion and Future Work

In this work, assuming that large scale data is modeled
by Gaussian distributions, we study the problem of similarity
search over non-correlated Gaussian distributions based on KL-
divergence. We analyzed the mathematical properties of KL-
divergence of Gaussian distributions. Based on the analysis, we
proposed two types of approaches to efficiently and effectively
process top-k similarity search over Gaussian distributions, which
returns the k most similar ones to a given query Gaussian distri-
bution. They utilize the notions of rank aggregation and skyline

queries, respectively. We demonstrated the efficiency and effec-
tiveness of our approaches through a comprehensive experimental
performance study.

As we can see from the experimental results in Section 6, our
approaches spend more preprocessing time for index construction
(5–10 seconds) than the query processing time (less than 1 sec-
ond) of the naı̈ve approach SS. Thus, in the future, we plan to
improve index structures to reduce preprocessing cost. Further-
more, we will study the similarity search problem in the general
case of multi-dimensional Gaussian distributions and use similar-
ity measures other than KL-divergence.

Acknowledgments This research was partly supported
by the Grant-in-Aid for Scientific Research (#25280039,
#26540043) from JSPS.

References

[1] Aggarwal, C.C.: Managing and Mining Uncertain Data, Springer
(2009).

[2] Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S.U.,
Sugihara, T. and Widom, J.: Trio: A System for Data, Uncertainty,
and Lineage, VLDB, pp.1151–1154 (2006).

[3] Banerjee, A., Merugu, S., Dhillon, I.S. and Ghosh, J.: Clustering with
Bregman Divergences, Journal of Machine Learning Research, Vol.6,
pp.1705–1749 (2005).

[4] Bishop, C.M.: Pattern Recognition and Machine Learning, Springer
(2006).

[5] Böhm, C., Pryakhin, A. and Schubert, M.: The Gauss-Tree: Efficient
Object Identification in Databases of Probabilistic Feature Vectors,
ICDE (2006).

[6] Börzsönyi, S., Kossmann, D. and Stocker, K.: The Skyline Operator,
ICDE, pp.421–430 (2001).

[7] Chen, L. and Lian, X.: Efficient Similarity Search in Nonmetric
Spaces with Local Constant Embedding, IEEE TKDE, Vol.20, No.3,
pp.321–336 (2008).

[8] Ciaccia, P., Patella, M. and Zezula, P.: M-tree: An Efficient Access
Method for Similarity Search in Metric Spaces, VLDB, pp.426–435
(1997).

[9] Contreras-Reyes, J.E. and Arellano-Valle, R.B.: Kullback-Leibler Di-
vergence Measure for Multivariate Skew-Normal Distributions, En-
tropy, Vol.14, No.9, pp.1606–1626 (2012).

[10] Cover, T.M. and Thomas, J.A.: Elements of Information Theory, Wi-
ley (2006).

[11] Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M. and Hong,
W.: Model-based approximate querying in sensor networks, The
VLDB Journal, Vol.14, No.4, pp.417–443 (2005).

[12] Do, M.N. and Vetterli, M.: Wavelet-based texture retrieval using gen-
eralized Gaussian density and Kullback-Leibler distance, IEEE Trans.
Image Processing, Vol.11, No.2, pp.146–158 (2002).

[13] Duda, R.O., Hart, P.E. and Stork, D.G.: Pattern Classification, Wiley-
Interscience (2000).

[14] Fagin, R., Lotem, A. and Naor, M.: Optimal Aggregation Algorithms
for Middleware, PODS (2001).

[15] Faloutsos, C., Ranganathan, M. and Manolopoulos, Y.: Fast Subse-
quence Matching in Time-Series Databases, ACM SIGMOD, pp.419–
429 (1994).

[16] Husmeier, D., Dybowski, R. and Roberts, S.: Probabilistic Modelling
in Bioinformatics and Medical Informatics, Springer-Verlag (2005).

[17] Ilyas, I.F., Beskales, G. and Soliman, M.A.: A survey of top-k query
processing techniques in relational database systems, ACM Comput.
Surv., Vol.40, No.4, pp.11:1–11:58 (2008).

[18] Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C. and Zhang, R.: iDis-
tance: An adaptive B+-tree based indexing method for nearest neigh-
bor search, ACM TODS, Vol.30, No.2, pp.364–397 (2005).

[19] Kullback, S. and Leibler, R.A.: On Information and Sufficiency, Ann.
Math. Statist., Vol.22, No.1, pp.79–86 (1951).

[20] Mandel, M.I. and Ellis, D.: Song-Level Features and Support Vec-
tor Machines for Music Classification, Proc. 6th Int’l Conf. on Music
Information Retrieval (ICMIR 2005), pp.594–599 (2005).

[21] Mehrotra, R. and Gary, J.E.: Feature-Based Retrieval of Similar
Shapes, ICDE, pp.108–115 (1993).

[22] Miyajima, C., Nishiwaki, Y., Ozawa, K., Wakita, T., Itou, K., Takeda,
K. and Itakura, F.: Driver Modeling Based on Driving Behavior and Its
Evaluation in Driver Identification, Proc. IEEE, pp.427–437 (2007).

[23] Papadias, D., Tao, Y., Fu, G. and Seeger, B.: Progressive skyline com-
putation in database systems, ACM TODS, Vol.30, No.1, pp.41–82
(2005).

[24] Penny, W.D.: KL-Divergences of Normal, Gamma, Dirichlet and
Wishart densities, Technical report, Wellcome Department of Cogni-
tive Neurology, University College London (2001).

[25] Rosti, A.-V.I.: Linear Gaussian models for speech recognition, PhD
Thesis, Cambridge University (2004).

[26] Schnitzer, D., Flexer, A. and Widmer, G.: A Filter-and-Refine Index-
ing Method for Fast Similarity Search in Millions of Music Tracks,
Proc. 10th Int’l Conf. on Music Information Retrieval (ICMIR 2009),
pp.537–542 (2009).

[27] Skopal, T.: On Fast Non-metric Similarity Search by Metric Access
Methods, EDBT, pp.718–736 (2006).

[28] Skopal, T. and Bustos, B.: On nonmetric similarity search problems in
complex domains, ACM Comput. Surv., Vol.43, No.4, pp.34:1–34:50
(2011).

[29] Suciu, D., Olteanu, D., Ré, C. and Koch, C.: Probabilistic Databases,
Morgan & Claypool (2011).

[30] Zhang, Z., Ooi, B.C., Parthasarathy, S. and Tung, A.K.H.: Similar-
ity Search on Bregman Divergence: Towards Non-Metric Indexing,
PVLDB, Vol.2, No.1, pp.13–24 (2009).

Appendix

A.1 Proof of Lemma 1

A.1.1 Case 1: DKL(p||q)
Assume σ2

p, j − σ2
q, j = C1 and σ2

q, j − σ2
p′ , j = C2, i.e. σ2

p, j =

σ2
q, j +C1 and σ2

p′ , j = σ
2
q, j −C2. Then 0 < C1 ≤ C2 < σ

2
q, j.

Let Δ1 = DKL(p||q) −DKL(p′||q). Then

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

Δ1 =
1
2

ln
σ2

q, j −C2

σ2
q, j +C1

+
C1 +C2

2σ2
q, j

,

∂Δ1

∂σ2
q, j

=
(C1 +C2)[(C2 −C1)σ2

q, j +C1C2]

2σ4
q, j(σ

2
q, j −C2)(σ2

q, j +C1)
> 0.

Since Δ1|σ2
q, j→∞ = 0, Δ1 < 0 holds for all σ2

q, j, i.e., DKL(p||q) <
DKL(p′||q).

A.1.2 Case 2: DKL(q||p)
Since |μp, j − μq, j| = |μp′ , j − μq, j|, we use |μp, j − μq, j| to repre-

sent both of them. Assume σ2
p, j − σ2

q, j − (μp, j − μq, j)2 = C1 and
σ2

q, j−σ2
p′ , j−(μp, j−μq, j)2 = C2, i.e., σ2

p, j = σ
2
q, j+(μp, j−μq, j)2+C1

and σ2
p′ , j = σ

2
q, j + (μp, j − μq, j)2 − C2. Then 0 < C1 ≤ C2 <

σ2
q, j + (μp, j − μq, j)2.
Let Δ2 = DKL(q||p) − DKL(q||p′) and α = σ2

q, j + (μp, j − μq, j)2.
Then

Δ2 =
1
2

ln
α +C1

α −C2
− α(C1 +C2)

2(α +C1)(α −C2)
,

∂Δ2

∂σ2
q, j

=
(C1 +C2)[α(C2 −C1) + 2C1C2]

2(α −C2)2(α +C1)2
> 0.

Since Δ2|σ2
q, j→∞ = 0, Δ2 < 0 holds for all σ2

q, j, i.e., DKL(q||p) <
DKL(q||p′).

�

A.2 Proof of Lemma 2

Let the mmdist of g be mmdistg. Due to the definition of
mmdist, for any equal-KLD point g′ of g, mmdistg ≥ |μg′ − μq| +
|σ2
g′ −σ2

q| holds. Since mindiste, the mindist of an entry e, satisfies
mindiste = |μe − μq| + |σ2

e − σ2
q| > mmdistg, we have

|μe − μq| + |σ2
e − σ2

q| > |μg′ − μq| + |σ2
g′ − σ2

q|. (A.1)

Given q and the KLD of g and q, and assuming

D1
KL(g‖q) =

1
2

⎡⎢⎢⎢⎢⎢⎣ (μg − μq)2

σ2
q

+
σ2
g

σ2
q
− ln
σ2
g

σ2
q
− 1

⎤⎥⎥⎥⎥⎥⎦ = C,

when σ2
g = σ

2
q, (μg − μq)2 takes the maximum 2Cσ2

q.
The reason is as follows. We can easily find that the function

f (x) = x − ln x takes the minimum when x = 1. Therefore,
σ2
g

σ2
q
− ln

σ2
g

σ2
q

takes the minimum when
σ2
g

σ2
q
= 1. In other words, when

σ2
g = σ

2
q, (μg − μq)2 is the maximum. We prove the lemma in the

following two cases.

(1) (μe − μq)2 > 2Cσ2
q:

Consider g’s equal-KLD point g′ satisfying |μg′ − μq| =√
2Cσq, and σ2

g′ = σ
2
q. Since |μe−μq| >

√
2Cσq = |μg′ −μq|,

and |σ2
e −σ2

q| ≥ 0 = |σ2
g′ −σ2

q|, it is obvious that e is dynami-

cally dominated by g′, i.e., e is dynamically KLD-dominated

by g.

(2) Otherwise:

Consider g’s equal-KLD point g′ satisfying μg′ = μe. Ac-
cording to Eq. (A.1), we have |σ2

e −σ2
q| > |σ2

g′ −σ2
q|. In other

words, |μe−μq| = |μg′ −μq|, and |σ2
e−σ2

q| > |σ2
g′ −σ2

q|. There-
fore, e is dynamically dominated by g′, i.e., e is dynamically

KLD-dominated by g.

�

Tingting Dong is a Ph.D. candidate in
Graduate School of Information Science,
Nagoya University. She received her
M.S. degree from Nagoya University in
2013, and both B.S. and B.E. degrees
from Dalian Jiaotong University, China
in 2010. Her research interests include
probabilistic databases, spatio-temporal

databases, and sensor databases.

Yoshiharu Ishikawa is a professor in
Graduate School of Information Science,
Nagoya University. His research interests
include spatio-temporal databases, mobile
databases, sensor databases, data mining,
information retrieval, and Web informa-
tion systems. He is a member of the
Database Society of Japan, IPSJ, IEICE,

JSAI, ACM, and IEEE.

Chuan Xiao is an assistant professor in
Institute for Advanced Research, Nagoya
University. He received bachelor’s degree
from Northeastern University, China in
2005, and Ph.D. degree from The Univer-
sity of New South Wales in 2010. His re-
search interests include similarity search,
textual databases, and graph databases.

c© 2016 Information Processing Society of Japan

