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Abstract: We design a concurrent separation logic for GPGPU, namely GPUCSL, and prove its soundness by using
Coq. GPUCSL is based on a CSL proposed by Blom et al., which is for automatic verification of GPGPU kernels, but
employs different inference rules because the rules in Blom’s CSL are not standard. For example, Blom’s CSL does
not have a frame rule. Our CSL is a simple extension of the original CSL, and it is more suitable as a basis of advanced
properties proposed for other studies on CSLs. Our soundness proof is based on Vafeiadis’ method, which is for a CSL
with a fork-join concurrency model. The proof reveals two problems in Blom’s approach in terms of soundness and
extensibility. First, their assumption that thread ID independence of a kernel implies barrier divergence freedom does
not hold. Second, it is not easy to extend their proof to other CSLs with a frame rule. Although our CSL covers only
a subset of CUDA, our preliminary experiment shows that it is useful and expressive enough to verify a simple kernel
with barriers.
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1. Introduction

GPGPU (general-purpose computing on graphics processing
units) is a method that allows GPUs to be used for general pur-
pose computation. It is used in many applications because GPUs
provide high parallelism at a low price.

However, the programmers need to write GPGPU programs
carefully in order not to cause data races (e.g., by using synchro-
nization among threads), because the programs run in an SPMT
(single program multiple threads) manner.

One of the pitfalls GPGPU programs is barrier divergence [9].
CUDA, which is one of the widely used programming languages
for GPGPU, has a synchronization instruction that succeeds when
and only when all threads reach the barrier instruction at the same
location in a program. If some threads do not execute any barrier
instructions or reach a barrier instruction at a different location in
the program, the behavior of the program is unspecified.

Blom et al. proposed an extension of concurrent separation
logic (CSL) [10] for verifying GPGPU programs [3]. They ex-
tended the CSL for SPMT programs and made an automated ver-
ifier. The inference rules of Blom’s CSL differ from the standard
CSL in the following points. (i) Their CSL does not have a frame
rule. (ii) In their CSL, assertions must be separated into those on
resources and those on functions. They also proposed thread ID

independence as a sufficient condition for freedom from barrier
divergence. However, they did not prove the soundness of the
condition.
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Here, we designed a CSL for GPGPU, namely GPUCSL, on
the basis of Blom’s CSL and Vafeiadis’ CSL [13] and proved
its soundness by using the Coq proof assistant [11]. The infer-
ence rules of GPUCSL is designed to be similar to standard CSL.
To prove soundness, we applied Vafeiadis’ soundness proof for a
CSL based on a fork-join concurrency model [13]. We also for-
malized thread ID independence as a type system and proved its
soundness.

In proving the soundness, we identified the following problems
in Blom’s proof. First, it is hard to apply the proof strategy to
CSLs with the frame rule. This is because one of the lemmas
in their proof does not hold in CSLs with the frame rule. Sec-
ond, Blom et al. overlooked the prerequisite to the thread ID in-
dependence of a program, namely the absence of data races in the
program.

The rest of this paper is organized as follows. We present our
object language in Section 2 and the inference rules and definition
of soundness of GPUCSL in Section 3. We give a sketch of the
soundness proof of GPUCSL in Section 4 and discuss differences
between Blom’s CSL and GPUCSL in Section 5. We show an
example of verifying a simple program in Section 6 and discuss
related work in Section 7. Finally, we present our conclusion and
mention future work in Section 8.

2. Language

The object language of GPUCSL is a simplified version of
CUDA C [9]. In CUDA C, GPUs and CPUs have their own mem-
ories and carry out computations in the following steps. (1) A
program running on a CPU (the host program) allocates mem-
ory areas that are used by a program running on a GPU (the ker-

nel). (2) The host program invokes the kernel with the number of
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Fig. 1 Syntax of the WhileB language.

Fig. 2 Program example: rotate.

threads and the addresses of the memory areas allocated in step
(1). (3) The GPU spawns the specified number of threads in step
(2), each of which starts executing the kernel from its first instruc-
tion. Each thread uses its own registers and the global memory,
which is shared with all the other threads (i.e., based on shared
memory parallelism). One of the registers holds the thread ID.
The model for synchronization among threads is based on barri-
ers.

With barrier synchronization, a barrier instruction only suc-
ceeds when all threads reach the barrier instruction at the same
location in a kernel. A state when two threads reach two differ-
ent barriers is called barrier divergence [9], and its behavior is
unspecified. One of the properties that GPUCSL verifies is that
kernels do not cause barrier divergence.

In this paper, we only discuss execution of a kernel on a
GPU. We define a language for writing a kernel by extending
the “while” language with instructions for barrier synchroniza-
tion and for reading and writing to the global memory (WhileB

language). We discuss the features in CUDA C that are omitted
in the WhileB language in Section 8.

2.1 Syntax Rule
Figure 1 shows the syntax rules of WhileB. The meta-

variables E, B and C denote arithmetic expressions, Boolean
expressions, and commands, respectively. x and n denote local
variables and integer values, respectively. A local variable corre-
sponds to a register that every thread has. Note that E and B have
no instructions that read or write to the global memory. x := [E1]
and [E1] := E2 are respectively read and write instructions for
the global memory. barrierb is the barrier instruction. The in-
struction is indexed by b to account for barrier divergence. Each
barrier instruction in a program must have an index b that is dif-
ferent from the index of any other barrier in the program.

Figure 2 shows an example program rotate in WhileB, where
T is the number of threads as well as the length of array a. Each
thread rotates an element of the array a to the right by one off-
set. In other words, an element at index i is moved to the index
((i + 1) mod T ) when rotate finishes. Line 1 of rotate reads an
element of a at index tid. The variable tid has a thread ID.
Line 2 is a barrier instruction, which lets all the threads execute
the write instruction after all threads have finished the read in-
struction. Lines 3–6 calculate the destination index t. Line 7
writes to a at index t.

2.2 Semantics
We define the semantics of WhileB by extending the semantics

of Vafeiadis [13] with transition rules for barrier instructions. The
semantics consist of rules for parallel execution→g and rules for
sequential execution→t. A state of the GPU is represented by a
triple (C, s, h), where x is an abbreviation of x0, x1, . . . , xT−1, and
T is the number of threads. The elements of the triple denote the
following states.

• C is a sequence of commands, where Ci is the command to
be executed by the thread i.

• s is a sequence of variable environments (stacks), where si is
the stack of thread i.

• h is the global memory.

A stack si is a function from variables Var to values Val (si ∈
stack = Var → Val.) A global memory h is a partial function
from addresses Loc to values Val (h ∈ heap = Loc→ Val∪ {⊥}.)
Loc is the set of integers.

Figure 3 defines the semantics of parallel execution (→g). The
definition is represented in the form (C, s, h) →g (C′, s′, h′). The
parallel execution denotes a GPU state transition from (C, s, h) to
(C′, s′, h′) by one-step execution of the GPU. The G-Step rule
moves one of the threads by using the sequential execution →t.
The G-Barrier rule moves all threads by one step when all threads
reach a barrier instruction. This rule was newly added by the au-
thors. Tid is the set of thread ID, namely Tid = {0, 1, . . . , T − 1}.
The relation wait(C) = (B,C′) denotes that all the threads in the
kernel C reach a barrier with index b, and the next set of com-
mands is C′ (Fig. 4). The G-Abort rule aborts the kernel if any of
the threads aborts.

Figure 5 defines the sequential execution (→t). →t are the
same as those in the standard While language. Note that the do-
main of a stack s is extended to arithmetic and Boolean expres-
sions, as shown in Fig. 6.

3. GPUCSL

CSL verifies that a concurrent program C satisfies a specifica-
tion {P} C {Q}. The specification reads: when C starts with a
state satisfying P, (i) C does not abort during the execution and
(ii) the memory state when C terminates satisfies Q. P and Q are
predicates on a pair of a stack and a heap, namely assertion.

GPUCSL verifies that a kernel meets a specification. Its in-
ference rules are based on those for Blom’s CSL and Vafeiadis’
CSL. GPUCSL ensures barrier divergence freedom in addition to
the above properties (i) and (ii). The inference rules include the
Parallel rule (Fig. 7) to verify parallel execution of a kernel. The
premise of the rule check the following properties of the kernel.

L1 The precondition implies a separating conjunction of pre-
conditions of threads.

L2 There are postconditions of threads whose separating con-
junction implies the postcondition of the specification.
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Fig. 3 Operational semantics for parallel execution.

Fig. 4 Definition of the wait function.

L3 For all threads, the specification {Pi ∧ tid = i} C {Qi} is
satisfied under the sequential execution semantics.

L4 The kernel is thread ID independent. Intuitively, this means
that barrier instructions in the kernel appear only in execu-
tion contexts that do not depend on the thread ID.

L5 In every barrier specification BS , the memory resources re-
distributed before and after a barrier synchronization instruc-
tion are exactly the same. This means that the threads cor-
rectly exchange the memory areas used before and after the
barrier synchronization instruction.

The conditions at line 6 and line 7 are not important and will be
explained later.

Note that GPUCSL can only verify programs without data
races, as it is based on separation logic [10].

3.1 Inference Rules
GPUCSL is a fraction-based permission CSL (FPCSL) [4]. As-

sertions of FPCSL are predicates on a pair of a stack and a
permission-heap (pheap). pheap is a function of type Loc →
(Perm × Val) ∪ {⊥}, where Perm is a set of rational numbers that
are greater than 0 and less than or equal to 1. When a thread has
a pheap h, and h satisfies h(l) = (1, v) for some address l and
some value v, the thread has permission to read from and write to
address l. If h satisfies h(l) = (π, v) for some π < 1, the thread
only has read permission.

Now let us define the sum of two pheaps (	). First, we define
a binary operator (⊕) over Perm × Val.

(π1, v1) ⊕ (π2, v2)=

⎧
⎪⎪⎨
⎪⎪⎩

(π1 + π2, v1) (v1 = v2 ∧ π1 + π2 ≤ 1)
⊥ (otherwise)

For all pheaps h1 and h2, h1⊥h2 denotes that, for all l ∈
dom(h1)∩dom(h2), h1(l)⊕ h2(l) � ⊥, where dom(h) is {l | h(l) �
⊥}. h1 	 h2 is defined if and only if h1⊥h2:

(h1 	 h2)(l) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

h1(l) ⊕ h2(l) (h1(l) � ⊥ ∧ h2(l) � ⊥)
h1(l) (h1(l) � ⊥ ∧ h2(l) = ⊥)
h2(l) (h1(l) = ⊥ ∧ h2(l) � ⊥)
⊥ (otherwise).

GPUCSL has, in addition to logical formulas, the following
logical operators: emp, E1 →π E2 and P � Q. The semantics of
these operators are as follows.

s, h |= emp ⇐⇒ ∀l, h(l) = ⊥
s, h |= E1 →π E2 ⇐⇒ h(s(E1)) = (π, s(E2)) ∧

∀l � s(E1), h(l) = ⊥

s, h |= P � Q ⇐⇒ ∃h1 h2, h = h1 	 h2 ∧
(s, h1 |= P) ∧ (s, h2 |= Q)

We also use the following notations:
⊎

i∈Tid hi = h0	h1	. . .	hT−1,
and�i∈TidPi = P0 � P1 � . . . � PT−1.

In order to extend assertions to predicates on a pair of a stack

and a heap, we convert heaps into pheaps by using an auxiliary
function to pheap.

to pheap(h)(l) =

⎧
⎪⎪⎨
⎪⎪⎩

(1, v) (h(l) = v � ⊥)
⊥ (h(l) = ⊥)

Conversely, we can regard a pheap h as a heap if h satisfies
∀l ∈ dom(h),∃v, h(l) = (1, v) ∨ h(l) = ⊥. We write this condi-
tion as hdef(h).

Figure 7 and Fig. 8 show the inference rules of GPUCSL. In-
tuitively, Γ, BS �par {P} C {Q} reads: under a typing environment
Γ and a barrier specification BS , a specification {P} C {Q} can be
proved. GPUCSL has rules for barrier synchronization (the bar-
rier rule) and parallel execution (the parallel rule) in addition to
the rules for the separation logic by Vafeiadis [13].

The frame rule extends a proven specification {P} C {Q} by
adding a resource R that is not referenced in C. The sets fv(R)
and wr(C) appearing in the premise respectively denote the set of
variables appearing in R and the set of variables appearing in C

on the left hand side of assignment statements.
The barrier rule redistributes the resources to threads accord-

ing to the barrier specification. A barrier specification BS spec-
ifies the resources BS (i, b)pre and BS (i, b)post, which denote the
resource returned by thread i upon arrival of the barrier b and
the resource allocated to thread i after the barrier synchroniza-
tion, respectively. In order to guarantee proper exchange of re-
sources before and after the barrier synchronization, BS must sat-
isfy the condition that the separating conjunction of the returned
resources implies the separating conjunction of the allocated re-
sources, i.e.,�i∈Tid BS (i, b)pre ⇒ �i∈Tid BS (i, b)post. This condi-
tion does not appear in the premise of the barrier rule, but does
appears in the premise of the parallel rule.

The parallel rule verifies that a kernel meets a specification.
Lines 1 and 2 in the premise represent distribution/aggregation of
resources to/from each thread. Line 3 verifies each thread, and
tid = i in the precondition initializes the program variable tid
to i. Line 4 means that the command is thread ID independent
(Section 3.2). Line 5 means that each barrier specification prop-
erly redistributes resources. Line 6 represents that each barrier
specification is precise, where assertion P is precise if and only if
for all pheaps h, there exists at most one sub-pheap of h which
satisfies P. Line 7 means that all preconditions, postconditions,
and the barrier specifications are thread ID independent. An as-
sertion P is thread ID independent if and only if all variables in
P are thread ID independent. Any thread ID independent vari-
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Fig. 5 Operational semantics for sequential execution.

Fig. 6 Definition of an extended stack.

Fig. 7 Proof rules for parallel execution.

able has the same value in all threads when a kernel terminates or
performs barrier synchronization. The condition requires that the
specifications are written by only using such variables.

3.2 Thread ID Independence
Blom et al. proposed thread ID independence as a condition

that guarantees barrier divergence freedom of kernels [3]. An in-
struction or a variable in a kernel is thread ID independent if and
only if execution of the instruction or the value of the variable is
not affected by the value of thread ID, regardless of it being direct
or indirect. Therefore, execution traces of thread ID independent
instructions coincide in all threads. If all barrier instructions are
thread ID independent, we can ensure freedom from barrier diver-
gence. The definition of thread ID independence is sound, but is
not complete [3]. Thus, there exists a program that never causes
barrier divergence, yet is not thread ID independent. Such a pro-
gram cannot be verified by GPUCSL.

We formalize thread ID independence as a type system (Figs. 9,
10, 11). This type system is based on non-interference [8].
In thread ID independence, variables, arithmetic expressions,
Boolean expressions, and commands are typed as either type Hi

or type Lo. Type Lo means thread ID independence. Γ : Var →
{Hi, Lo} is a typing environment. Figure 9 shows the typing rules
for arithmetic expressions. An expression has type Hi if an ex-
pression contains a variable with type Hi; otherwise, it has type
Lo. τ1 � τ2 is defined as follows.

τ1 � τ2 =

⎧
⎪⎪⎨
⎪⎪⎩

Lo (τ1 = Lo ∧ τ2 = Lo)
Hi (otherwise)

The typing rules for Boolean expressions are defined similarly
(Fig. 10). Figure 11 shows the typing rules for commands. If a
command C has type Lo, C is ensured to be executed in a con-
text that is independent from thread ID. τ1 � τ2 is defined as
τ1 = Lo ∨ τ2 = Hi. The rules Ty-Read and Ty-Assign prevent the
values of variables with type Lo from depending on the values
of variables with type Hi. The rules Ty-While and Ty-If prevent
commands with type Lo from appearing in the bodies of condi-
tional statements whose conditional expression has type Hi. By
forcing barrier instructions to have type Lo, we can ensure that
barrier synchronization always succeeds (Ty-Barrier).

3.3 Soundness
The definition of soundness of GPUCSL is based on

Vafeiadis [13]. The main differences from the Vafeiadis’ sound-
ness are in the conditions on barrier synchronization. To define
the soundness of GPUCSL, we define a predicate Gsafen. Gsafen

means “the execution is safe for at least n steps”. Here, safety
means that (i) if the execution terminates, its memory state satis-
fies the postcondition, (ii) the execution does not abort, and (iii)
barrier divergence does not occur in the execution.
Definition 1 (The Gsafe predicate). Gsafen(C, s, h,Q, Γ) is de-
fined as follows:
Gsafe0(C, s, h,Q, Γ) always holds.
Gsafen+1(C, s, h,Q, Γ) holds if and only if
( 1 ) C = skip⇒ s, h |= Q

( 2 ) For all pheaps hF , if h⊥hF , then (C, s, h 	 hF)�G abort
( 3 ) If ∀i ∈ Tid,wait(Ci) = (bi,C′i ), then ∀i, j ∈ Tid, Γ |= si =L

s j and bi = b j

( 4 ) For all pheaps hF , if h⊥hF and (C, s, h	hF)→g (C′, s′, h′)
holds, then there exists a pheap h′′ such that h′ = h′′ 	 hF

and Gsafen(C′, s′, h′′,Q, Γ)
Here, Γ |= s =L s′ is defined as ∀x, Γ(x) = Lo ⇒ s(x) = s′(x).

s, h |= Q is also defined as ∃s′, (∀i ∈ Tid, Γ |= si =L s′)∧ s′, h |= Q

We define the semantics of {P} C {Q} by using the Gsafe pred-
icate as follows.
Definition 2. Γ |=par {P} C {Q} is defined as follows. For all nat-
ural numbers n, stack sequences s, and pheaps h, if s, h |= P and
∀i, si(tid) = i, then Gsafen(C, s, h,Q, Γ). Here, C is a sequence
of T Cs.

To prove the soundness of the parallel rule, we define the
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Fig. 8 Proof rules for sequential execution.

Fig. 9 Typing rules for expressions.

Fig. 10 Typing rules for Boolean expressions.

Fig. 11 Typing rules for commands.

soundness of rules for sequential execution. We first define the
Tsafe predicate like the Gsafe predicate; then we define the se-
mantics of the {P}C {Q} for sequential execution in the same way
as above.
Definition 3 (Tsafe predicate). Tsafei,n(C, s, h,Q, BS ) is defined
as follows.
Tsafei,0(C, s, h,Q, BS ) always holds.
Tsafei,n+1(C, s, h,Q, BS ) holds if and only if
( 1 ) C = skip⇒ s, h |= Q

( 2 ) For all pheaps hF , if h⊥hF and hdef(h 	 hF) hold, then
(C, s, h 	 hF)�T abort

( 3 ) writes(C, s) � ⊥ ⇒ ∃v, h(writes(C, s)) = (1, v)
( 4 ) For all pheaps hF which satisfies h⊥hF and hdef(h	hF), if

(C, s, h	 hF)→t (C′, s′, h′) hold, then there exists a pheap

h′′ such that h′ = h′′ 	 hF and Tsafei,n(C′, s′, h′′,Q, BS )
( 5 ) If wait(C) = (b,C′), there exist pheaps hP and hF such that
• hP⊥hF , h = hP 	 hF and s, hP |= BS (i, b)pre hold, and
• for all pheaps hQ which satisfy hQ⊥hF and s, hQ |=

BS (i, b)post, Tsafei,n(C′, s, hQ 	 hF ,Q, BS )
The predicate hdef in (2) and (4) means that the pheap has

read and write permission for all addresses in its domain. If a
pheap h satisfies hdef(h), h can be used as a heap. The function
writes used in (3) is an auxiliary function which returns the ad-
dress written to in the next step of the execution, if the command
executes a write instruction in the next step.

writes([E1] := E, s) = s(E1)

writes(C1; C2, s) = writes(C1, s)

writes(C, s) = ⊥ (otherwise)

Definition (5) is for when a barrier instruction is executed in the

next step. This means that when a thread reaches a barrier, each
thread returns proper resources according to the barrier specifica-
tion and is safe with the distributed resources.

We define the semantics of {P} C {Q} for sequential execution
by using the Tsafe predicate as follows.
Definition 4. BS , i |=seq {P} C {Q} is defined as follows. For
all natural numbers n, stacks s and pheaps h, if s, h |= P, then
Tsafei,n(C, s, h,Q, BS ).

4. Proof of Soundness

We proved the soundness of GPUCSL by using Coq. This
proof is based on Vafeiadis’ proof with Coq [12], and it is
about 4000 LOC. Because the Vafeiadis’ CSL has many differ-
ences compared with GPUCSL, we formalized GPUCSL with-
out reusing Vafeiadis’ Coq proof. Our proof is available at
http://prg.is.titech.ac.jp/ja/projects/gpucsl/.

Because Vafeiadis’ system uses atomic instructions as a syn-
chronization model, we changed the definition of soundness to
fit barrier synchronization. We applied Vafeiadis’ proof to the
soundness of the inference rules for sequential execution. We
proved the soundness of thread ID independence and showed
the soundness of the rules for parallel execution by applying the
Vafeiadis’ proof to it, but our proof is different from Vafeiadis’ in
the point that it uses the soundness of thread ID independence.

In the following, we outline the soundness proof. The follow-
ing theorem is the soundness of GPUCSL.
Theorem 5 (Soundness of GPUCSL). Γ, BS �par {P} C {Q} ⇒
Γ |=par {P} C {Q}

To prove Theorem 5, we first prove the soundness of the in-
ference rules for sequential execution. Next, we show the sound-
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ness of thread ID independence (barrier divergence does not oc-
cur, and values in all thread ID independent variables coincide
in all threads when reaching a barrier instruction or terminating).
Finally, we show the soundness of the inference rule for parallel
execution by using these two lemmas.

In this section, we assume the barrier specification BS is pre-
cise and satisfies ∀b,�i∈Tid BS (i, b)pre ⇒�i∈Tid BS (i, b)post

4.1 Soundness of Inference Rules for Sequential Execution
The following lemma is soundness of the inference rules for

sequential execution.
Lemma 6 (Soundness for sequential execution). BS , i �seq

{P} C {Q} ⇒ BS , i |=seq {P} C {Q}
The proof is done by induction on derivations of BS , i �seq

{P} C {Q}, and in each case of its derivation, we unfold the def-
inition of |=seq and prove the case by induction on the index n of
the Tsafe predicate. The cases other than the barrier rule can be
proved as Vafeiadis did. So, in the following, we prove the case
of the barrier rule. First, we prove the following lemma.
Lemma 7. For all n, BS , i, s, h, if s, h |= P, then
Tsafei,n(skip, s, h, P, BS )

Proof. If n = 0, this is trivial. So consider when n + 1. We
prove each condition of Tsafe. (1) can be proved by s, h, |= P.
The other cases can also be easily proved. �

Lemma 8 (Soundness of barrier rule). For all
BS , i, b, s, h, n, if s, h |= BS (i, b)pre, then
Tsafei,n(barrierb, s, h, BS (i, b)post, BS )

Proof. By induction on n. The case of n = 0 is trivial. Consider
the case of n = k + 1. We prove each condition of Tsafe. (1),
(2), (3), and (4) are trivial. Next, we prove (5). wait(barrierb) =
(b, skip) holds. We choose h as hp, and a pheap that satisfies
∀l, hF(l) = ⊥ as hF . hp⊥hF , h = hp 	 hF and s, hp |= BS (i, b)pre

trivially hold. Assume that hQ is an arbitrary pheap which sat-
isfies hQ⊥hF and s, hQ |= BS (i, b)post. From hQ 	 hF = hQ, we
only need to show Tsafei,k(skip, s, hQ, BS (i, b)post, BS ), and this
follows from s, hQ |= BS (i, b)post and Lemma 7 �

4.2 Soundness of Thread ID Independence
We define a predicate initConf(C, s, h, Γ, BS ) that represents

the initial state of a kernel.
Definition 9. initConf(C, s, h, Γ, BS ) holds if and only if
• ∃Cinit τ, (∀i ∈ Tid,Ci = Cinit) ∧ Γ � Cinit : τ
• ∀i, j ∈ Tid,Γ |= si =L s j

• ⊎i∈Tid hi is defined
• ∀i ∈ Tid, n,Tsafei,n(Ci, si, hi,Qi, BS )

The following lemma is the soundness of thread ID indepen-
dence.
Lemma 10. If initConf(C, s, h, Γ, BS ) and
(C, s,

⊎
i∈Tid hi) →∗g (C′, s′, h′), then the following conditions

hold.
( 1 ) If ∀i ∈ Tid,C′i = skip, then ∀i, j ∈ Tid, Γ |= s′i =L s′j
( 2 ) If ∀i ∈ Tid,wait(C′i ) = (bi,C′′i ), then

∀i, j ∈ Tid, bi = b j ∧ s′i =L s′j

(1) means that when all threads terminate, all values of vari-
ables with type Lo coincide in all threads, and (2) means that
when all threads reach barriers, all values of variables with type
Lo and all indices of the barriers (bi) coincide in all threads.

To prove Lemma 10, we first show the following lemma.
Lemma 11 (Non-interference). If Γ � C : τ, s1 =L s2, h1⊥h2,
(C, s1, h1)→∗p (C1, s′1, h

′
1) and (C, s2, h2)→∗p (C2, s′2, h

′
2), then the

following conditions hold.
( 1 ) ∀i ∈ {1, 2},wait(Ci) = skip⇒ ∀i, j ∈ {1, 2}, s′i =L s′j
( 2 ) ∀i ∈ {1, 2},wait(Ci) = (bi,C′i )⇒

∀i, j ∈ {1, 2}, bi = b j ∧ s′i =L s′j
Here,→p are extended semantics of→t in order to use pheap

instead of heap, and they are defined as follows.
Definition 12. (C, s, h) →p (C′, s′, h′) holds if and only if the
following hold.
( 1 ) writes(C, s) � ⊥ ⇒ ∃v, h(writes(C, s)) = (1, v)
( 2 ) reads(C, s) � ⊥ ⇒ ∃v, p, h(reads(C, s)) = (p, v)
( 3 ) There exists a pheap hF such that h⊥hF ,

hdef(h 	 hF), and (C, s, h 	 hF)→t (C′, s′, h′ 	 hF)
reads is an auxiliary function that returns the address which

will be read from in the next step if the command executes a read
instruction in the next step.

reads(x := [E], s) = s(E)

reads(C1; C2, s) = reads(C1, s)

reads(C, s) = ⊥ (otherwise)

We omit the proof of Lemma 11.
To apply Lemma 11 to the whole kernel semantics, we prove

the following lemma.
Lemma 13. If initConf(C, s, h, Γ, BS ) and
(C, s,

⊎
i∈Tid hi) →∗g (C′, s′, h′), then there exist C′′, s′′, and h′′

such that initConf(C′′, s′′, h′′,Γ, BS ) and
∀i ∈ Tid, (C′′i , s

′′
i , h

′′
i )→∗p (C′i , s

′
i , h
′
i )

Proof. By induction on→∗g �

By using Lemma 11 and Lemma 13, we can prove Lemma 10
as follows.

Proof. By applying Lemma 13 to the hypotheses, there ex-
ist C′′, s′′ and h′′ such that initConf(C′′, s′′, h′′, Γ, BS ) and ∀i ∈
Tid, (C′′i , s

′′
i , h

′′
i ) →∗p (C′i , s

′
i , h
′
i ). Here, we choose a command

that satisfies ∀i ∈ Tid,C′′i = Cinit as Cinit. For all i and j, we apply
Lemma 11 to (Cinit, s′′i , h

′′
i ) →∗p (C′i , s

′
i , hi) and (Cinit, s′′j , h

′′
j ) →∗p

(C′j, s
′
j, h
′
j). This proves the lemma. �

4.3 Soundness of CSL on Parallel Execution
We prove Theorem 5 by using Lemma 6 and Lemma 10. First,

we prove a lemma.
Lemma 14. Assume the following conditions hold.
(a) h =

⊎
i∈Tid hi

(b) ∀i ∈ Tid,Tsafei,n(C, si, hi,Qi, BS )
(c) initConf(Cinit, sinit, hinit,Γ, BS )
(d) (Cinit, sinit, hinit)→∗g (C, s, h)
(e) �i∈TidQi ⇒ Q

Then Gsafen(C, s, h,Q, Γ).
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Fig. 12 Write rule of Blom’s CSL.

Proof. By induction on n. The case of n = 0 is trivial. Consider
the case of n = n′ + 1. We prove each condition of Gsafek.
( 1 ) Assume ∀i ∈ Tid and Ci = skip. By (b), ∀i ∈ Tid,

si, hi |= Qi. By applying Lemma 10 to (c) and (d), we get
∀i, j ∈ Tid, si =L s j. Therefore, s, h |= �i∈TidQi. From (e),
s, h |= Q.

( 2 ) For all i′, we define h′ = (
⊎

i∈Tid∧i�i′ hi)	 hF . From case (2)
of (b) with i = i′ and hF = h′, (Ci, si, h 	 hF) �t abort,
since hi 	 h′ = h 	 hF . Because i′ is an arbitrary thread ID,
(C, s, h 	 hF)�g abort.

( 3 ) Similarly to (1), this can be proved by applying Lemma 10
to the hypotheses.

( 4 ) Assume (C, s, h 	 hF) →g (C′, s′, h′), and let us use
case analysis on the derivation. If the derivation is (G-
Step), let k be the thread ID of the executed thread, and
(Ck, sk, h 	 hF) →t (C′k, s

′
k, h
′). Here, C′i = Ci and s′i = si

hold for i other than k. We choose h′F = (
⊎

i∈Tid,i�k hi) 	 hF ,
and h 	 hF = hk 	 h′F holds. From (4) of (b) with
i := k, there exists h′′k such that h′ = h′′k 	 h′F and
Tsafek,n′ (C′k, s

′
k, h
′′
k ,Qk). For all i other than k, we choose hi

as h′′i , and from (b), Tsafei,n′ (C′i , s
′
i , h
′′
i ,Qi) holds. There-

fore, ∀i ∈ Tid,Tsafei,n′ (C′i , s
′
i , h
′′
i ,Qi). Let h′′ be

⊎
i∈Tid h′′i ;

then h′ = h′′ 	 hF . By applying the induction hypothesis,
we get Gsafen′ (C′, s′, h′′,Q, Γ). The G-Barrier case can be
proved similarly.

�

We prove Theorem 5 by using Lemma 14.

Proof. From Γ, BS �par {P} C {Q}, the following conditions
hold.
( 1 ) P⇒�i∈TidPi

( 2 ) �iQi ⇒ Q

( 3 ) ∀i ∈ tid, BS , i |= {Pi} Ci {Qi}
( 4 ) Γ � C : τ
( 5 ) ∀b, �i∈Tid BS (i, b)pre ⇒�i∈Tid BS (i, b)post

Here, we prove that for all s and h, if ∀i ∈ Tid, si(tid) = i,
∀i, j ∈ Tid, si =L s j and s, h |= P, then ∀n,Gsafen(C, s, h,Q, Γ).
By (1), ∃h, h = 	ihi and ∀i, si, hi |= Pi. From (3),
∀i, n,Tsafei,n(Ci, si, hi,Qi, BS ). Trivially, (C, s, h) →∗g (C, s, h).
Applying Lemma 14 to these conditions concludes the proof. �

5. Differences from Blom’s CSL

In this section, we compare Blom’s research and ours in terms
of their inference rules and soundness proofs.

5.1 Differences between Inference Rules
As differences between Blom’s CSL and GPUCSL, we can

point out (i) the different forms of the assertions and (ii) the ab-
sence of the frame rule.

(i) Blom’s inference rules are not suitable for proving its sound-
ness in Coq. An assertion in Blom’s CSL consists of an assertion

on resources and an assertion on functions. A specification of
Blom’s CSL takes the form {Rpre, Ppre} C {Rpost, Ppost}. Rpre and
Rpost are assertions on resources, and Ppre, and Ppost are asser-
tions on functions.

Figure 12 is the write rule of Blom’s CSL. The predicate
LPerm(e, rw) in assertions on resources is equivalent to ∃e′, e →1

e′ of GPUCSL. The expression L[e1] in assertions on functions
means the value that the address e1 points to. All inference
rules of Blom’s CSL require that all addresses appearing in as-
sertions on functions are referred to by assertions on resources as
a premise. This condition is relatively complex, and hence, it is
considered to complicate the soundness proof.

(ii) While Blom’s CSL does not have a frame rule, GPUCSL
has one since it is designed to be similar to standard CSL. The
frame rule is needed to describe specifications of program func-
tions in a modular manner, and as we describe later, we cannot
simply apply Blom’s proof to CSLs which have the frame rule.

5.2 Problems with Blom’s Soundness Proof
We show that (i) it is difficult to add the frame rule to Blom’s

proof and (ii) Blom’s proof lacks an appropriate premise for
thread ID independence.

(i) Blom’s soundness proof depends on the following
Lemma 15 *1.
Lemma 15. If Γ, BS �par {P} C {Q}, s, h |= P, (C, s, h) →∗g
(C′, s′, h′) and ∀i ∈ Tid,wait(C′i ) = (b,C′′i ), then s′, h′ |=
�i∈Tid BS (i, b)pre

This lemma means that when a kernel C satisfying {P} C {Q}
reaches a barrier instruction, the memory state when reaching
the barrier satisfies the precondition of the barrier specification.
However, this lemma does not hold on CSLs with the frame rule.
Consider the following kernel C.

1 [a+tid] = tid;
2 barrier0;
3 [a+tid] = tid;

By using GPUCSL, we can derive Γ, BS �par {P} C {Q} with the
following assertions.
• P :=�i∈Tid(∃v, a + i → v)
• Q :=�i∈Tid(a + i → i)
• Pi := ∃v, a + i → v
• Qi := a + i → i

• ∀i, BS (i, 0) := emp
We can prove ∀i, BS , i �seq {Pi ∧ tid = i} C {Qi} as follows.

1 {∃v, a + i → v ∧ tid = i} ⇒
2 {a + tid → v ∧ tid = i}
3 [a+tid] = tid;
4 {a + tid → tid ∧ tid = i} ⇒
5 {emp � (a + tid → tid ∧ tid = i)}
6 barrier0;
7 {emp � (a + tid → tid ∧ tid = i)} ⇒
8 {a + tid → tid ∧ tid = i}
9 [a+tid] = tid;

*1 Lemma 15 corresponds to the following statement in Ref. [3]. “Since
the barrier resources properly divide the group resources, the resources
required by the second part of the trace are available.”
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10 {a + tid → tid ∧ tid = i} ⇒
11 {a + i → i}

Note that we use the frame rule on line 6. Here, the global heap
h satisfies ∀i ∈ Tid, h(i) = i when reaching the barrier instruction,
so apparently it does not satisfy s, h |= �i∈Tidemp = emp. Ac-
cordingly, Blom’s soundness proof is not suitable for GPUCSL

(ii) We prove thread ID independent kernels do not suf-
fer from barrier divergence in Lemma 10. We assume a
condition that is not mentioned by Blom et al.: ∀i ∈
Tid, n,Tsafei,n(Ci, si, hi,Qi, BS ). This condition means the ker-
nel is free of data races, and this condition cannot be omitted.
This is because there is a counterexample kernel that is thread
ID independent, but for which data races and barrier divergence
occur:

1 x := [a];
2 [a] := tid;
3 if (x == 0) {
4 barrier0;
5 }

We can derive Γ � C : Lo under a type environment Γ that satisfies
Γ(a) = Lo ∧ Γ(x) = Lo. However, because the result of evaluat-
ing the conditional expression on line 3 depends on scheduling,
barrier divergence can occur with this kernel.

6. Application

As a merit of defining GPUCSL by using Coq, we can verify
kernels on Coq. Here, we have verified the kernel shown in Fig. 2
(rotate) on Coq. The proof is about 1000 LOC and is available
at http://prg.is.titech.ac.jp/ja/projects/gpucsl/. Here, we show a
sketch of the proof done by Coq. rotate moves the i-th element
of array a of length T to the ((i+1) mod T )-th location. We spec-
ify rotate as follows.

{is array(a, T, f )}
rotate

{is array(a, T, λi. f ((i − 1) mod T )))}

The predicate is array(arr, n, f ) means that arr is an array of
length n, and the i-th element is initialized by f (i). Here, arr

is an expression, n is a natural number, and f is a function from a
natural number to an expression. is array is defined as follows.

is array(arr, 0, f ) = emp

is array(arr, n + 1, f ) = ((arr + n) → f (n)) �

is array(arr, n, f )

Now let us prove each premise of the parallel rule. First, we
prove Γ � rotate : Lo. This is easily done by taking Γ that satisfies
Γ(x) = Hi for all x other than a. Next, we choose each assertion
as follows.
• Pi = (a + i → f (i))
• Qi = (a + (i + 1) mod T ) → f (i)
• BS (i, 0)pre = (a + i → f (i))
• BS (i, 0)post = (a + (i + 1) mod T → f ((i + 1) mod T ))

i and T appearing in each predicate are constants, so from
Γ(a) = Lo, these predicates are thread ID independent. The
conditions on assertions (P ⇒ �i∈TidPi, �i∈TidQi ⇒ Q and

Fig. 13 Proof of BS , i �seq {Pi ∧ tid = i} rotate {Qi}.

�i∈Tid BS (i, 0)pre ⇒ �i∈Tid BS (i, 0)post) can be easily proved. So,
we will prove that for all i, BS , i �seq {Pi ∧ tid = i} rotate {Qi}
by case analysis on i < T − 1 and i = T − 1. We can prove this
when i < T − 1 in the same way as in Fig. 13 (we can prove the
case of i = T − 1 in a similar way).

7. Related Work

GPUVerify [2] is a verifier for kernels which detects data races
and barrier divergence. Betts et al. designed SDV semantics
which can describe these conditions, and GPUVerify verifies ker-
nels under the SDV semantics. By using assert and assume
statements, GPUVerify can also verify specifications of kernels
as well as GPUCSL. However, the specifications which can be
proved in GPUVerify are restricted to those which can be solved
by the SMT solvers used by GPUVerify.

Kojima et al. proposed a Hoare logic for single instruction mul-
tiple threads (SIMT) programs and proved the soundness and
relative completeness of the logic [7]. SIMT semantics force
all threads to execute a every step of a program simultaneously.
GPUCSL assumes all threads execute a program in arbitrary or-
der.

Vafeiadis devised a concise proof of the soundness of CSL
and used it to prove the soundness of FPCSL [13]. He also
proved soundness by using Coq and Isabelle/HOL. We applied
Vafeiadis’ proof to the soundness of GPUCSL.

Affeldt et al. formalized the separation logic for verifying TSL
packet processing programs written in the C language by Coq/SS-
Reflect [1]. Their separation logic can represent detailed specifi-
cations such as the alignment of data structures and the behavior
of the sizeof operator. Our language omits composite data types
and only has the integer data type.

Hobor et al. proposed a CSL for languages which have Pthread-
like barrier synchronization [6]. He chose Cminor, which is an
intermediate representation of the CompCert compiler, as the ob-
ject language, and proved soundness of their CSL by using Coq.
As differences from GPUCSL, we point out that dynamic thread
creation is allowed in their CSL and they do not verify freedom
from barrier divergences.

8. Conclusion and Future Work

We designed a CSL for verifying GPGPU kernels and proved
its soundness by using Coq. The inference rules are designed
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based on Blom’s CSL and Vafeiadis’ CSL, and we proved its
soundness by applying Vafeiadis’ soundness proof. We also
proved the soundness of thread ID independence, which was not
given by Blom et al. Through the design and the proof, we
showed that (i) Blom’s proof cannot be straightforwardly applied
to CSLs with the frame rule, and (ii) the soundness of thread ID
independence depends on the kernels being free of data races.

8.1 Towards More Precise GPGPU Semantics
There are important CUDA features that are not considered in

our CUDA subset: thread blocks and warps. In CUDA, the set of
all threads are divided into units of thread blocks. Moreover, each
thread block is divided into units of warps. A thread block is a
set of warps, and a warp is a set of threads. Each thread block has
its own memory that runs fast (shared memory). Barrier synchro-
nization is done in units of thread blocks. Threads which belong
to the same warp are executed in an SIMT manner.

The semantics of the WhileB language are such that all threads
belong to the same thread block. However, we can easily add a
thread block feature to GPUCSL. First, we would add an infer-
ence rule to GPUCSL which distributes the kernel precondition
to each thread block, verify each thread block by using the par-
allel rule, and aggregate the postconditions of each thread block
into the kernel postcondition. Then, we would give type Lo to
the variable bid, which means the number of the threads in each
thread block. Finally, we would introduce → operator between
shared memories.

In contrast, because GPUCSL was proved on arbitrary schedul-
ing, it is also sound under semantics having the warp feature.
However, kernels that omit barrier synchronization and assume
SIMT execution are considered racy, so we cannot use GPUCSL
to verify these kernels. These omissions of barrier synchroniza-
tion are optimization techniques for GPGPU [5], so we should
extend CSL to enable these kernels to be verified.

8.2 Design of GPGPU Kernel Verification Library in Coq
We proved the soundness of GPUCSL by using Coq. We can

use this proof to verify GPGPU kernels in Coq. We verified the
rotate kernel in Coq and it required many lemmas. A future task
would be to design lemma libraries and tactics that would make
it easier to verify kernels.
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