
Application of Graph Problem for Bitcoin Mining

Samiran Bag† Sushmita Ruj‡ Kouichi Sakurai†

†Department of Informatics
Kyushu University

{bag@inf,sakurai@csce}.kyushu-u.ac.jp

‡R. C. Bose Center for Cryptology and Security
Indian Statistical Institute

sush@isical.ac.in

Abstract In this work we propose a scheme that could be used as an alternative to the existing

proof of work(PoW) scheme for mining in Bitcoin P2P network. Our scheme ensures that

the miner must do at least a non-trivial amount of computation for solving the computational

problem put forth in the paper and thus computing a PoW. Here, we have proposed to use the

problem of finding the largest clique in a big graph as a replacement for the existing Bitcoin

PoW scheme. In this paper, we have dealt with a graph having O(230) vertices and O(248) edges

which is constructed deterministically using the set of transactions executed within a certain

time slot. We have discussed some algorithms that can be used by any Bitcoin miner to solve

the PoW puzzle. Our proposed scheme is better than the existing proof of work scheme that

uses Hashcash, where a lucky miner could manage to find a solution to the proof of work puzzle

by doing less amount of computation.

1 Introduction

The main downside of the Bitcoin mining

scheme is that it does not ensure a non-trivial

amount of computation for finding a proof of

work. However, the work of Tromp [9] is pro-

posed as a substitute for the current Bitcoin

mining Algorithm. In this scheme the author

proposed to use graph problems for Bitcoin

proof-of-work. The paper proposes to con-

struct graph depending upon a hash based com-

putation and then examines the presence of

a subgraph(an L cycle) in the original graph.

In this paper we introduce another proof-of-

work scheme that could be used as an alter-

native to the existing Bitcoin mining puzzle.

Our scheme proposes to employ clique find-

ing problem in a giant random graph for the

proof of work puzzle. In this scheme a miner

needs to find the largest possible clique in a

graph containing exponential number of ver-

tices. The construction of the random graph

itself requires computation of exponentially many

hashes. Thus, finding the largest clique in

the graph becomes a hard problem. We also

have proposed an Algorithm that could find

the largest cliques in O(285.6) time which is

not too higher than the capacity of Bitcoin

network as of April 2015. We further improve

the run-time to O(270.5). Our work is moti-

Computer Security Symposium 2015
21 - 23 October 2015

－1159－

vated by Tromp’s paper [9], but is more ef-

ficient than than [9]. The main downside of

Tromp’s scheme is that it requires all peers to

agree upon a target subgraph H(typically an

L-cycle). In a decentralized autonomous sys-

tem such as Bitcoin where the network param-

eters may be subject to change in a periodic

manner, it is not feasible for different peers to

agree upon a common subgraph H which may

not be the same for ever. Similarly, construc-

tion of the large graph is also a challenging

task as it would require someone to select the

keys of the hash function that is used in con-

structing the large graph. Thus the scheme

of Tromp [9] is difficult to be implemented in

a decentralized system. In our scheme, how-

ever the graph is constructed deterministically

from the set of transactions conducted during

a certain time slot. So, any peer of the Bitcoin

network can construct the graph deterministi-

cally from the set of transactions. Thus, our

scheme is more applicable to the decentralized

Bitcoin networking scenario.

2 Related Work

We discuss these topics for our background

study.

Cryptocurrency 1) Bitcoin: Bitcoin is a

decentralized cash system that does not de-

pend on a centralized server such as a Bank.

Its users make online payments by digitally

signing every transaction with their secret key.

The corresponding public key can be used to

publicly verify the authenticity of the trans-

action. Every transaction is broadcast over

the entire network. Since there is no trusted

server, Bitcoin network validates every trans-

action by maintaining a public ledger of all ex-

ecuted valid transactions. This ledger is called

Bitcoin block chain. Every executed transac-

tion is stored in the block chain. Thus, Bit-

coin users are prevented from double spend-

ing a Bitcoin transaction. A Bitcoin block is

constructed by miners and it requires one to

execute a nontrivial amount of computation.

For mining Bitcoin, a miner needs to find a

nonce such that the hash of the nonce, the

merkle root of all valid transactions as well as

some other parameter starts with some prede-

fined number of zeros. Since the hash function

is preimage resistant, the only way of finding

such a nonce is to do a brute force over all the

possible values of the nonce until a nonce is

found that gives the hash the requires number

of zeros. This is called the Bitcoin mining puz-

zle and it needs to be solved by at least one

miner every time a block is constructed. Typ-

ically it takes about ten minutes to construct

a block in the Bitcoin network. The number

of zeros which are required for the hash to be

valid solution defines the difficulty level of the

Bitcoin mining puzzle and is updated regularly

to ensure that the time to construct a block re-

mains nearly equal to ten minutes. A Bitcoin

miner is given a reward of 50 Bitcoins when

her solution is accepted by the network. This

incentive attracts Bitcoin miners into expend-

ing their computational resources for solving

the mining puzzle. At present the Bitcoin net-

work computes 400 million Gigahashes per sec-

ond. Since, mining takes nontrivial amount of

computation, typically equivalent to the pro-

cessing power of millions of desktop machines

it is not possible for an individual miner to

solve the mining puzzle on her own. Hence,

many individual miners collude to form a big

computational force by combining their pro-

cessing power to crack down the mining puz-

zle together. The group of miners is called a

mining pool and are administrated by a miner

called pool operator. In every pool, the pool

operator is solely responsible for distribution

of jobs to individual miners as well as for shar-

ing the reward if the pool as a whole can solve

－1160－

the mining puzzle.

2) Clique problem : A clique is a complete

subgraph of a graph. Clique problem involves

finding two types of cliques viz. maximal clique

and maximum clique. A maximal clique is one

that cannot be extended to form a clique of

bigger size i.e. there is no bigger clique in the

graph that contains the former as a subgraph.

Again, a maximum clique of graph is a clique

that has the size equal to that of the largest

clique in the same graph. Clique problem is

defined as the problem of finding the largest

clique in a graph or listing all maximal cliques

in the graph. Moon et al. [6] showed that the

number of maximal cliques of a graph could

be O(3n/3). The simplest Algorithm that can

list all maximum clique of a graph is the Bron-

Kerbosch Algorithm [2] that has a mean run

time of O(3n/3). A variant of this was pro-

posed by Tomita et al. [8] and it has a worst

case complexity of O(3n/3). The Algorithm

finds all the maximal cliques in the graph and

returns the largest one. The best Algorithm

known till today is by Robson [7] that has a

run time of O(20.249n).

Cliques of a fixed size k can be found in poly-

nomial time by examining all subsets of size k

and checking whether each of them forms a

clique or not. This would take O(
(

n
k

)

k2) time.

There has been a lot of research done on find-

ing all triangles in a graph. Chiba et al. [3]

proposed an Algorithm that finds all triangles

in O(e
3
2) time, e being the number of edges

in the graph. The Algorithm can enumerate

all triangles in a sparse graph faster. Alon et

al. [1] improved the O(e
3
2) Algorithm for find-

ing triangles to O(e1.41) by using fast matrix

multiplication.

3 Preliminaries

3.1 Random Graph

A random graph Gn,p is a graph (V,E) on a

set of vertices V , |V | = n such that

∀v1, v2 ∈ V, Pr[{v1, v2} ∈ E] = p.

That is in a random graph with n vertices, the

probability of occurrence of an edge between

a pair of vertices is given by p. This model

of construction of graph was first proposed by

Erdős and Rényi and is named after them.

Theorem 1 [4] Let Z(n, p) denote the size of

largest complete subgraph of a graph Gn,p. The

sequence {Z(n, p)} of random variables satis-

fies

lim
n−→∞

Pr[Z(n, p) →
2 log n

log 1
p

+O(log n)] = 1

Theorem 2 [5] For n ≥ 1, 0 < p < 1, for 1 ≤

k ≤ n,

{

∑k
j=max(0,2k−n)

(n−k

k−j)(
k

j)
(nk)

p−j(j−1)/2

}

−1

≤ Prob[Z(n, p) ≥ k] ≤
(n
k

)

pk(k−1)/2.

The above Theorems show that for any ran-

dom graph having high number of vertices the

size of the largest subgraph approaches a cer-

tain value. In Theorem 2, Matula proved using

computation that the density of Z(n, p) is very

spiked for a big random graph of. He com-

puted that Pr[Z(1010, 1/4) = 30] > 0.9997 [5].

If we have a random graph Gn,p, then if n is

very high, typically having exponential size,

then the size of the largest complete subgraph

will be ≈ 2 logn
log 1/p + O(log n) with an very high

probability. Due to this behavior of the den-

sity of Z(n, p), it is possible to apply clique

finding problem for solving Bitcoin proof of

work.

3.2 Bitcoin Transactions

Bitcoin users, as mentioned above, make on-

line payments by executing a transaction. A

－1161－

Bitcoin transaction is hashed with the payee’s

public key and is signed by the payer to val-

idate the payment. A transaction can have

multiple input fields as well as output fields

and the number of all of them determines the

actual size of the transaction. Each transac-

tion input requires at least 41 bytes for ref-

erences to the previous transaction and other

headers and each transaction output requires

an additional 9 bytes of headers. Besides, each

transaction has an at least 10 bytes long header.

Thus, 166 bytes is the minimum size of a Bit-

coin transaction.

4 Our Scheme

4.1 The First Scheme

Let us define ‘epoch’ to be the period of

time between construction of two consecutive

blocks. The time of construction of a block in

the Bitcoin network happens to be 10 to 15

minutes. Therefore an epoch may last for a

fixed time between 10 to 15 minutes so that

all transactions executed after the commence-

ment of an epoch and before the expiry of that

epoch are included in the Bitcoin block for

that epoch. Transactions which are executed

sharply before the expiry of an epoch may not

be included in the block for the current epoch

due to the delay of the transaction in travel-

ing across the Bitcoin network and therefore

it could be safely accommodated in the next

block if their validity is acknowledged by the

miner. Without loss of generality we may as-

sume that the number of transactions occur-

ring in a particular block is a power of 2. It

can be forcibly done either by accommodating

some extra transactions to the next block or

by using some predefined dummy transactions.

Let, τ = {Ti : 1 ≤ i ≤ 2ν} be the set of trans-

actions that are yet to be included in a Bitcoin

block in a certain epoch ε0. Let T be a set such

that T = {L(i−1)∗230−ν+j : L(i−1)∗230−ν+j =

Ti||j, 1 ≤ i ≤ 2ν , 0 ≤ j ≤ 230−ν − 1}. Hence,

|T | = 2ν ∗ 230−ν = 230 = n(say). We con-

struct a graph Gn,p = (V,E) such that V =

T , n = |T |. We define the set of edges as

E = {(u, v) : u, v ∈ V,H(u||v) = 012||{0, 1}∗},

where H(·) is a hash function. Hence, a single

hash needs to be calculated to check the ex-

istence of an edge between a pair of vertices.

Also, the probability of occurrence of an edge

between any two vertices is given by p = 1
212

.

Our Proof-of-Work scheme is to find the high-

est number of largest complete subgraph in

Gn,p constructed as above. We provide our

PoW scheme in Algorithm 1. In this Algo-

rithm, a miner tries to find the maximum cliques

by searching the adjacency matrix of the graph

Gn,p. So, the problem of finding the maximum

complete subgraph of Gn,p is reduced to the

problem of finding the maximum submatrix of

the adjacency matrix of Gn,p with all entries

equal to ‘1’ except the diagonal entries.

In Algorithm 1, the miners need to find as

many cliques as possible and need to broadcast

them throughout the Bitcoin network. Now,

from Theorem 1, we can say that the size of

the maximum clique should be 5 or 6. Now,

the expected number of cliques of size 5 is
(230

5

)

p
1
2
×5×4 ≈ 230. On the other hand the

expected number of cliques of size 6 is equal

to
(230

6

)

p
1
2
×6×5 < 1. In section 5, we discuss

some algorithms that can be used for find-

ing all maximum cliques of the graph. It can

be noted that broadcasting all O(230) cliques

throughout the entire network will not be fea-

sible for a miner. Hence, the Bitcoin network

may choose a predefined upper bound(say Z)

for the number of maximum cliques that a

miner may send for one particular block. If

multiple miners send Z many cliques then the

network peers may select the one that came

earlier. Alternatively, the peers may store the

blocks on separate branches. Ultimately, only

a single branch will be extended as it does

－1162－

• Setup τ = {T1, T2, . . . , T2ν} are the 2ν transactions occurring in a particular epoch. T =

{L(i−1)∗230−ν+j : L(i−1)∗230−ν+j = Ti||j, 1 ≤ i ≤ 2ν , 0 ≤ j ≤ 230−ν − 1}. V = T .

• Proof of Work Computation In a scratch off attempt a miner computes a V ×V matrix

B as follows:

B[i][j] = B[j][i] =











* if i = j

1 if H(vi||vj) ∈ {012||{0, 1}∗}

0 elsewhere

where vi, vj ∈ V, i ≤ j. The user finds the largest square submatrix B′

0 of B such that each

and every entry of B′

0 is a 1 except the diagonal elements. If she finds such a submatrix

then she broadcasts it along with the index set I0.

Step r = 1, . . . do {

if the epoch has ended then exit

else find another square submatrix from B such that [B′

r] = [B′

0]. If such a matrix could

be found then broadcast it along with the index set Ir.}

• Verification The verifier holds separate caches for storing the solutions from different

miners. The verifier checks every submatrix for being a valid clique as shown in Algorithm

1. If the Verification is successful then the user caches the proof of work along with the

index set which corresponds to the set of vertices The verifier rejects all PoW whose index

sets have a non-null intersection with a PoW present in its cache. After the epoch has

expired the verifier checks its cache and selects a miner who has so far sent the highest

number of proofs(largest cliques). Ties are broken arbitrarily and the corresponding block

is accepted and added to the Bitcoin block chain.

図 1: New proof of work scheme for mining in Bitcoin network

presently. However, as we have seen, the num-

ber of cliques will be very few in case the clique

number happens to be 6.

5 Finding Maximum Cliques

of a graph

Here, we discuss some techniques that a miner

can use to find maximum cliques of the graph

and thus can solve the Bitcoin PoW puzzle in-

troduced in this paper. The Algorithm 2 uses

a bottom up approach to construct the set of

all largest cliques. Before discussing the actual

algorithm, we shall prove Lemma 3.

Lemma 3 The computation needed to find all

cliques of size κ + 1, if it exists given the set

of all cliques of size κ is O(230+6k(6−κ)κ).

Proof The expected number of cliques of size

κ is ω =
(n
κ

)

p
1
2
κ(κ−1). In our case, n = 230, p =

1
212

. So, ω =
(230

κ

)

/26κ(κ−1) ≈ 230κ

26κ(κ−1) = 26κ(5−κ+1) =

26κ(6−κ). Now, from this set of candidate cliques

of size κ, a clique of size κ + 1 can be found

using the above method. So, the total com-

putation needed is ω ∗ 230 ∗ κ. Hence, proved.

�

We shall now show how the result of Lemma

3 could be used to construct an Algorithm that

finds all maximum cliques in reasonable time.

Let us define Ci = {〈v1, v2, . . . , vi〉} to be the

set of all i-cliques of the graph Gn,p = (V,E).

Lemma 4 The computational complexity of Al-

gorithm 2 is O(285.58)

Proof The Algorithm 2 takes a bottom up

－1163－

Require: C3.

Ensure: List all largest clique of the random

graph.

for i := 3; Ci 6= ∅; i++ do

while Ci is not empty do

Choose a clique 〈v1, v2, . . . , vi〉 ∈ Ci
for all v ∈ V \ {v1, v2, . . . , vi} do

if
⋃i

j=1{vi, v} ⊂ E then

Ci+1 = Ci+1 ∪ 〈v1, v2, . . . , vi, v〉.

end if

end for

Ci = Ci \ 〈v1, v2, . . . , vi〉.

end while

end for

図 2: An Algorithm to list all largest cliques

approach in computing the maximum clique.

It first takes as input the set of all cliques of

size 3. Then it tries to grow the size of the the

cliques by checking if any of the other vertices

of the graph creates a bigger clique with it.

Thus in every iteration of the outer for loop of

Algorithm 2, it uses the set of all cliques of size

i to construct a set of all cliques of size i+ 1.

Now, according to Lemma 3, the complexity

in each iteration is given by O(230+6i(6−i)i).

Without loss of generality we may assume that

we run the Algorithm until C6 is computed.

So, the complexity in each iteration should be

as follows;

For i = 3, the run time is O(284 ∗3). For i = 4,

the run time is O(278 ∗ 4). For i = 5, the run

time is O(260 ∗ 5).

It is apparent that the complexity of the above

Algorithm is O(3 ∗ 284). Now, we can pre-

compute C3 using the Chiba & Nishizeki Al-

gorithm [3] in O(272) time. So, the total com-

plexity of finding all cliques of size 6(if at least

one exists) is O(3 ∗ 284) ≈ O(285.58). �

Lemma 5 The computational complexity of Al-

gorithm 2 is O(285.58)

Proof The Algorithm 2 takes a bottom up

approach in computing the maximum clique.

It first takes as input the set of all cliques of

size 3. Then it tries to grow the size of the the

cliques by checking if any of the other vertices

of the graph creates a bigger clique with it.

Thus in every iteration of the outer for loop of

Algorithm 2, it uses the set of all cliques of size

i to construct a set of all cliques of size i+ 1.

Now, according to Lemma 3, the complexity

in each iteration is given by O(230+6i(6−i)i).

Without loss of generality we may assume that

we run the Algorithm until C6 is computed.

So, the complexity in each iteration should be

as follows;

For i = 3, the run time is O(284 ∗ 3)

For i = 4, the run time is O(278 ∗ 4)

For i = 5, the run time is O(260 ∗ 5).

It is apparent that the complexity of the above

Algorithm is O(3 ∗ 284). Now, we can pre-

compute C3 using the Chiba & Nishizeki Al-

gorithm [3] in O(272) time. So, the total com-

plexity of finding all cliques of size 6(if at least

one exists) is O(3 ∗ 284) ≈ O(285.58). �

This is a reasonable amount of computation

for Bitcoin miners. The present hash rate of

Bitcoin network is 1022 ≈ 273 and soon it is

expected to reach the order of 285 when our

Algorithm 2 will become feasible to be applied

for minting Bitcoin.

The space complexity of Algorithm 2 is de-

termined asM = max6i=3(|Ci|) = O(max6i=3 2
6κ(6−κ)).

It is easy to see that M = O(254). Hence, the

space complexity is of the order of a petabyte.

Hence, the mining pool requires to store the

set Ci in a distributed fashion. Since, a mining

pool may contain tens of thousands of min-

ers it is possible to afford this much space for

executing Algorithm 2.

Further reduction of the computational com-

plexity of finding C6 can be done by comput-

ing all K4s of the graph as follows: 1) Find all

quadrangles of the graph using the Chiba &

Nishizeki Algorithm [3]. 2) Find all K4s using

－1164－

the set of quadrangles. 3) Then using the set

of all K4s (C4) try to find C6 using Algorithm

2.

Lemma 6 The method stated above improves

the computational complexity of Algorithm 2

to O(280).

Proof The set of all quadrangles could be found

using Chiba & Nishizeki Algorithm in 270.5

time [3]. We calculate the expected number

of quadrangles as follows; the number of ways

4 vertices could be chosen out of 230 vertices is
(

230

4

)

. Now, we can create 3 quadrangles from

every set of 4 vertices, each of them with a

probability of (1
212

)4. So the expected number

of quadrangles will be
(230

4

)

(1
212

)4 ∗ 3 < 269.6.

So, in order to check whether each of them is

a subgraph of a clique, O(269.6) computations

would be required. Thus, C4 could be gener-

ated. Thereafter we could follow Algorithm 2

to find C6. It is easy to see that thus the overall

run time could be improved to O(280). �

Theorem 7 There exists an Algorithm that

outputs the set of maximum cliques in O(270.5)

time and O(248) space.

Proof The Algorithm works as follows:

1) It finds all quadrangles using Chiba & Nishizeki

Algorithm. Whenever a quadrangle is found

the Algorithm checks whether it could be a

part of a K4 or not. This could be done by

computing only two hashes per quadrangle. If

a quadrangle could be extended to a K4 store

it in C4. So, the total amount of computa-

tion needed is bounded by the total number of

quadrangles in the graph which is O(269.6).

2) Without loss of generality we may assume

C4 stores all K4s such that ∀(u1, u2, u3, u4) ∈

C4, u1 < u2 < u3 < u4. Store the set of K4s C4
in a sorted array A[] such that for every i, j ∈

|C4|, i < j if A[i] = {v1, v2, v3, v4} and A[j] =

{v′1, v
′

2, v
′

3, v
′

4}, then ∃l ∈ {1, 2, 3, 4} such that

vm = v′m,∀1 ≤ m < l and vl < v′l. This would

require |C4| log |C4| time. Since, |C4| = 248, the

amount of computation needed to do this is

(48 ∗ 248) ≈ O(254).

3) We can now use the sorted array A[] to

find all K5s. For all i, 1 ≤ i < |C4|, if A[i] =

{u1, u2, u3, v} and A[i + t] = {u1, u2, u3, v
′},

where t > 1, check whether {u1, u2, u3, v, v
′}

is a clique or not. This could be checked by

computing a single hash. If {u1, u2, u3, v, v
′}

is a K5 add it to C5. This would take O(|C4|)

or O(248) computations (see Lemma 8). The

space needed to store C5 is O(230).

4) Now, the set C5 could be used to compute

the set C6 if it is nonempty. This could be done

using the same method stated in step 2 and 3

or in Algorithm 2.

It could be checked that the time complex-

ity of this Algorithm is determined by the time

needed to find all quadrangles using Chiba &

Nishizeki Algorithm which is O(270.5). Simi-

larly, the space complexity is O(|C4|) or O(248).

�

The time complexity of the Algorithm de-

scribed in Theorem 7 is same as the average

computation needed to solve the existing proof

of work puzzle which is equivalent to O(273)

hash computations.

Lemma 8 Let A[] be a sorted array of all K4s

such that for every i ∈ [|C4|], if A[i] = {v1, v2, v3, v4},

then v1 < v2 < v3 < v4 and for every i, j ∈

|C4|, i < j if A[i] = {v1, v2, v3, v4} and A[j] =

{v′1, v
′

2, v
′

3, v
′

4}, then ∃l ∈ {1, 2, 3, 4} such that

vm = v′m,∀1 ≤ m < l and vl < v′l. Then find-

ing every pairs (i, j), i 6= j such that A[i] =

{v1, v2, v3, v4} and A[j] = {v1, v2, v3, v
′

4} takes

O(|A|) time.

Proof For any arbitrary i ∈ [|C4|], Let A[i] =

{v1, v2, v3, v4}. Therefore, all other K4s like

{v1, v2, v3, z} if there are any will be adjacent

to A[i] in the array. If there are ∆ such cliques

A[j] whose first three vertices are same as that

of A[i], then all such pairs (i, j) could be found

－1165－

in O(∆2) time. Whether any of these pairs

could be extended to form a K5 can be ascer-

tained by computing a single hash per such

pair. Now, for any three vertices {u, v, w ∈

V }, ∆ = {i : i ∈ [|C4|], {u, v, w} ⊂ A[i]}. So,

E(∆) = 230 ∗ (1
212

)3 = 1
26
. Now, the total

time needed to find every pairs (i, j), i 6= j

such that A[i] = {v1, v2, v3, v4} and A[j] =

{v1, v2, v3, v
′

4} is O
(

|A|
{

max(1, E2(∆))
})

or

O(|A|). �

6 Conclusion

In this paper we propose a new proof of work

scheme for cryptocurrencies such as Bitcoin.

This proof of scheme makes use of the set of

transactions to construct a giant graph deter-

ministically. The miners are required to find

the largest clique of in this graph as a solu-

tion to the proof of work puzzle. We also have

proposed an Algorithm that can be used to

find a solution of this puzzle by performing

O(270.5) hash calculations which is commen-

surate to the hashpower of the current Bitcoin

network.

Acknowledgement

Concerning this work, the authors were par-

tially supported by JSPS and DST under the

Japan-India Science Cooperative Program of

research project named:“Computational Aspects

of Mathematical Design and Analysis of Se-

cure Communication Systems Based on Cryp-

tographic Primitives.” The third author is

partially supported by JSPS Grants-in-Aid for

Scientific Research KAKEN-15H02711.

参考文献
[1] Noga Alon, Raphael Yuster, and Uri

Zwick. Finding and counting given length

cycles (extended abstract). In Proceedings

of the Second Annual European Sympo-

sium on Algorithms, ESA ’94, pages 354–

364, London.

[2] Coen Bron and Joep Kerbosch. Algorithm

457: Finding all cliques of an undirected

graph. Commun. ACM, 16(9), pages 575–

577,September 1973.

[3] Norishige Chiba and Takao Nishizeki. Ar-

boricity and subgraph listing algorithms.

SIAM J. Comput., 14(1), pages 210–223,

February 1985.

[4] G. R. Grimmett and C. J. H. McDiarmid.

On colouring random graphs. Mathemat-

ical Proceedings of the Cambridge Philo-

sophical Society,volume 77, pages 313–324,

1975.

[5] D.W. Matula. On the complete subgraph

of random graph. In Comb. Math and its

Appl, pages 356–369, Chappel Hill, N.C.,

1970.

[6] J.W. Moon and L. Moser. On cliques in

graphs. Israel Journal of Mathematics,

3(1), pages 23–28, 1965.

[7] John M Robson. Finding a maximum in-

dependent set in time o (2n/4). Technical

report, Technical Report 1251-01, LaBRI,

Université de Bordeaux I, 2001.

[8] Etsuji Tomita, Akira Tanaka, and

Haruhisa Takahashi. The worst-case time

complexity for generating all maximal

cliques and computational experiments.

Theor. Comput. Sci., 363(1),pages 28–42,

October 2006.

[9] John Tromp. Cuckoo cycle: a

memory bound graph-theoretic

proof-of-work. Cryptology ePrint

Archive, Report 2014/059, 2014.

http://eprint.iacr.org/.

－1166－

