# Suiren(睡蓮)による計算科学アプリケーションの性能評価

# 中里 直人<sup>1</sup>

概要:Suiren(睡蓮)は、メニーコアプロセッサ PEZY-SC をアクセラレータとして採用するスーパーコン ピュータシステムである. PEZY-SC プロセッサは、Multiple Instruction Multiple Data(MIMD)方式のプ ロセッサであり、Processing Elemernt(PE)を 1024 個搭載している. PEZY-SC プロセッサは、これまで GPU などのアクセラレータで実行してきたアプリケーションを、OpenCL 準拠のプログラミングモデルに よって実行可能である. Suiren は、ホスト計算機とアクセラレータからノード全体を、液浸で冷却する手法 により、LINPACK ベンチマークでの電力効率が非常に高い. 我々は、Suiren で様々な計算科学アプリケー ションの性能評価をおこなった. 具体的には、高精度天文多体シミュレーション、ツリー法/SPH 法による 粒子シミュレーション、津波進化シミュレーション、多倍長精度計算浮動小数点演算エミュレーションであ る. 特に、高精度天文多体シミュレーションでは、Suiren の4 ノード (PEZY-SC プロセッサ 32 チップ) に て 9.18 TFLOPS の性能を得た.

キーワード: OpenCL, アクセラレータ

# 1. はじめに

PEZY-SC プロセッサは、PEZY Computing 社により開 発された Multiple Instruction Multiple Data(MIMD) 方 式のプロセッサであり、ホスト計算機と組み合わせて演算 アクセラレータとして利用する. PEZY-SC プロセッサを 採用したスーパーコンピュータシステムとして, 2014年 秋に高エネルギー加速器研究機構の Suiren(睡蓮) が稼働 を始め、2015年春からは、高エネルギー加速器研究機構で Suiren Blue(青睡蓮),理化学研究所で Shoubu(菖蒲) が稼 働している. いずれのシステムも,ホスト計算機とアクセラ レータからなるノード全体を液体に浸して放熱する冷却機 構を採用しているため、エネルギー効率が高いシステムであ る. 2015 年 8 月の Green500(LINPACK ベンチマークによ る消費電力あたりの性能ランキング)では、Shoubu、Suiren Blue, Suiren が最上位を占めた. そのため PEZY-SC での LINPACK ベンチマークの実装や、それに伴う倍精度演算 行列積の実装についてはよく最適化されている.一方で,最 初の稼働システムである Suiren が利用可能になってから1 年足らずのため、他の計算科学アプリケーションの移植は 現在進行中か、今後進められていく予定である.

本研究報告では、我々がこれまでアクセラレータシステ ム用に実装してきたいくつかの計算科学アプリケーション を PEZY-SC プロセッサに移植した経緯と、それらの性能

会津大学大学院コンピュータ理工学研究科

評価について報告する.

# 2. PEZY-SC プロセッサ

本章では PEZY-SC(Super Computing) プロセッサおよ び Suiren のアーキテクチャ概略とそのプログラミング手 法について説明する.

#### 2.1 システムアーキテクチャ

PEZY-SC プロセッサは、多数の演算コア (Processing Element; PE) を集積した MIMD プロセッサである. 個々 の PE が自身のプログラムカウンタを保持しているとこ ろが、GPU のような Simultaneous Instruction Multiple Data(SIMD) プロセッサとは異なる. PE は単精度/倍精度 浮動小数点演算器に加えて、整数 ALU、 レジスタとローカル メモリからなり, PEが4個で Village と呼ばれるブロック を構成する. Village ブロックには, 2PE ごとの1次キャッ シュがある. Village ブロックが4個で City ブロックを構成 し、City ブロックには共用の2次キャッシュと関数演算用 の特殊演算ユニット (SFU) がある. さらに, City ブロック が 16 個で Prefecture ブロックを構成し, Prefecture ブロッ クごとに3次キャッシュがある.PEZY-SC プロセッサは、 4 個の Prefecture ブロックからなり, 全部で 1024 個の PE を搭載する.ひとつの PE あたりの浮動小数点演算のスルー プットは、単精度の場合4演算(二つの積和算)であり、単 精度の場合2演算(ひとつの積和算)である.733 MHz で動 作する場合、プロセッサ単体のピーク性能は単精度/倍精度 演算で、それぞれ 3/1.5 TFLOPS である. PEZY-SC プロ セッサには、その他に、メモリコントローラと PCI Express インターフェース、制御用の CPU コア 2 個が搭載されて いる.

Suiren(機種名 ExaScaler-1)の計算ノードは, Intel Xeon-2600v2 を 2 個と PEZY-SC プロセッサが 4 個搭載された PEZY-SC Quad Board からなる. PEZY-SC Quad Board は、ホスト CPU と PCI Express x16 で接続され、1 プロ セッサあたり 32GB の DDR3 メモリを搭載する. Suiren のノードは、PEZY-SC Quad Board を 2 台搭載し、Suiren 全体では 32 ノードからなる.よって、PEZY-SC プロセッ サの総数は 256 チップである. これらのノード間は Infini-Band FDR で接続されている. ノードは、8 ノードずつ液 浸冷却用筐体に収められており,液体を循環させることで PEZY-SC Quad Board だけでなくホスト CPU や他の基盤 を直接冷却する. 2015 年 7 月に発表された TOP500 の結果 では, Suiren は Rmax 性能 206.6 TFLOPS(Nmax 983,040) で 366 位であった. TOP500 のために、アクセラレータ用 に最適化された並列 LU 分解コード [12] をベースとした PEZY-SC プロセッサ用最適化と、PEZY-SC プロセッサ用 の DGEMM ライブラリが開発された.

## 2.2 プログラミング手法

PEZY-SC プロセッサをアクセラレータとして利用する ためには PZCL を利用する. PZCL は OpenCL のサブセッ トからなるプログラミング環境であり, OpenCL と同様に 演算カーネルを記述し, ホストプログラムから API を介し て演算カーネルを起動する. おおむね OpenCL 1.0 の規格 に準拠しているが, 具体的には以下の違いがある.

- OpenCLではカーネルの記述に、記憶領域指定用のキー ワードなどが拡張されたC言語を利用するが、PZCL ではそのような拡張のない通常のC言語で記述する.
- PZCLではカーネル記述の際に、階層的なPEとキャッシュの構造に対応した API により、明示的にキャッシュ読み書きを制御できる。
- PZCL では OpenCL のカーネル用ビルトイン関数に 未対応のものがある.
- OpenCL ではカーネルをオンラインでもオフラインで もコンパイル可能であるが、PZCL ではオフラインコ ンパイルのみサポートされており、アプリケーション 実行時にカーネルバイナリーをロードする必要がある. これらの差異のために、元々 OpenCL C API で記述され たアプリケーションは、カーネル記述とホストプログラム

での API 呼び出し部分を修正する必要がある.

我々は、条件コンパイルとマクロとを組み合わせることで、OpenCL と PZCL 用のソースコードを共通化した. 本報告での性能評価は、全て OpenCL が動作する CPU や GPU をターゲットとして開発されたものであり, カーネ ル記述に PEZY-SC プロセッサに特化した最適化はしてい ない.

# 3. アプリケーション性能評価

本章では Suiren に移植した計算科学アプリケーション の紹介と, Suiren でのそれらの性能評価について報告する. いずれの場合も, これまで我々が OpenCL をサポートした アクセラレータをターゲットとして計算高速化をおこなっ たアプリケーションであり, これまで各社の GPU およびマ ルチコア CPU システムや Intel Xeon Phi で動作している.

## 3.1 高精度天文多体シミュレーション

星団や銀河中心などの天体の進化をシミュレーションす るためには、粒子間に働く重力相互作用を精密かつ高速に 計算する必要があるだけではなく、粒子の軌道を数値積分 する際に適した手法 (Hermite 積分法) を利用する必要があ る [6], [10]. シミュレーションでの粒子数を N とした時, Hermite 積分法をアクセラレータによって高速化する場合, 粒子の軌道積分の演算量はO(N)のためホスト計算機で計 算し、粒子間の相互作用の演算量は $O(N^2)$ のためアクセ ラレータで計算する [11], [15]. なお, Hermite 積分法では, |粒子間の重力相互作用 (A,位置ベクトルの時間による二階 (微分)だけでなく、位置ベクトルの時間による三階微分  $(\vec{J})$ を粒子の位置ベクトルと速度ベクトルから直接計算する必 要がある.よって、GPU による Hermite 法の高速化 [3] と 同様に、我々は $\vec{A}$ と $\vec{J}$ を計算する OpenCL カーネルを実 装し、それをライブラリ (OCLG6A) として利用可能とし た. OCLG6A では、様々なカーネルのバリエーションが利 用可能であるが、PEZY-SC プロセッサでの性能評価には、 Array of Structure のデータ構造を採用し、 倍精度演算と 単精度演算を組み合わせたカーネルを採用した. OCLG6A を MPI により並列化された φ-GRAPE [5] と組み合わせる ことで、Suiren の複数ノードを使って性能評価をおこなっ た. なお,  $\phi$ -GRAPE での軌道積分は, 積分タイムステップ ごとに、条件に基づいて選択された粒子を順次積分してい くブロック化積分法を採用しており,演算量がマイステッ プ常時 O(N<sup>2</sup>) となるわけではない.

図1は $\phi$ -GRAPEによる、粒子分布がPlummer球の場合の軌道積分した場合の性能をしめす. 横軸はPlummer球の粒子数Nを、縦軸は相互作用当たり60演算で換算した性能である.演算に利用した単位は、ポテンシャルの重力加速度定数を1で規格化した単位系を採用し、重力ポテンシャルのソフトニングパラメータ $\epsilon = 10^{-4}$ とした. いずれの場合の計算結果も、時間t = 0からt = 0.5まで積分して全エネルギーがこのパラメータの範囲内でよく保存していることを確認した.

どの場合もホスト計算機の MPI プロセスあたりひとつ



OCLG6A : PZCL : Kernel DS

図 1 OCL6GA と  $\phi$ -GRAPE の Suiren での性能評価.

の PEZY-SC プロセッサを利用する場合であり, N とプロ セス数 P を変えて性能評価をおこなった. 問題サイズが十 分大きい場合は ( $N \ge 524288$ ), P を大きくすると性能は ほぼ比例して向上する. P = 32, N = 1048576 の場合, 演 算性能は 9.18 TFLOPS であり, 1 プロセス当たり ~ 290 GLFOPS に相当する. 同じ演算カーネルを AMD Radeon R9 280X(単精度演算性能 3.48 TFLOPS) にて実行した場 合, P = 1, N = 32768 で最大で約 900 GFLOPS であった. よって, PEZY-SC プロセッサに特化した最適化による性能 向上の余地がある. 一方で, マルチプロセスによる MPI ア プリケーションとしては, 現状のカーネルを利用した場合, Suiren 全体を利用 (P = 256) することで, > 60 TFLOPS の性能になると予測される.

## 3.2 SPH 法による宇宙流体シミュレーション

Smoothed Particle Hydrodynamics(SPH) 法は宇宙にお ける天体シミュレーションのために考案された流体シミュ レーション手法である [4], [9]. SPH 法は Hermite 積分法 と同じく, 粒子間相互作用と軌道積分により系の進化を 計算する.一方, 粒子間相互作用は近接相互作用となるた め, 八分木データ構造を使うことで効率よく計算できる. 我々はこれまでに、SPH 法をアクセラレータ計算機で高 速化するために、八分木データ構造を辿る(ツリーウォー ク)処理を OpenCL カーネルとして実現し、重力相互作用 の場合の性能評価をおこなった [13]. さらに、この手法を SPH 法に拡張し(計算コード OTOO)、GPU による宇宙に おける白色矮星の衝突・合体のモデル計算をはじめて可 能とした [14]、[16]. ここでは、重力相互作用と SPH 法の PEZY-SC プロセッサでの性能評価について報告する.以 下の演算は全て単精度演算で実装している.

図 2 は、粒子を階層的な八分木に格納し、八分木を辿るこ とで粒子間の距離を容易に判定し、それにより十分また遠 方の粒子はまとめて多重極展開にて置き換えることで演算 量を削減する方法(以下、ツリー法)で、粒子間の重力ポテ ンシャルを計算し軌道積分した場合の性能である.粒子分 布としては、中心に向けて密度構造のある Plummer 球の 場合と、一様密度の Uniform の場合を示す.それぞれの場 合の粒子分布で、N = 0.5, 1, 2, 4, 8 メガ粒子の場合につい て、1 ステップ当たりの計算時間を示す.TREE、KERNEL、 PCIe はそれぞれ、1 ステップあたり、粒子の八分木構造を 計算する時間、PEZY-SC プロセッサで八分木を辿りなが ら重力ポテンシャルを計算する時間(この評価ではP = 1)、



図 2 ツリー法による重力相互作用計算の性能評価. 左右それぞれの結果は Plummer 球とー 様球の場合に対応する.

そして、ホスト計算機と PEZY-SC プロセッサとのデータ I/O にかかる時間をしめす.計算時間はいずれの場合にも ほぼ N に比例する.以上により、ツリー法による粒子シ ミュレーションは PEZY-SC プロセッサで有効に計算でき ることがわかった.

表 3.2 は, OTOO により単独の白色矮星をシミュレー ションした場合の演算時間を示す.利用する PEZY-SC プ ロセッサの数 P を変化させて, N = 0.5, 1, 2, 4 メガ粒子の 場合について, 1 ステップあたりの計算時間を示している. この計算では 1 ステップあたりの計算には, 粒子の八分木 構造を計算する時間に加えて, SPH 法による流体力学計算 および重力ポテンシャル計算を含む.そのため, 図 2 の重力 ポテンシャル計算のみの場合と比べて, OTOO では粒子当 たりの演算量が多いため, 同じ N では計算時間がよりかか る. Suiren ではノードあたり P = 8 まで利用可能である.

OTOO では複数の PEZY-SC プロセッサを使う際には, 八分木構造をアクセラレータ数で均等に分割した八分木を 構築し,個々の PEZY-SC プロセッサにて計算する.理想 的には P に反比例して計算時間が短縮するはずであるが, カネール実行時間以外にも,ホストプログラムで必要な演 算処理 (ツリー構築および状態方程式の計算) があるため, 一見,1 ステップあたりの計算時間は理想的にはスケール していない.例えば N = 4 メガ粒子の場合,ホストでの演 算処理には約 1.4 秒であった.この処理時間は P には依存 しないので, P = 1, 2, 4, 8 の場合に, PEZY-SC プロセッサ で SPH および重力ポテンシャル計算をおこなうための時間 (データ I/O とカーネル実行時間の合計) は, それぞれ  $\sim 2,0.8,0.4,0.6$  秒となる.現状の構成では, P = 2,4まで は, 複数の PEZY-SC プロセッサを利用することが効果的 なことがわかった.

#### 3.3 津波進化シミュレーション

海底での地震が起きた後、それによって生じる津波の進 化を精密にかつ高速に予測することは、沿岸距離の長い 日本では災害予防のために必要である. 我々は、そのよ うなシミュレーションのひとつである MOST(Method of Tsunami Splitting) [17], [18] を OpenMP, OpenCL, OpenACC, CUDA によって並列化し GPU などのアクセラ レータやで高速化した [8], [19]. ここでは OpenCL による MOST の実装を、PEZY-SC プロセッサで動作させた場合 の性能評価について報告する. 以下の演算は全て単精度演 算で実装している.

MOST は、浅水方程式を解くための手法であり、計算ス キームとしては2次元のステンシル計算となる. 波の高さ と二つの方向の速度を更新するために、現在の格子点を含 めてその上下左右の5点のデータが必要である. [8], [19] では、2次元配列データのアクセス方法を工夫することで OpenMP による性能評価を CPU 及び Intel Xeon Phi で おこなった. MOST の OpenCL 実装では、元のアルゴリズ ムを変更し、各格子点毎に独立して並列に更新するように

| P        | $0.5 \mathrm{M}$ | $1\mathrm{M}$ | 2M               | $4\mathrm{M}$ |
|----------|------------------|---------------|------------------|---------------|
| 1        | 3.922895e-01     | 8.193518e-01  | $1.662591e{+}00$ | 3.382097e+00  |
| <b>2</b> | 2.756883e-01     | 5.440593 e-01 | 1.086922e+00     | 2.210079e+00  |
| 4        | 2.216704e-01     | 4.461828e-01  | 9.096476e-01     | 1.843587e+00  |
| 8        | 2.214832e-01     | 4.851834e-01  | 9.945402e-01     | 2.058704e+00  |

| 表 1 | PEZY-SC プロセッサでの SPH 法による白色矮星シミュレーションの性能評価. |  |  |  |  |  |  |
|-----|--------------------------------------------|--|--|--|--|--|--|
|     | 列は利用した PEZY-SC プロセッサの数を示す. 計算時間の単位は秒.      |  |  |  |  |  |  |

| $N_x$ | 1 ステップ       | 格子点あたり       |
|-------|--------------|--------------|
| 500   | 6.544603e-03 | 2.617841e-08 |
| 1000  | 2.504481e-02 | 2.504481e-08 |
| 2000  | 9.910859e-02 | 2.477715e-08 |
| 3000  | 2.213808e-01 | 2.459787e-08 |
| 4000  | 3.926668e-01 | 2.454167e-08 |
| 5000  | 6.118429e-01 | 2.447372e-08 |
| 6000  | 8.716483e-01 | 2.421245e-08 |
| 7000  | 1.197728e+00 | 2.444343e-08 |
| 8000  | 1.520423e+00 | 2.375661e-08 |
| 10000 | 2.428314e+00 | 2.428314e-08 |

## 表 2 PEZY-SC プロセッサでの MOST の性能評価. N<sub>x</sub> は計算領 域の一方向の格子点数. 計算時間の単位は秒.

OpenCL カーネルを記述した. この方法では, 各スレッド は格子点の集合であるブロック (サイズ $a \times b$ とする)を担 当し, 各スレッドがアクセスする格子点データは, 各方向で は 3 点ステンシルのため  $(a + 2) \times (b + 2)$ となる. ブロッ クサイズa, bを変更することで, カーネル当たりの演算密 度を変化することが可能であり, PEZY-SC プロセッサの ようにデータアクセスにキャッシュの利用が重要な場合は より高性能が期待できる.

表 3.3 は、MOST スキームを、問題サイズを変えなが ら計算した場合の計算時間を示す. 今回の性能評価では a = b = 1の場合のみを示す.  $N_x$  は計算領域の一方向の 格子点数であり、全格子点数は  $N_x^2$  である. この評価では、 P = 1 として、MOST による計算を 300 ステップ計算して から、それから 1 ステップあたりの計算時間を求めた. な お、300 ステップの計算の間はホスト計算機とのデータ I/O をしていない.

格子点当たりの計算時間は ~  $2.4 \times 10^{-8}$  秒でほぼ一定で ある. 同じコードを AMD Radeon R9 280X(単精度演算性 能 3.48 TFLOPS) および NIVIDA Tesla K20c(単精度演算 性能 3.52 TFLOPS) で実行した場合,  $N_x = 10000$  の時の, 格子点当たりの計算時間は  $4.63 \times 10^{-9}$  および  $1.26 \times 10^{-9}$ 秒であった.現状では, PEZY-SC プロセッサでの MOST の性能は, GPU と比べると劣っているといえる.

#### 3.4 多倍長精度浮動小数点演算の性能評価

我々はこれまで、素粒子物理学の応用で高速な演算が 必要とされるファインマン・ダイアグラムの直接計算を、 多倍長精度浮動小数点演算で高速化するために様々な手 法 [21], [23] を検討してきた. 多倍長精度演算を実現する手法として、今日主に利用されている手法は、(a) 浮動小数点演算 (FP 演算) による多倍長演算手法と、(b) 整数演算による浮動小数点エミュレーション (例えば GNU MPFR[2]) の二種に分類される. ここで、多倍長精度計算浮動小数点演算手法とは、IEEE 754-2008 で規定されている倍精度 binary64 フォーマット (仮数部  $n_{man} = 53$  ビット、指数部  $n_{exp} = 11$  ビット) と比べて、仮数部のビット幅が大きい場合を指す.

上記 (a) の手法は、FP 演算の丸め誤差を補償する手 法 [1], [7] をベースにしており、倍精度変数を 2 語利用する double-double(DD) 方式 ( $n_{man} = 105$ ,  $n_{exp} = 11$  に相当) は、現在の様々な計算機において高速に実行できる [20], [22]. 上記 (b) の手法は、整数演算により複数語からなる仮数部 の演算を、四則演算それぞれの場合ついて筆算と同様のア ルゴリズムでおこなった. この FP 演算のエミュレーショ ンによる多倍長演算手法では、原理的には指数部、仮数部 ともに任意のビット長を利用することができる. ここで は [21] にて報告した (b) の手法による OpenCL カーネル 実装 (( $n_{man} = 210$ ,  $n_{exp} = 30$ )) の場合に、演算性能の基礎 的な評価について報告する.

我々の既存の報告 [21] と同様に、 OpenCL API により得 られるカーネル実行時間(これにはホストとアクセラレー タ間のデータ転送時間は含まない)により、四則演算ごと に性能を計測した. 表 3.4 に, PEZY-SC プロセッサと様々 な CPU/GPU での (b) の手法による性能評価の結果を示 す. 性能の単位は MFLOPS である. 2つ目のコラムは各 GPUの単精度 FP 演算による理論演算性能を示す.この性 能評価では、演算ユニットを可能な限り利用するように十 分大きな要素数の入力値に対してカーネルを実行して,そ の実行時間を計測し、総演算数を実行時間で割り、切り捨て ることで演算性能を計算した. Xeon E5-2670 のみが CPU であり、他は全てアクセラレータである. Xeon E5-2670の 結果は Suiren のノードではないが、同じく 2 CPU 構成で トータルで16コアのシステムである。除算については、仮 数部を直接除算する手法(除算と示す),逆数の初期値を単 精度で推定するニュートン法(除算 Fと示す),逆数の初期 値を倍精度で推定するニュートン法(除算Dと示す)の3 パターンについて比較をした.また,最後の列(「4演算」) は、入力に変数について4演算(加算3回、乗算1回)を続 けておこなった場合の性能をしめす. 結果, PEZY-SC プロ セッサの性能は演算の種類により比較的高性能の場合もあ るのがわかった. 特に PEZY-SC プロセッサでは「4 演算」 の場合の性能が1 演算の場合よりも高速である. このこと から, PEZY-SC プロセッサをファインマン・ダイアグラム の直接計算に適用した場合, 高性能であることが予想され る. 現在, 多倍長精度計算浮動小数点演算による現実的な 場合での数値積分について検証中である.

## 3.5 Suiren での今後の課題

本章では、3種の計算科学アプリケーションと、多倍長 精度計算浮動小数点演算について、OpenCL 用に記述され たコードを PEZY-SC プロセッサで実行し、その性能評価 をおこなった.現状では PEZY-SC プロセッサのアーキ テクチャに特化した最適は特におこなっていないが、どの 場合でも元のコードに大きな変更をする必要なく実行可 能であった.GPU で同じコードを実行した場合と比べて、 PEZY-SC プロセッサの性能が十分発揮できていない場合 がある.考えられる理由および、現状の性能におけるボト ルネックや制限は以下の通りである.

- DRAM とのメモリ帯域が最新の GPU と比べると低い.
- 単精度でも倍精度演算でも、ピーク性能となるのは積 和算をおこなう場合であり、今回のアプリケーション では積和算の占める割合が多くはない.また、この点、 カーネル用コンパイラに命令最適化の余地がある.
- 単精度演算の場合, GPU(280X と K20c) はいずれもスレッドあたりのベクトルレーン数が1なのに対して, PEZY-SC プロセッサでは単精度演算は2命令まで同時実行可能であり, ベクトルレーン数が実質的に2である.
- 多倍長精度計算浮動小数点演算については整数演算の 組み合わせでおこなうため、カーネル用コンパイラに 命令最適化の余地がある.

今後,以上のようなボトルネックなどについてより詳し く検討し, Suiren 全体を利用する大規模アプリケーション を実現する予定である.

## 4. まとめ

本研究報告では、我々がこれまで主に GPU で実行して きた様々な計算科学アプリケーションを MIMD 型 PEZY-SC プロセッサを採用したアクセラレータ型スーパーコン ピュータ Suiren にて性能評価をおこなった. OpenCL で 記述された計算科学アプリケーションは大きな修正なく、 PEZY-SC 用のプログラミング環境である PZCL で動作し た. 今回は、全てのケースにおいて PEZY-SC プロセッサ に特化した最適化はおこなわずに性能評価をおこなった.

高精度天文多体シミュレーションでは、OpenCL で記述 されたライブラリ OCLG6A を、既存の MPI 並列化コード φ-GRAPE と組み合わせ, Suiren の4 ノードまでを利用し, 9.18 TFLOPS の性能を得た. ツリー法による重力ポテン シャル計算と SPH 法のシミュレーションでは, OpenCL に よる八分木のツリーウォークは比較的効率よく PEZY-SC プロセッサで実行可能なことがわかった.また, OpenCL に よる SPH 法シミュレーションコード OTOO による白色矮 星シミュレーションでは, 複数の PEZY-SC プロセッサを 使った場合の性能評価をおこなった. 津波進化シミュレー ションの PEZY-SC プロセッサでの性能は, 他のアクセラ レータと比べて性能があまりよくないため, アーキテクチャ に特化した最適化が必要である.最後に,整数演算による 多倍長浮動小数点演算エミュレーション手法の PEZY-SC プロセッサでの性能は, 他のアクセラレータと比べて遜色 はないこともわかった.

今後, Suiren や他の PEZY-SC プロセッサを採用した スーパーコンピュータにて, 大規模計算科学アプリケー ションを実行するために, PZCL によるプログラミングの 制限やボトルネックの解消, またアーキテクチャに応じた 最適化手法を調べる必要がある.

#### 参考文献

- Dekker, T.: A Floating-Point Technique for Extending the Available Precision, *Numerische Mathematik*, Vol. 18, pp. 224–242 (1971).
- [2] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P. and Zimmermann, P.: MPFR: A Multiple-precision Binary Floating-point Library with Correct Rounding, *ACM Trans. Math. Softw.*, Vol. 33, No. 2, pp. 1–15 (online), DOI: 10.1145/1236463.1236468 (2007).
- [3] Gaburov, E., Harfst, S. and Zwart, S. P.: SAPPORO: A way to turn your graphics cards into a GRAPE-6, New Astronomy, Vol. 14, No. 7, pp. 630 – 637 (online), DOI: http://dx.doi.org/10.1016/j.newast.2009.03.002 (2009).
- [4] Gingold, R. A. and Monaghan, J. J.: Smoothed Particle Hydrodynamics: Theory and Application to Nonspherical Stars, *Monthly Notices of the Royal Astronomical Society*, Vol. 181, pp. 375–389 (1977).
- [5] Harfst, S., Gualandris, A., Merritt, D., Spurzem, R., Portegies Zwart, S. and Berczik, P.: Performance analysis of direct N-body algorithms on special-purpose supercomputers, *New Astronomy*, Vol. 12, pp. 357–377 (online), DOI: 10.1016/j.newast.2006.11.003 (2007).
- [6] Heggie, D. and Hut, P.: The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics, Cambridge University Press (2003).
- Knuth, D.: The Art of Computer Programming vol.2 Seminumerical Algorithms, Addison Wesley, Reading, Massachusetts, first edition (1998).
- [8] Kono, F., Nakasato, N., Hayashi, K., Vazhenin, A., Sedukhin, S., Nagasu, K., Sano, K. and Titov, V.: PARAL-LELIZATION OF TSUNAMI SIMULATION ON CPU, GPU AND FPGAS, Supercomputing '15: Proceedings of the 2015 ACM/IEEE conference on Supercomputing, ACM, pp. 1–2 (2015).
- [9] Lucy, L. B.: A Numerical Approach to the Testing of the Fission Hypothesis, Astronomical Journal, Vol. 82, pp. 1013–1024 (online), DOI: 10.1086/112164 (1977).

|                 | SP 性能 | 加算  | 乗算   | 除算   | 除算 F | <b>除算</b> D | 4 演算 |
|-----------------|-------|-----|------|------|------|-------------|------|
| Xeon E5-2670    | 3.3e5 | 247 | 189  | 16.7 | 34.5 | 19.2        | 254  |
| Radeon R9 R280X | 4.2e6 | 729 | 1825 | 22   | 47   | 241         | 461  |
| FirePro W9100   | 5.2e6 | 942 | 525  | 28.6 | 52.0 | 28.1        | 597  |
| FirePro W8100   | 4.2e6 | 980 | 450  | 28.1 | 52.2 | 47.1        | 610  |
| PEZY-SC         | 3.0e6 | 144 | 130  | 49.3 | 68.4 | 60.1        | 423  |

表 3 MYFP 方式  $(n_{\text{man}} = 210, n_{\text{exp}} = 30)$ の性能評価. 単位は MFLOPS.

- [10] Makino, J.: Optimal order and time-step criterion for Aarseth-type N-body integrators, Astrophysical Journal, Vol. 369, pp. 200–212 (online), DOI: 10.1086/169751 (1991).
- [11] Makino, J. and Taiji, M.: Scientific Simulations with Special-Purpose Computers-the GRAPE Systems, Scientific Simulations with Special-Purpose Computers-the GRAPE Systems, by Junichiro Makino, Makoto Taiji, pp. 248. ISBN 0-471-96946-X. Wiley-VCH, April 1998. (1998).
- Makino, J., Daisaka, H., Fukushige, T., Sugawara, Y., Inaba, M. and Hiraki, K.: The performance of GRAPE-DR for dense matrix operations, *Procedia Computer Science*, Vol. 4, pp. 888 – 897 (online), DOI: http://dx.doi.org/10.1016/j.procs.2011.04.094 (2011). Proceedings of the International Conference on Computational Science, ICCS 2011.
- [13] Nakasato, N.: Implementation of a parallel tree method on a GPU, Journal of Computational Science, Vol. 3, No. 3, pp. 132 – 141 (online), DOI: http://dx.doi.org/10.1016/j.jocs.2011.01.006 (2012).
- [14] Sato, Y., Nakasato, N., Tanikawa, A., Ken'ichi-Nomoto, Maeda, K., Hachisu, I.: A Systematic Study of CarbonOxygen White Dwarf Mergers: Mass Combinations for Type Ia Supernovae, *The Astrophysical Journal*, Vol. 807, No. 1, p. 105 (online), available from (http://stacks.iop.org/0004-637X/807/i=1/a=105) (2015).
- [15] Sugimoto, D., Chikada, Y., Makino, J., Ito, T., Ebisuzaki, T. and Umemura, M.: A Special-Purpose Computer for Gravitational Many-Body Problems, *Nature*, Vol. 345, pp. 33–35 (1990).
- [16] Tanikawa, A. ,Nakasato, N. ,Sato, Y. ,Ken 'ichiNomoto , Maeda, K. , Hachisu, I. : Hydrodynamical Evolution of Merging Carbon-Oxygen White Dwarfs: Their Presupernova Structure and Observational Counterparts, *The Astrophysical Journal*, Vol. 807, No. 1, p. 40 (online), available from (http://stacks.iop.org/0004-637X/807/i=1/a=40) (2015).
- [17] Titov, V.: Numerical modeling of tsunami propagation by using variable grid, *Proceedings of the IUGG/IOC International Tsunami Symposium*, pp. 46–51 (1989).
- [18] Titov, V. and Gonzalez, F.: Implementation and testing of the method of splitting tsunami (MOST) model, NOAA Technical Memorandum ERL PMEL-112 (1997).
- [19] 河野郁也,中里直人,林 憲作,Alexander, V., Stanislav,
   S.: MOST 法による津波シミュレーションの OpenMP 並 列化とその性能評価,研究報告ハイパフォーマンスコン ピューティング(HPC),Vol. 2014, No. 24, pp. 1-6(オンラ イン),入手先 (http://ci.nii.ac.jp/naid/110009827575/) (2014).
- [20] 山田 進, 佐々成正, 今村俊幸, 町田昌彦:4 倍精度基本 線形代数ルーチン群 QPBLAS の紹介とアプリケーション への応用,情報処理学会研究報告.計算機アーキテクチャ

研究会報告, Vol. 2012, No. 23, pp. 1-6 (オンライン), 入手先 (http://ci.nii.ac.jp/naid/110009490634/) (2012).

- [21] 中里直人:整数演算による多倍長浮動小数点演算エミュレーションの GPU での性能評価,情報処理学会研究報告.[ハイパフォーマンスコンピューティング], Vol. 2015, No. 8, pp. 1–6 (オンライン),入手先(http://ci.nii.ac.jp/naid/110009877717/) (2015).
- [22] 中里直人,石川 正,牧野淳一郎,湯浅富久子:ア クセラレータによる四倍精度演算,情報処理学会研 究報告.[ハイパフォーマンスコンピューティング], Vol. 2009, No. 39, pp. 1–7(オンライン),入手先 (http://ci.nii.ac.jp/naid/110007995434/) (2009).
- [23] 台坂 博,中里直人,石川 正,湯浅富久子:多倍長専用計算機 GRAPE9-MPX の拡張とその性能評価,情報処理学会研究報告.[ハイパフォーマンスコンピューティング], Vol. 2015, No. 7, pp. 1-7 (オンライン),入手先(http://ci.nii.ac.jp/naid/110009877716/) (2015).