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Abstract: Combinatorial optimization problem is a difficult class of problems from which to obtain exact solutions,
but such problems often arise in biotechnology, for example, it is often necessary to find optimal combinations of
genes in transgenics to improve production of a useful compound by microorganisms. In the cases of 20 candidate
genes for introduction into cells, the number of possible combinations of introduced genes is approximately 106. Test-
ing all of their combinations by experimental observation is impossible practically. A few combinations are observed
experimentally for large numbers of possible combinations generally.
We tested two methods for the prediction of effects of transgenes: multivariate linear regression and the RBF (Radial
Basis Function) network, with a simulated and an unpublished experimentally observed dataset of transgenic yeast.
Results show that RBF network can detect a special gene (introduced gene) at the five percent significance level when
the gene causes production values that are 1.5 times greater than other genes for the simulated dataset. Prediction by
RBF network is superior than that by the linear regression model at the best condition.
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1. Introduction
Transgenics is useful as an extremely popular experimen-

tal method to improve the production performance of microor-
ganisms that produce a useful industrial or medical compound.
Transgenics methods introduce nucleic acid chains into bodies of
the microorganisms [1]. The sequence of the nucleic acid chains
is generally based on those of natural plasmids, including genes
to be expressed in the cell body and promoters to realize the ex-
pression [2], [3]. Plural gene sequences are known generally as
homologs or orthologs for each protein expressed by the intro-
duced gene[4]. Proteins that are of same or similar function are
expressed by transgenic sequences of these genes at different ef-
ficiencies of expression level, cell mortality, production rate of
useful compounds, and so on. Generally many choices of genes
exist for transgenics, such as design bases of plasmids, strains
of microorganisms, and substrates and bases [5], [6], to make
the microorganisms produce useful compounds with better per-
formance. Excluding quantitative conditions such as substrate
concentrations, finding the best conditions for the microorganism
performance is the combinatorial optimization problem [5], [7].
The hardness of the problem class that includes combinatorial
optimization is widely known. The computational time to solve
the problem increases very rapidly with increasing problem size,
such as the number of choices to be selected (‘combinatorial ex-
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plosion’). No way exists to obtain the exact solution other than
exploring all possible combinations exhaustively. To address that
problem, many methods that find approximately optimal solu-
tions have been proposed, such as dynamic programming [8],
branch and bound methods [9], and heuristic searches that include
genetic algorithms [10]. All methods for combinatorial problems
include the calculation of a value from a combination. For ex-
ample, a combination of a selection of objects and a value is the
total weight of the selected objects at the knapsack problem [11].
The value is readily obtained through simple calculation: merely
adding all weights of selected objects. For transgenics designed
to improve microorganisms, however, a combination is a list of
genes. The value is the production rate or amount of the use-
ful compound. Obtaining a pair of a combination and a value
necessitates observation by experimentation, which generally re-
quires much cost and time. Predicting the best combinations from
the limited number of observations using machine learning meth-
ods is a good approach to solving the combinatorial optimization
problems related to transgenics.

Machine learning for transgenics entails two difficulties. One
is noise in the learning data. Production values often include large
noise. Statistics-based approaches such as least-squares fitting are
necessary. The second is that there are nonlinear interactions be-
tween genes. Modeling these interactions is extremely difficult
because their molecular mechanisms or schemes remain unclear.
Multivariate linear regression (MVR) [12] is widely used because
this is the simplest method to represent gene interactions. There
are no other established models. We show that the Radial Basis
Function network model (RBF network) [13], [14] as a simple
nonlinear model is comparable to or better than the linear model

1

IPSJ SIG Technical Report

ⓒ 2015 Information Processing Society of Japan

Vol.2015-BIO-44 No.3
2015/12/7



Fig. 1 Structure of the learning data: n, number of learning data; k, number
of genes for candidates as transgenes; g j, j-th gene for candidates as
transgenes; and Pi, experimentally observed productions of the mi-
croorganism at the experiment i. The n × k matrix (experiment con-
dition matrix) consists of elements ci j with values of 1 or 0. Here,
ci j = 1 means that gene j is selected as the transgene and introduced
into cells in experiment i.

(MVR) at prediction accuracies on simulated and experimentally
observed datasets. The nonlinear model is useful to find the in-
troduced gene that improves the microorganism production.

2. Method
2.1 Learning data

Let the number of learning data (the number of experimental
observations) be n, the suffix of each datum be i (i = 1, . . . , n),
and the number of candidate genes for transgenics be k. These
genes are g j ( j = 1, . . . , k). The variable that means that g j is
selected for introduction into the experiment i is ci j (ci j = 0 or
1). In addition, C that consists of ci j is called here the experiment
condition matrix. Furthermore, ci j = 1 means that g j is intro-
duced at the experiment i; ci j = 0 means not to be introduced.
Each row vector of C = ci j corresponds to an experimental ob-
servation. Herein, Pi stands for the observed production of the
microorganism at experiment i. P that consists of Pi signifies an
n-dimensional real-number vector, designated here as the produc-
tion vector (Fig. 1).

The number of possible k-dimensional binary vectors is 2k.
The n vectors out of 2k are observed from experimentation. Ma-
chine learning methods use n pairs of these vectors and produc-
tion values to build a predictor to calculate production at other
2k − n experimental conditions.

2.2 Linear model
Actually, MVR is often used to represent relations between the

introduced genes [6]. The total effect on cell activity by these
genes is based on the assumption that the total effect can be rep-
resented by the total sum of effects of each single gene.

Linear model a is obtained as a solution of following linear
problem of

Ca = P, (1)

where C is the experiment condition matrix and P is the produc-
tion vector. This problem is solvable when the rank of the matrix
C is equal to the number of learning data n (rank(C) = n). The
least-squares fitting method is applied to the problem when the
rank of C is greater than n. The model can not be solved both
exactly and approximately when the rank of C is less than n. Pre-

diction of the production value P∗ for the condition c is calculated
as the inner product of a and c as

P∗ = ac, (2)

where c denotes the k-dimensional binary vector that represents
the experimental condition where g j ( j = 1, . . . , k) is introduced
(c j = 1) or not (c j = 0).

2.3 Nonlinear model
The prediction of the production value P∗ is calculated by the

RBF network model as

fi(c|σ) = exp
(
|c − ci|2

2σ2

)
(3)

P∗ =
n∑

i=1

ai fi(c), (4)

where c stands for the k-dimensional binary vector that represents
the experimental condition for the prediction, ci signifies the i-th
row of the experiment condition matrix C, σ denotes a model
parameter, P∗ represents the prediction value of the microorgan-
ism’s production, and ai is the real-number element of vector a
and the scaling factor to fi. Also, fi is designated as the radial
basis function (RBF).

The coefficient vector a is calculated as the solution of the fol-
lowing linear problem of

Fa = P. (5)

In that equation, P is the production vector. Element Fi j of the
real value matrix F is defined as

Fi j = fi(c j) = exp
( |c j − ci|2

2σ2

)
. (6)

Therein, |c j−ci| is the Euclidean distance between c j and ci, which
is equal to the Hamming distance because C is the binary matrix.

This calculation is similar to the calculation of the Support Vec-
tor Machine with the RBF kernel. Actually, the RBF network is
similar to the Support Vector Regression model with the RBF
kernel and without the smoothing (noise reduction) ability.

3. Result
3.1 Prediction accuracy on simulated data

We generate both C and P with random number simulators.
Elements of the experiment condition matrix C are 0 or 1 of uni-
formly distributed random numbers. Elements Pi of the produc-
tion vector P are first generated by normally distributed random
real numbers with both the mean and the variance of 100 (stan-
dard deviation is 10). Then the values of Pi are multiplied by 1.5
when the ci j of C is 1 for special j. We intend to simulate that
gene j improves production of the microorganism, making it 50%
higher than in the condition in which the gene j is not introduced.
We chose this special gene as g1. The number of genes (k) is 10
in this study. All 2k = 1024 values of production are generated.
Some of these 1024 values are used for learning. The rest are
targets of prediction.

The possible number of experimental condition is 1024: the
theoretical maximum number of the learning data. In general,
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Fig. 2 Prediction accuracy of MVR and the RBF network models on simulated data other than a part of
those for learning data. Vertical axes show values of mean squared errors between the prediction
of production values and those of simulated values. Horizontal axes show the number of learning
data out of 1024 simulated data.

a part of the 1024 pattern of the experimental conditions is ob-
served in practice. These observed conditions are given as the
learning dataset. The number of observations is n. We set n to
10 – 1000 for this simulation. Prediction is done for 1024 − n
unobserved conditions. The prediction accuracy is calculated as
the mean squared error between predicted and simulated values.
This run is repeated 100 times for each n selecting learning data
randomly from 1024 data.

We manually find the value of the model parameter σ to fit the
mean of predicted value to 100. Then we chose σ = 0.749.

The mean values of squared errors between predicted and sim-
ulated production values are presented in Fig. 2.

3.2 Detection ability on simulated data
We examine MVR and the RBF network models as the de-

tection methods for the special gene that improves production of
the microorganism. Special gene g j is regarded as detected when
ci j is 1 in experimental conditions that correspond to higher pre-
dicted production values. The average values of 100 detection
runs are shown in Fig. 3. Simulated data are generated in the same
way as that above (n = 100), but altering multiplication factors
to the production vector from 1.0 to 1.5. The special gene is g1.
The number of conditions in which ci1 = 1 is counted in the top
100 conditions of high prediction values out of 924 (= 1024 − n)
conditions.

3.3 Prediction accuracy on experimentally observed data
We examine the prediction accuracy of MVR and the RBF net-

work on un-published experimentally observed dataset of yeast
to produce a certain chemical compound from a substrate. The
experiment condition matrix is shown in Fig. 4. The number of
candidate genes (k) is 10; the number of observed data (n) is 36.
Note that none of genes are intended as the special gene that is
distinguished from other genes in the experimental design.

We fit the linear regression model first that represents the pro-
duction values by the linear combinations of g1 to g10 to see the
fitness of the linear model. The fitted model is shown in Fig. 5.
Residuals of the fitted linear model to the entire experimentally
observed data distribute within a range of [−520.80, 1002.28]

Estimate
Intercept -231.46
g1 380.25
g2 274.32
g3 -41.88
g4 -456.68
g5 -510.65
g6 -395.99
g7 -43.18
g8 179.05
g9 342.08
g10 112.17 −

5
0
0

0
5
0
0

1
0
0
0

Fig. 5 The fitted linear model to the entire experimentally observed data and
the distribution of residuals. Left: the fitted model. Estimate, coeffi-
cients in the linear combination of genes. Right: the distribution of
36 residual values of responses of the linear model to data.

while the range of the production in the data is [77.1, 1837.765].
Then we examine MVR and the RBF network models for pro-

duction prediction. We set the number of learning data (n) as 10
to 30 and predict the 36− n production values and calculated pre-
diction accuracy as the average values of the mean squared error
between predicted and observed production values. These aver-
age values are presented in Fig. 6 for both MVR and the RBF
network.

4. Discussion
4.1 Prediction accuracy

Fig. 2A shows that prediction accuracy by MVR does not im-
prove for larger numbers of learning data. In the case of the RBF
network, prediction accuracy gets better and then worse by in-
creasing the number of learning data. This V-letter profile may
be the ‘over-learning’ or ‘over-fitting’ [15]. Although the best ac-
curacy is better than MVR (Fig. 2B), the effect of the degree of
freedom of the RBF network model on prediction accuracy shall
be examined.

RBF network model shows better performances for small num-
bers of learning data (Fig. 6) than those of MVR. Increasing the
number of learning data does not improve prediction accuracy
also in the experimentally observed data by both MVR and the
RBF network models. It is generally known that the more data
used for learning, the better the prediction that can be done. How-
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Fig. 3 Detection ability of MVR and the RBF network models on simulated data. The vertical axes
show the number of conditions (rows of the experiment condition matrix) in which ci1 = 1. The
horizontal axes are the multiplication factor.

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 Production
0 0 0 0 0 0 0 1 0 0 63.3
0 0 0 0 0 0 0 1 0 1 98.76
0 0 0 0 0 0 0 1 1 0 109.44
0 0 0 0 0 0 0 1 1 1 341.38
0 0 0 0 0 0 1 0 1 1 104.95
0 0 0 0 0 0 1 1 1 1 579.21
0 0 0 0 0 1 0 1 1 1 305.9
0 0 0 0 1 0 0 1 1 1 111.49
0 0 0 1 0 0 0 1 1 1 163.94
0 0 1 0 0 0 0 0 1 1 126.62
0 0 1 0 0 0 0 1 1 1 147.24
0 1 0 0 0 0 1 0 1 1 180.22
0 1 1 0 0 0 0 0 1 1 196.88
1 0 0 0 0 0 0 0 1 0 776.81
1 0 0 0 0 0 0 0 1 1 82.24
1 0 0 0 0 0 0 1 1 0 809.224
1 0 0 0 0 0 0 1 1 1 474.425
1 0 0 0 0 0 1 0 1 1 791.34

(cont.)
g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 Production
1 0 0 0 0 0 1 1 1 1 527.61
1 0 0 0 0 1 0 0 1 1 107.05
1 0 0 0 0 1 0 1 1 1 368.63
1 0 0 0 1 0 0 0 1 1 77.12
1 0 0 0 1 0 0 1 1 1 212.41
1 0 0 1 0 0 0 0 1 1 84.92
1 0 0 1 0 0 0 1 1 1 282.175
1 0 1 0 0 0 0 0 1 1 870.18
1 0 1 0 0 0 0 1 1 1 578.62
1 1 0 0 0 0 0 0 1 0 404.45
1 1 0 0 0 0 1 0 0 1 408.5
1 1 0 0 0 0 1 0 1 1 1729.32
1 1 0 0 0 1 1 0 1 1 255.62
1 1 0 1 0 0 1 0 1 1 263.41
1 1 1 0 0 0 0 0 0 1 422.3
1 1 1 0 0 0 0 0 1 1 1837.765
1 1 1 0 0 0 1 0 1 1 385.06
1 1 1 0 1 0 0 0 1 1 178.81

Fig. 4 The experiment condition matrix of the un-published experimentally observed data. n and k in
Fig. 1 are 36 and 10 respectively.

ever, that pattern does not fit the results obtained for this case
study. The optimal number of learning data for prediction accu-
racy maybe exsist.

4.2 Detection ability
The RBF network model detected special conditions (combina-

tions of transgenes) obtained at the five percent significance level
when the condition causes predicted values that were 40–50%
greater than other conditions on the simulated dataset (Fig. 3B).

On the other hand, MVR can find the special conditions when
the special gene improves the production values 10% greater than
other conditions (Fig. 3A). This result seems very nice, however,
may be unnatural because noise of biological observations is of-
ten greater than 10%. MVR may be too sensitive for small exper-
imentally observed data. Statistical examination for both MVR
and RBF network models on small numbers of learning data with
noise shall be done.

4.3 Consideration in the order of genes
When introducing plural genes by a single nucleotide chain

(the sequence of the chain is constructed of genes and promoter
sequences in tandem), expression efficiencies of each gene are

generally different depending on its position in the chain se-
quence. Neither prediction method explained in this paper is rel-
evant to these differences. These expression differences are easily
modeled in the two methods if the differences (ratios of expres-
sion strengths to the lowest strength, or ‘efficiency vector’) are
known quantitatively and if they do not change at all through the
learning data. For the MVR model, effects of the position can be
eliminated from the linear model a in eq. (1) by dividing each
element of a by the element of the efficiency vector in the corre-
sponding position.

For the RBF network model, multiplication of each element of
the efficiency vector to the corresponding element of the exper-
iment condition vector ci (each row of the experiment condition
matrix C), and replacing the original ci with the calculated vector
can model the expression efficiency differences by position. The
distance between two experimental conditions |c j − ci| in eq. (6)
is the real-value Euclidean distance when the elements of matrix
C are real. Freedom of experiment planning is improved by this
replacement because alternation of the order of the tandem genes
is represented by the order of elements in the efficiency vector.
Expression efficiency differences by some other cause, such as
gene length, can therefore be represented by the efficiency vector.
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Fig. 6 Prediction accuracy of MVR and the RBF network models on experimentally observed data other
than a part of those for learning data. Vertical axes show mean squared errors between the pre-
diction of production values and those of observed values. Horizontal axes show the number of
learning data out of 36 observed data.

Actual gene expression efficiencies are often adjusted to simi-
lar levels among positions by choices of promoter sequences and
the repeat numbers of promoter sequences. Actually, the MVR
and RBF network models of this paper are directly applicable for
these cases.
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