
IPSJ SIG Technical Report

3-Way Scripts as a Base Unit for Flexible Scale-Out Code

Marat ZHANIKEEV1,a)

Abstract: Distributed and/or parallel code is normally based on elaborate platforms. The main problems with such
platforms are (1) constraints placed on operation of the code and (2) overhead imposed by the platform that arbitrates
among multiple instances within the running code. This paper argues in favor of platform-less distribution of code. The
base unit is referred to as 3-way script, where the three ways are (1) calling a method/function of an instantiated class,
(2) executing the code from the command line, and (3) calling a method/function using HTTP requests to a remote
web API. The key merit of the proposal is that all the three uses are possible on the same code, which by developer
only one – this code is referred to as a 3-way script. This paper discusses examples of the code written in PHP, while
the same design is possible in several other popular programming languages.

Keywords: distributed code, 3-way scripting, distributed objects, distributed components, heroku, docker, cloud ap-
plications

1. Introduction
This paper meets a recent call for new cloud distribution plat-

forms in [15]. The paper has an excellent review both on tra-
ditional and modern platforms, focusing on Ibis and its spinoffs
(Constellation, etc.) as an example of a cutting edge platform
today. This paper meets the same challenge but with an alterna-
tive view point referred to as distributed code and implemented
as 3-way scripts.

Traditional tools exists since as far as 1999 with Corba being
arguably the first popular tool on the market [7]. There are also
Java RMI [13] and OS-native platforms like Cocoa in Mac OS
[8], most of which are still used in practice today. The biggest
problem with traditional platforms is that they are based on the
client-server unit of distribution which does not work well in het-
erogeneous environments like those found in clouds [2]. Tradi-
tional platforms also implement networking as continuous sock-
ets which are not feasible under the scale-out distribution design
popular in clouds today, where there can be hundreds or even
thousands of concurrent instances.

Recent advances attempt to resolve these problems by adding
hierarchical structure [10] or even allowing for P2P networking
[13]. Such platforms rely on distributed data storage (normally
Distributed Hash Tables (DHT) are used), NAT traversal, and
other technologies. In P2P topologies, it is important to create
structure on the fly by creating clusters or nodes and assigning
superpeers [11].

A separate branch of advanced methods is the Service Oriented
Architecture (SOA) [9]. It also relies on distributed storage but
is unique in that the distributed network is centered around tasks

1 Computer Science and Systems Engineering
Kyushu Institute of Technology
Kawazu 680-4, Iizuka-shi, Fukuoka-ken, 820–8502 Japan

a) maratishe@gmail.com

rather than objects. Also known under the name of Service Ori-
ented Computing (SOC), it is still an active area of research [12].
The ultimate destination of SOA/SOC is the Ambient Comput-
ing discussed in [14]. Some of the goals of Ambient Computing
are discussed further as part of the constraints for the proposed
method.

A

B

C
Many Many

HTTP REQ
HTTP REP (small data)

new,
call

CLI

High
volume

Big Data

Manager

Fig. 1 A common problem in heterogeneous cloud environments resolved
by the proposed 3-way scripting.

Fig.1 shows an example problem from fog computing [2],
which explains why there is a need for the new method called
distributed code in this paper. The example comes from a cloud-
based video streaming service where VMs/apps can have fairly
large local storage but very low-capacity links to the outside
world. In this situation, each node should have at least two be-
haviors – local versus remote in order balance the difference in
performance efficiently. The same problem occurs when creating
a population of Docker-based applications [2], over-the-network
interfaces to Big Data processors [3] or a localized intensive pro-
cessing environment – the example of data streaming on multi-
core in [4]. Finally, both traditional and advanced platforms do
not offer the flexibility for users to generate their own network
topologies, where the Virtual Network Embedding (VNE) is a re-
cently introduced technology for optimization of virtual topolo-
gies [5].

Let us consider the practical situation in Fig.1 and the func-
tions it requires. Instance A performs a high-volume local job,

1ⓒ 2015 Information Processing Society of Japan

Vol.2015-SE-190 No.6
2015/12/15

IPSJ SIG Technical Report

potentially at the scale of a locally hosted Big Data. Instance B
comes from another code but needs to use the code of A as a li-
brary for high-volume local interaction with Big Data. A local
human manager and/or software automation also want to use the
code of A as a commandline interface. Finally, Instance C comes
from the same code/application as Instance A but needs to call A
using GET/POST HTTP requests. Note that only the C-A inter-
action falls under the category of traditional distribution while the
remaining functionality is not provided by either traditional or ad-
vanced platforms. However, such functionality is crucial for rapid
deployment and efficient operation and monitoring of large-scale
distributed applications in clouds [2]. The next section introduces
the multi-purpose code in Fig.1 as 3-way scripting.

The above problems have recently been recognized and are
found in literature on cloud applications [15]. However, the
best offered solution is the Ibis (and its build-up Constellation)
platform which is a mixture of traditional, SOA and other com-
ponents intended for supporting multi-purpose distribution in
clouds. Ibis is still task-oriented and therefore belongs to the SOA
class but offers more flexibility in general. See the last section for
the comparison of specific features with traditional platforms and
the proposal.

This paper offers an alternative solution to the same problems
that are tackled by Ibis. In fact, the proposed method solves some
of the problems marked as partially resolved by Ibis in [15]. The
core idea in this paper is the notion of distributed code as op-
posed to objects or data. To be efficient, the code has to be min-
imized and allow for multiple modes of execution. Here, the 3-
way scripting method – also described in this paper for the first
time – offers three separate execution modes and therefore offers a
useful technique for implementing the notion of distributed code
in practice. The 3-way scripting method is already used in prac-
tice as a method for distributing applications across fog clouds
[2], but this paper is the first publication that focuses on this par-
ticular component as a crucial part in efficient large-scale distri-
bution. The coding advice contained in this paper also comes
from practical experience.

2. Distributed Code via 3-Way Scripts
Objectives of the proposed method are the same as formulated

for Ambient Computing in [14]. However, this section formulates
the objectives focusing on cloud environments and the distributed
code concept.

Volatility is formulated in [14] in relation to connectivity, but
in clouds it also comes from frequent migrations and changes in
populations – the term used to describe a large number of Virtual
Machines (VMs) or container-based apps providing the same ser-
vice (scale-out) [2]. High volatility also demands that distributed
code is highly flexible both in handling and in deployment.

Heterogeneous environments in [14] is about wireless spaces
while in clouds heterogeneity comes from differences in hardware
and network performance across the numerous locations included
in a cloud. This problem peaks for fog clouds which, by defini-
tion, are located at network edge [2].

Autonomy also refers to wireless spaces in [14] but applies
equally well for the practical example discussed in Section 1,

where data-intensive local environments can be considered au-
tonomous because they cannot move easily to another location –
to be exact, the code can move but the local data and execution
environment is unique to a given location and cannot be recreated
at another location at a reasonable cost. Note that this side of au-
tonomy is related to heterogeneity as the same code can run in
two locations with completely different execution environments
and, therefore, practical objectives for each instance.

function callme (…)
…

Class NAME

Other code,
Manager CLI mode

$a = new NAME ()
$a ->callme ();
HTTP mode
$a = new NAME ()
echo toJSON ($a ->callme ());

Operator Remote code

Use in
Object mode

Fig. 2 Structure of a 3-way script and its execution environment.

Fig.2 shows the structure of a single-file 3-way script. The
pseudocode is in PHP but the same technique will work in Perl,
Python, Ruby and other popular scripting languages. Let us con-
sider the structure in top-down order. The core functionality is
written as the traditional class, which can be used to create in-
stances. Each public function in the class is a unit action. CLI
mode is a procedural (non-object, outside of the class code) code
that uses the IF...THEN construct to fork into the CLI mode. The
HTTP mode is also a fork into the respective mode.

Forking here has the following meaning. In both CLI and
HTTP modes, it is assumed that either commandline call or
GET/POST request carry the name of the function (action) and
parameters necessary for a given action. Each fork is simply an
interpreter for these variables. Once interpreted, a new instance
of the class is creates and the necessary function is called by ref-
erence. Calling by reference is easy in PHP and other popular
scripting languages – one can use a variable to refer to a function
as shown in the following code snippet:

$a = new NAME();
$b = ‘callme’;
$a->$b($param, $defaultparam = 10);

A minor difference between CLI versus HTTP forks is in the
format of the output. In CLI mode, the output is in plaintext (std-
out) in commandline, while HTTP requests would normally re-
quire a JS-compatible format like JSON. Current 3-way scripting
prototypes use JSON for both as is common with cloud services
(Heroku, Docker, etc.), hoping that humans can read the hash ar-
ray notation. This also makes it possible to parse the standard
output by 3-rd party tools.

Using the above design, the 3-way script in Fig.2 can work in
the following 3 modes. When used as an object, other code (man-
ager, automation, etc.) creates an instance from the class and calls
its functions directly. When used in CLI mode, a human operator
(or, again, software automation) calls a function from command-
line – this mode is extremely useful for Docker deployments [2]
where initialization from command line is easier to implement
(Docker apps are limited to one executable per container).

2ⓒ 2015 Information Processing Society of Japan

Vol.2015-SE-190 No.6
2015/12/15

IPSJ SIG Technical Report

Finally, when used in web API mode, the code needs a web
server to receive requests. However, most popular scripting en-
vironments (php, python, ruby, etc.) have mini web servers
built into their execution engines. Starting a web server in such
environments is as easy as running a single command without
any prior configuration. For sockets (WebSockets for browser
clients), a separate server can be written in any scripting language
– see example experiments and prototype code for a WebSocket
client/server written in PHP at [6].

For Remote Code (left side of Fig.2), RESTful requests can be
sent using built-in HTTP functions in a given language. However,
in cloud applications it is common to use existing tools like wget
or curl and simply parse the JSON in replies.

Advantages of the proposed method over traditional and ad-
vanced (Ibis, etc.) platforms are as follows. The code is a stan-
dalone script and needs no platforms other than the engine for the
scripting language itself. The single-file feature is important for
clouds where most services are relatively small (scale out can be
rephrased as small code, many copies) and easily fit into a single
file. Since the script is both autonomous and multi-purpose, it
can be part of a wide array of possible topologies. The proposed
method is part of a management framework in which topology
is optimized dynamically using the Virtual Network Embedding
(VNE) approach [5] – specifically the cited paper considers a
networks built from hub-and-spokes basic units. The proposed
method is also part of small-scale but extremely performance-
intensive environments in [3] and [4].

3. Web API Security

AB

Many Many

REQ(md5p, …)

Make
secure

Operator,
Manager

mp5p

mp5 (file)
Attacker

Manager

Fig. 3 Security in distributed networks of 3-way scripts.

When running web (RESTful) APIs in a large number of nodes
in the Internet, security is a top priority. Fig.3 shows a very simple
yet a robust security design. Following the stated earlier objec-
tives, the design does not restrict flexibility of the 3-way scripts.

Step 1 is when local manager (or deployment automation) tells
the code to secure itself. The code uses some unique information
about itself plus a random component to generate an MD5 hash.
The hash is stored in local filesystem while its prefix (md5p) is
returned to the calling party. Prefix can be of any length up to the
full length of the hash, however, it is advised to limit the length
to 10-15 symbols for manual operators. Note that multiple keys
can be created for different users to enable logging and later per-
formance/fault analysis for each remote node.

Step 2 is when the md5p prefix is registered with an external
manager (or cluster head in hierarchies as in [11]) where it can be
discovered by other nodes of the manager itself. The security is

enforced simply by ignoring all API calls which come without or
with a wrong key. The solution is flexible because the code can
be easily toggled between secure and insecure states – togglese-
cure(), for example, can be used as a toggle function for code
security.

Note that this technique is not a solution against DDoS attacks.
However, randomizing or dynamically changing listening ports
can partially resolve the DDoS problem as well. Resilience to
DDoS attacks is not an immediate objective of this paper.

4. Comparison and Discussion

Table 1 Feature comparison between the proposed concept of distributed
code and existing platforms.

(Web)
Sockets

RESTful
calls

Hierarchical
structure

Heterogeneous
environments

Learning
curve

(simplicity)
Needs a
platform?

Traffic
encoding
optional?

Traditional
(Corba, ESB, MPI,…) YES NO NO NO NO YES NO

Advanced/modern
(SOC, Ibis, …) YES YES YES YES NO YES NO

Distributed code
(proposed) YES YES YES YES YES NO YES

Table 1 shows the comparison between traditional (Corba,
ESB, RMI, etc. as per discussion in [7][8]), advanced (SOA,
Ibis, etc. as per discussion in [15]), and the proposed method
with the 3-way scripting implementation as the representative of
the proposed method in practice. This section offers comparison
at two levels, first discussing features which are shared with the
advanced methods and then proceeding to the features unique to
the proposed method. The table left-to-right advances in the same
order, listing the unique features at the right side of the table.

In three aspects in Table ?, the proposed method is at level
with the advanced methods. Both RESTful and socket-based con-
nections between instances are possible as well as switching be-
tween the two at runtime. This feature is extremely useful for
async processing where the requesting party can poll for sta-
tus rather than keep an open socket waiting for the reply. Hi-
erarchical and ultimately P2P structures can be supported by
both classes of methods. However, the proposed method sup-
ports a higher degree of freedom, ultimately aiming at Heroku-
or Docker-like massive scale-out applications [2] with non-trivial
topologies generated by VNE optimizations [5]. Both classes
of methods are suitable for heterogenous environments, however,
Ibis still lists this as a partially resolved problem [15].

The unique – different from both traditional and advanced
methods – features of the proposed method are as follows.

Learning curve is extremely sharp with a short period of time
required to understand and adopt the 3-way scripting method.
The complexity problem is also tackled by Ibis [15] but remains
unsolved – in fact, it is argued in [14] that any distributed pro-
gramming framework involves a slow learning curve as long as
it involves a bulky framework that attempts to be as generic as
possible.

The proposed method is platformless in addition to being
completely autonomous. Designs in [14] also intend to be plat-
formless but lack the flexibility of the 3-way scripting proposed in
this paper. In fact, the wireless spaces in [14] are much more uni-
form in terms of hardware function than the environments found
in clouds. Several examples of such environments were discussed
earlier in this paper.

3ⓒ 2015 Information Processing Society of Japan

Vol.2015-SE-190 No.6
2015/12/15

IPSJ SIG Technical Report

Finally, the traffic encoding feature refers to the fact that both
traditional and advanced methods encode the traffic exchange,
both in terms of using a complex protocol and encrypting the
payload. The proposal has a very lightweight protocol – only
enough to provide the generic interface for all three modes in the
3-way scripts – however in terms of encryption the output is in
plaintext/JSON but can be encrypted in user code if necessary.

5. Conclusion
This paper proposed a new class of distributed methods re-

ferred to as distributed code and implemented using the 3-way
scripting technique. There might be other techniques that would
satisfy the three main objectives formulated in this paper –
volatility, heterogeneity and autonomy – but the 3-way scripts
appear to satisfy these objectives to a much higher degree than
existing platforms. Note that the objectives originate from an ex-
isting research on distributed programming in wireless spaces,
where this paper shows that there are many similarities between
wireless spaces and cloud environments.

The distributed code method intends for the code to become the
base unit in a scale-out cloud population. Just like in Heroku or
Docker, such populations are best when built from a large number
of relatively small and simple units of code. Existing literature
also refers to such populations as massively parallel and/or mas-
sively distributed, the two terms tightly mixed in cloud environ-
ments. Although it may appear mutually exclusive, such environ-
ments can also be heterogeneous, especially in case of fog clouds
where individual instances of code can encounter drastically dif-
ferent local environments across the cloud. The distributed code
method through its 3-way scripts offers enough flexibility to adapt
to local specifics and even support non-trivial topologies when
connecting to other instances in P2P mode. The simplest way to
experience the flexibility of the proposed code is to switch its use
from web API to local object mode and monitor the difference in
achievable data throughput.

At present time, the presented 3-way scripting design is used
in several working prototypes. The closest to traditional is the
generic Docker-based applications running on large populations
(copies) of the proposed code. The less traditional are the Big
Data prototypes where the heterogeneity feature is tested to its
fullest. Here, the proposed code is often run at the Big Data lo-
cation in manual mode for debugging and monitoring purposes,
always using the same 3-way script rather than relying on ex-
tra/external software.

Future work on the topic will focus on creating automation
scripts (not frameworks) for deployment, monitoring and manag-
ing large populations of 3-way scripts. Documentation will also
be written on common usecases in which 3-way scripts can be
useful.

References
[1] Github Public Repository for the 3-Way Scripting Project. [Online].

Available:
https://github.com/maratishe/3wayscripting (July 2015)

[2] M.Zhanikeev, “A Cloud Visitation Platform to Facilitate Cloud Feder-
ation and Fog Computing”, IEEE Computer, vol.(in processing), May
2015.

[3] M.Zhanikeev, “Streaming Algorithms for Big Data Processing on
Multicore”, Big Data: Algorithms, Analytics, and Applications, CRC,
2015.

[4] M.Zhanikeev, “Methods and Algorithms for Fast Hashing in Data
Streaming”, Cryptography: Algorithms and Implementations Using
C++, CRC, 2014.

[5] M.Zhanikeev, “A New VNE Method for More Responsive Networking
in Many-to-Many Groups”, 7th International Conference on Ubiqui-
tous and Future Networks (ICUFN), July 2015.

[6] M.Zhanikeev, “Experiments with application throughput in a browser
with full HTML5 support”, IEICE Communications Express, vol.2,
no.5, pp.167–172, May 2013.

[7] W.Emmerich, V.Gruhn (editors), Engineering Distributed Objects.
Proceedings of ICSE Workshop, 1999.

[8] Distributed Objects Programming Topics. Apple Objective-C Manual,
2007.

[9] R.Buyya, C.Vecchiola, S.Selvi, Mastering Cloud Computing: Foun-
dations and Applications Programming. Elsevier, 2013.

[10] F.Baude, D.Caromel, M.Morel, “From Distributed Objects to Hier-
archical Grid Components”, On the Move to Meaningful Internet
Systems (CoopIS, DOA, and ODBASE), Springer LNCS vol.2888,
pp.1226–1242, 2003.

[11] M.Albano, L.Ricci, L.Genovali, “Hierarchical P2P Overlays for DVE:
An Additively Weighted Voronoi Based Approach”, International
Conference on Ultra Modern Telecommunications (ICUMT), pp.1–8,
2009.

[12] K.Birman, J.Cantwell, D.Freedman, Q.Huang, P.Nikolov,
K.Ostrowski, “Live Distributed Objects for Service Oriented
Collaboration”, Technical Report, Cornell University, 2009.

[13] T.Zink, O.Haase, J.Wasch, M.Waldvogel, “P2P-RMI: Transparent
Distribution of Remote Java Objects”, International Journal of Com-
puter Networks and Communications (IJCNC), vol.4, no.5, pp.17–34,
2012.

[14] J.Dedecker, T.Cutsem, S.Mostinckx, T.DHondt, W.Meuter, “Ambient-
Oriented Programming in AmbientTalk”, 20th European Conference
on Object-Oriented Programming (ECOOP), pp.230–254, 2006.

[15] M.Hajibaba, S.Gorgin, “A Review on Modern Distributed Comput-
ing Paradigms: Cloud Computing, Jungle Computing and Fog Com-
puting”, Journal of Computing and Information Technology (CIT),
vol.22, pp.69–84, 2014.

4ⓒ 2015 Information Processing Society of Japan

Vol.2015-SE-190 No.6
2015/12/15

