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Integer Programming-based Method for Designing
Synthetic Metabolic Networks by Minimum Reaction

Insertion in a Boolean Model

Wei Lu1 Takeyuki Tamura2,a) Jiangning Song3,4 Tatsuya Akutsu2

Abstract: In this technical report, we consider the Minimum Reaction Insertion (MRI) problem for finding the min-
imum number of additional reactions from a reference metabolic network to a host metabolic network so that a target
compound becomes producible in the revised host metabolic network in a Boolean model. Although a similar problem
for larger networks is solvable in a flux balance analysis (FBA)-based model, the solution of the FBA-based model
tends to include more reactions than that of the Boolean model. However, solving MRI using the Boolean model
is computationally more expensive than using the FBA-based model since the Boolean model needs more integer
variables. Therefore, in this study, to solve MRI for larger networks in the Boolean model, we have developed an
efficient Integer Programming formalization method in which the number of integer variables is reduced by the no-
tion of feedback vertex set and minimal valid assignment. As a result of computer experiments conducted using the
data of metabolic networks of E. coli and reference networks downloaded from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database, we have found that the developed method can appropriately solve MRI in the Boolean
model and is applicable to large scale-networks for which an exhaustive search does not work. We have also com-
pared the developed method with the existing connectivity-based methods and FBA-based methods, and show the
difference between the solutions of our method and the existing methods. Our developed software is available at
“http://sunflower.kuicr.kyoto-u.ac.jp/˜rogi/minRect/minRect.html”.

1. Introduction
Metabolism is one of the most important biological processes

in organisms. Relations between reactions and chemicals in the

metabolism are often represented by metabolic networks. Since

many of these metabolic processes can produce commodity and

specialty chemicals, the manipulation of metabolisms has been

extensively studied in the field of metabolic engineering. One of

the most successful applications of metabolic engineering is pro-

duction of industrially valuable products using a microbial host

with recombinant technologies [1]. Techniques for production of

desired chemicals using a microbial host are roughly classified

into the following three types [2]: (a)combinations of existing

pathways, (b)engineering of existing pathways, and (c)de novo
pathway design. In (a), partial pathways can be recruited from

independent organisms and co-localized in a single host. For

example, 1,3-propanediol is synthesized by Nakamura et al. in

which pathways from Saccharomyces cerevisiae and Klebsiella
pneumonia were assembled in E. coli [3] and another example
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is the production of artemisinic acid, a precursor to the plant-

based anti-malarial drug artemisinin in yeast [4]. In (b), new

non-natural chemicals can be produced by engineering existing

routes [5]. (c) is realized by the combination of (a) and (b), that

is, the recruitment of partial pathways from different species and

the use of engineered enzymes for extensions of pathways. It is to

be noted that (a) focuses on the topology of the given metabolic

networks, while (b) and (c) utilize the information of the struc-

tures of chemicals as well.

In the type (a) problem, it seems that there are three major

models for judging the producibility of target compounds, that is,

connectivity model, flow model, and Boolean model. For each of

them, Minimum Reaction Insertion (MRI) problem can be de-

fined for finding the minimum number of additional reactions

from a reference metabolic network to a host metabolic network

so that a target compound becomes producible in the revised host

metabolic network. In the connectivity model such as [6], the

producibility of target compounds is judged by the connectivity

between the source and the target compounds. After the source

and the target compounds are connected by the additional reac-

tions, the producibility is often evaluated by such a flow model as

flux balance analysis (FBA) or an elementary mode [7], in which

the sum of incoming flows must be equal to the sum of outgoing

flows for each compound and the ratio of the amount of substrates

and products must satisfy the coefficients given in each chemical

reaction formula. In the Boolean model, each reaction occurs if
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all its substrates are producible whereas each compound is pro-

ducible if one of its producing reactions occurs [8]. The source

compounds are called seeds and the producible compounds are

called the scope of the seed. In this model, a Boolean function of

“AND” is attached to each reaction node and “OR” is attached to

each compound node in the metabolic networks.

For example, suppose that there is a chemical reaction ”A +

B → C + D”, where A and B are called substrates whereas C

and D are called products. In the connectivity model, either A

or B is necessary to produce C and D, whereas both A and B are

necessary for the Boolean model. In the flow model including

FBA, in addition to the condition that both A and B must exist,

both C and D are necessary to be consumed by other reactions.

Thus, each model outputs a different solution for producing de-

sired compounds.

From the view point of computational complexity, although the

connectivity model is very simple and then applicable even to

very large networks, its logical analysis ability is not strong since

it cannot detect the lack of necessary substrates. The good point

of the flow model is its computational efficiency since problems

in the flow model can often be formalized by linear program-

ming, for which there exist polynomial time algorithms [9]. How-

ever, these polynomial time algorithms are not applicable for MRI

since discrete variables are necessary for representing additional

reactions, although it is solvable by mixed integer programming

[10].

Although the computational time of the FBA-based method for

MRI is very small and scalable for genome-scale metabolic re-

construction [10], Boolean methods also have attractive features

and are expected to complement the FBA-based method. Indeed,

for the analysis of metabolic networks, many studies have been

conducted to develop Boolean models. For example, Lemke et al.
[11] studied the effect of deletion of each enzyme in the metabolic

network of a Boolean model, and Smart et al. [12] considered al-

most the same problem from the viewpoint of the Boolean aspect

of the flux balance model. Li et al. [13] and Sridhar et al. [14]

have developed methods for finding a set of enzymes whose inhi-

bition stops the production of the target compounds with a min-

imum elimination of the non-target compounds. Lee et al. [15]

and Takemoto et al. [16] estimated the distribution of the size of

the effect of the deletions of enzymes using a branching process.

As for the shortcoming of the FBA-based method for MRI, it

tends to be considerably affected by the redundancy of the given

metabolic network since each node is affected not only by the in-

coming flows but also by the outgoing flows. For example, sup-

pose that a metabolic network of Fig. 1 (A) is given, where circles

and rectangles represent compounds and reactions respectively.

In order to produce the target compound from the source com-

pounds, {R1, R2, R3, R4} is necessary in the flow model includ-

ing FBA, whereas either {R1, R4} or {R1, R2, R3} is sufficient for

the Boolean model. Moreover, in the metabolic network of Fig. 1

(B), {R1,R2,R3} is necessary for FBA whereas {R2} is sufficient

for the Boolean model.

Therefore, in this research, we study the problem of designing

a pathway for producing target compounds in metabolic networks

of the Boolean model since its logical analysis ability is more sta-
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Fig. 1 A problem of how to produce a target compound from the source
nodes. In the Boolean model, either {R1, R4} or {R1, R2, R3} is suf-

ficient, whereas {R1, R2, R3, R4} is necessary for the flow model

including FBA.

ble than that of the FBA, particularly when the flexible parts of

the metabolic networks are large. Our approach is based on (a),

that is, the combination of existing pathways. In our problem set-

ting, a base metabolic network of a host organism, which we call

the host network, is given; it cannot produce the target compound

in its initial form. However, an integrated metabolic network of

many other organisms are given as the reference network from

which we should find the minimum number of additional reac-

tions so that the target compound becomes producible. We prove

that this problem is NP-complete.

Although both the FBA-based model and the Boolean model

for MRI are considered to be NP-complete, the former is likely

to have a faster exponential time algorithm than the latter since

FBA has fewer integer variables. Although the computational

complexity of the Boolean model is large, we develop an efficient

method based on integer programming (IP) [17], [18], which is

often used as a formalization of NP-complete problems and there

is an efficient free solver for IP called CPLEX [19]. We also con-

ducted four computer experiments in which the metabolic net-

work of E. coli is used as the host network and the reference

pathway of the KEGG database [20] is used as the reference

network, and propanol, butanol, sedoheptulose 7-phosphate, and

maleic acid are used as the target compound in each experiment.

The results of the experiments show that (1) our IP-based method

can appropriately solve MRI in the Boolean model; (2) solutions

of MRI in the Boolean model are more suitable than those by

connectivity based methods; (3) our IP-based method is applica-

ble to large-scale networks where an exhaustive search does not

work; and (4) solutions of MRI in the Boolean model tend to be

smaller than those in the FBA-based model based on [21]. Our

developed software is available at ”http://sunflower.kuicr.kyoto-

u.ac.jp/˜rogi/minRect/minRect .html”

Since the full version is available as [22], this technical report

partially omits the details.

2. Materials and Methods
2.1 Problem Definition

In this section, the main problem Minimum Reaction Inser-
tion (MRI) in a Boolean model is first explained with an example
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and then mathematical formalization is described.

vc1
vc2

vc4
vc5

vr1

vr2

vr5

vr4

host
network

target
node

vc3

vr3 vc6

vc7

Fig. 2 An example of MRI. vc1
and vc2

are the source nodes.

Suppose that a metabolic network shown in Fig. 2 is given,

where each rectangle (resp., circle) corresponds to a reaction

(resp., chemical compound). For example, vr4 is a reaction, its

substrates are vc3 and vc5 and its products are vc6 and vc7. Black

circles vc1 and vc2 denote the source nodes and are assumed to be

provided by the external environment. On the other hand, a gray

circle vc7 represents a target compound and the purpose of MRI

is to make the target compound producible. However, initially

only the host network, which is shown by the dotted rectangle,

is available. Since only vc1
, vc2
, vc3 and vr1 are included in the

host network, the target compound vc7 is not producible. Instead

the entire network is called the reference network and reactions

not included in the host network can be added later. In MRI, the

minimum number of additional reactions should be determined

to make the target compound producible. In this example, the ad-

dition of {vr2, vr3, vr4} is the optimal solution. The difficult point

of MRI is how to deal with the effect of cycles. In the example

of Fig. 2, the addition of {vr4, vr5} looks like the optimal solution.

However, this solution is not appropriate since it relies on the cy-

cle consisting of {vc6, vr5, vc5, vr4} and vc7 is not producible unless

the initial amount of vc6 is sufficiently large.

MRI is mathematically defined as follows: A metabolic net-

work can be represented by a directed graph G = (V, E). There

are two types of node sets Vc and Vr, where Vc denotes a set

of compound nodes and Vr represents a set of reaction nodes.

V = Vc ∪ Vr and Vc ∩ Vr = {} hold. The neighbors of compound

nodes must be reaction nodes, and the neighbors of reaction nodes

must be compound nodes. Let Vs ⊆ Vc be a set of source nodes
and vt ∈ Vc be a target node. Source nodes have no incoming

edges and correspond to the seed compounds of [8]. In this study,

we assume that source nodes are producible at any time.

Suppose that a host network G1 = (V1, E1) and a reference net-

work G2 = (V2, E2) are given where G1 and G2 are metabolic

networks, and G1 is a subgraph of G2 induced by V1. V ′c (resp.,

V ′r ) is a set of compound nodes (resp., reaction nodes) in V2 − V1

and is called the set of additional compound nodes (resp., addi-
tional reaction nodes).

Let Va ⊆ V ′r be a set of additional reaction nodes. In the

Boolean model, each node is assigned either ”0” or ”1”. For a

compound node, ”1” means producible and ”0” means not pro-

ducible. As for a reaction node, ”1” means active and ”0” means

inactive. Let A be such an assignment (that is A is a function from

V to {0, 1}). For each node v ∈ V , we write v = 0 (resp., v = 1)

if 0 (resp., 1) is assigned to v. A is called a valid assignment if

the following conditions are satisfied: (i) for each v ∈ Vs, v = 1.

(ii) for each v ∈ Vc − Vs, v = 1 if and only if there is u such that

(u, v) ∈ E and u = 1. (iii) for each v ∈ Vr, v = 1 if and only if

v ∈ Va ∪ V1 and u = 1 holds for all u such that (u, v) ∈ E. This

implies that each reaction node corresponds to an ”AND” node

and each compound node corresponds to an ”OR” node.

If G2 has no directed cycles, a valid assignment is uniquely

determined for each Va. However, if G2 has a directed cycle,

multiple valid assignments may exist. Let us call vi ∈ Vs and

v j ∈ Vc − Vs source connected if there is a directed path from

vi to v j, and the values of the nodes included in the path are all

1. There exist valid assignments where the values of nodes in a

directed cycle are 1 even if these nodes are not source connected.

In order to avoid such a case, we use the notion of minimal valid
assignment, which is similar to the notion of maximal valid as-

signment defined in [23]. A valid assignment A is called minimal
if A is valid and {v|v = 1, v ∈ V} is minimal with respect to the

inclusion relationships for sets.

Now we define the Minimum Reaction Insertion as follows:

• Input: A host metabolic network G1 = (V1, E1), a reference

metabolic network G2 = (V2, E2), and a target compound vt.

• Output: A minimum cardinality set of Va for which vt = 1

is satisfied in the minimal valid assignment of the induced

subgraph of G2 by V1 ∪ V ′c ∪ Va.

Although it is not described in this version, a minimal valid as-

signment is uniquely determined if Va is given. However, solving

MRI is not easy since the number of candidate Va is 2|V ′r | and MRI

is proved to be NP-complete. Since utilizing software packages

of Integer Programming (IP) is efficient for solving NP-complete

problems, we develop a method of IP formalization for solving

MRI. Since the computational time of the IP-based method is

considered to be exponential in terms of the number of variables,

it is important to develop an IP formalization of MRI with a small

number of variables. To do so, our previously developed method

for Minimum Reaction Cut (MRC) [23] may be useful although

many modifications are necessary.

MRC is a problem to find a minimum set of reactions that inter-

fere with the production of target compounds [23] and is known

to be NP-complete. Let m (resp., n) be the number of compound

(resp., reaction) nodes. If we use m+ n time steps to calculate the

maximal valid assignment in MRC, the number of variables in IP

is O((m+n)2). The feedback vertex set (FVS) is a node set whose

removal makes a network cycle-free. In [23], we succeeded in re-

ducing the number of variables to O( f ( f +m+ n)), where f is the

size of the feedback vertex set and f is considerably smaller than

m or n. If use of O((m + n)2) variables is allowed in MRI, almost

the same method as in MRC can be used. However, to reduce the

number of variables in IP to O( f ( f +m+n)), many modifications

are necessary since minimal valid assignment and maximal valid

assignment have different features.

2.2 Integer Programming-Based Method for Minimum Re-
action Insertion

Here, we show IP formalization methods for MRI in the

Boolean model. To apply IP, problems must be formalized to

maximize or minimize a given objective function which is a linear
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function of integer variables and constraints must also be given as

linear equations or inequations of integer variables.

Suppose that the host network and the reference network are

given as shown in Fig. 2. The simplest IP formalization IP-MRI-
A for solving Minimum Reaction Insertion is as follows where

the time step increases by 1 when the Boolean calculation is syn-

chronously conducted for every node:

IP-MRI-A
Minimize

TER2(0)+ TER3(0)+ TER4(0)+ TER5(0) (1)

Subject to
TC7(m+n) = 1 (2)

for all t = 0, . . . ,m + n
TR1(t+1) + FC2(t) + FC5(t) ≥ 1,

FR1(t+1) + TC2(t) ≥ 1,

FR1(t+1) + TC5(t) ≥ 1 (3)

TR2(t+1) + FC1(t) + FER2(t) ≥ 1,

FR2(t+1) + TC1(t) ≥ 1,

FR2(t+1) + TER2(t) ≥ 1 (4)

TR3(t+1) + FC4(t) + FER3(t) ≥ 1,

FR3(t+1) + TC4(t) ≥ 1,

FR3(t+1) + TER3(t) ≥ 1 (5)

TR4(t+1) + FC3(t) + FC5(t) + FER4(t) ≥ 1,

FR4(t+1) + TC3(t) ≥ 1,

FR4(t+1) + TC5(t) ≥ 1,

FR4(t+1) + TER4(t) ≥ 1 (6)

TR5(t+1) + FC6(t) + FER5(t) ≥ 1,

FR5(t+1) + TC6(t) ≥ 1,

FR5(t+1) + TER5(t) ≥ 1 (7)

TC3(t+1) = TR1(t) (8)

TC4(t+1) = TR2(t) (9)

FC5(t+1) + TR3(t) + TR5(t) ≥ 1,

TC5(t+1) + FR3(t) ≥ 1,

TC5(t+1) + FR5(t) ≥ 1 (10)

TC6(t+1) = TR4(t) (11)

TC7(t+1) = TR4(t) (12)

TER2(t+1) = TER2(t),

TER3(t+1) = TER3(t),

TER4(t+1) = TER4(t),

TER5(t+1) = TER5(t) (13)

TC1(t) = 1, TC2(t) = 1 (14)

TC3(0) = TC4(0) = TC5(0) =

TC6(0) = TC7(0) = 0 (15)

TR1(0) = TR2(0) = TR3(0) =

TR4(0) = TR5(0) = 0 (16)

TX + FX = 1 for any X (17)

where every variable takes either 0 or 1. vri = 1 (resp., vri = 0)

at time step t is represented by TRi(t)=1 (resp. FRi(t)=1) and

TRi(t)+FRi(t)=1 holds for any i and t. For example, TR2(1)=0

means that vr2 = 0 at time step 1, and FR2(1)=1 automatically

holds at the same time. In the implementation, FRi(t) is replaced

with 1-TRi(t) to reduce the number of variables. Similarly, the

values of compound nodes are represented by TCi(t) and FCi(t).
For example, FC4(3) = 1 means that vc4 = 0 at time step 3.

(3) represents the Boolean relation vr1(t + 1) = vc2(t) ∧ vc5(t).

Since Boolean relations such as ”∧” or ”∨” cannot directly be

used in IP, it is necessary to convert them into linear equations

and/or inequations. Since x1 = x2∧x3∧· · ·∧xk can be represented

by (x1∨ x2∨ x3∨· · ·∨ xk)∧(x1∨ x2)∧(x1∨ x3)∧· · ·∧(x1∨ xk) = 1,

vr1(t+1) = vc2(t)∧vc5(t) can be converted into (vr1(t+1)∨vc2(t)∨
vc5(t))∧ (vr1(t + 1)∨ vc2(t))∧ (vr1(t + 1)∨ vc5(t)) = 1, and then (3)

is obtained.

For a compound node with indegree 1, the value of the prede-

cessor node is just copied. For example, since vc3 has only one

predecessor vr1, vc3(t + 1) is just copied from vr1(t) as shown in

(8). Similarly, vc4(t + 1) is just copied from vr2(t) as shown in (9).

For a compound node with indegree more than 1, it is necessary

to convert the ”∨” relation into linear equations or equations. (10)

represents the Boolean relation vc5(t + 1) = vr3(t) ∨ vr5(t). Since

x1 = x2 ∨ x3 ∨ · · · ∨ xk is represented by (x1 ∨ x2 ∨ x3 ∨ · · · ∨ xk)∧
(x1∨ x2)∧ (x1∨ x3)∧ · · ·∧ (x1∨ xk) = 1, vc5(t+1) = vr3(t)∨ vr5(t)
can be converted into (vc5(t + 1) ∨ vr3(t) ∨ vr5(t)) ∧ (vc5(t + 1) ∨
vr3(t)) ∧ (vc5(t + 1) ∨ vr5(t)) = 1, and then (10) is obtained.

As for the reaction nodes not included in the host network,

TERi(t) and FERi(t) are used to represent whether vri is activated.

We use a virtual node vei as one of the predecessors of vri. Since

vri is represented by an AND node, vei = 0 keeps vri inactive

even if all other predecessors of vri are 1. For example, vr2 in

Fig. 2 has only one predecessor vc1. However, since vr2 is not

included in the host network and vei = 1 is necessary for vr2 = 1,

vr2(t + 1) = vc1(t) ∧ ve2(t) must hold, and then (4) is obtained.

Since we assume minimal valid assignment, at t = 0, the source

compound nodes are assigned 1, but the other compound nodes

and reaction nodes are assigned 0.

m + n is the largest number of time steps necessary for the 0-1

assignment to converge. (1) means that the number of additional

reactions should be minimized. (2) means that the target com-

pound vc7 should become 1 after the 0-1 assignment converges.

(3)-(7) represent the constraints by vr1 to vr5 respectively. Note

that ve1 does not exist since vr1 is included in the host network and

then vr1 = 1 holds for any Va. (8)-(12) represent the constraints

by vc3 to vc7 respectively. (13) represents that Va does not change

by time transition. (14) means that vc1 and vc2 are source nodes.

(15)-(16) represent that all nodes but source nodes are assigned 0

in the initial state. (17) means that ”T” and ”F” represent ”true

(1)” and ”false (0)” respectively, and complement each other.

The above formalization can clearly solve MRI and obtain the

correct solution Va = {vr2, vr3, vr4}, however O((m+ n)2) variables

are necessary. To reduce the number of variables, it is neces-

sary to reduce the number of time steps. If time is not taken into

account at all, an inappropriate IP formalization IP-MRI-B is ob-

tained. Details of IP-MRI-B is described in [22].

In IP-MRI-B, the solution of IP is Va = {vr4, vr5} since

(vr1, . . . , vr5, vc1, . . . , vc7) = (1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1) is a valid

assignment and satisfies vc7 = 1. Note that vr2 and vr3 are forced

to be 0 since they are not included in either the host network or

Va. Although it satisfies all constraints and |Va| is minimum, this

assignment is not appropriate since {vr4, vc6, vr5, vc5} forms a cy-

cle and all of them are assigned 1 without the influence of source

nodes. To avoid such an inappropriate assignment, it is necessary

to consider minimal valid assignment with respect to the number
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of 1s for each Va. Although it is not described in this version, the

minimal valid assignment is uniquely determined for each Va.

Thus, IP-MRI-A can solve MRI, but m + n time steps are nec-

essary, while IP-MRI-B, which does not use the notion of time,

cannot solve MRI. The feedback vertex set (FVS) is a set of nodes

whose removal makes the network acyclic. Since IP-MRI-B can

solve MRI if there is no cycle, it is reasonable to apply IP-MRI-B

for the acyclic network obtained by the deletion of FVS and use

the notion of time as in IP-MRI-A to nodes included in F based

on the idea developed in [23].

In the improved method, IP-MRI-C, we firstly find an FVS F
consisting of reaction nodes and then decompose each vri ∈ F into

two nodes vri and vsi so that vri has only in-edges and vsi has only

out-edges. For example, in the network of Fig. 2, since F = {vr4}
is a feedback vertex set, vr4 is decomposed into vr4 and vs4 as

shown in Fig. 3. Furthermore, we put an additional constraint

that vsi(t + 1) = vri(t). The number of time steps of IP-MRI-C

is f + 1 while that of IP-MRI-A is m + n + 1, where f = |F|.
Therefore, the numbers of variables in IP-MRI-C and IP-MRI-A

are O( f (m+ n+ f )) and O((m+ n)2) respectively. Since f is con-

siderably smaller than m + n in most metabolic networks and the

computational time of IP exponentially increases with the num-

ber of variables, we can expect a significant improvement from

the view point of the computational time.

Although finding the minimum FVS is known to be NP-

complete, it is not necessary to use the minimum FVS in our

problem setting. To choose FVS, we use a simple greedy algo-

rithm GreedyFVS, that is described in [22].

Since the reaction nodes for FVS are chosen by a greedy al-

gorithm, the size of FVS is not always optimal. However, it is

important to note that even if the size of FVS is not optimal, the

solution of MRI calculated by IP-MRI-C is always optimal. If

there are multiple optimal solutions in MRI, there is a possibility

that the solutions are different since IP outputs only one solution.

However, it may be possible to enumerate all optimal solutions

of MRI by iteratively solving IP with a constraint to avoid the

already chosen solutions.

The example of IP-MRI-C for Fig. 2 is explained in [22].

vc1
vc2

vc4
vc5

vr1

vr2

vr5

vr4

host
network

target
node

vc3

vr3 vc6

vc7
vs4

Fig. 3 The cycles are decomposed in the FVS-based method.

3. Results
3.1 Computer Experiments

We conducted computer experiments for solving MRI with

data downloaded from the KEGG database. The experiment was

conducted on a PC with an Intel(R) Xeon(R) 3.33GHz CPU and

10GB RAM having the SUSE Linux (version 12.2) operating sys-

tem, where CPLEX (version 12.4.0.0) was used as the solver of

integer programming.

In this study, a reference network consists of the central

metabolism and the related modules necessary for producing the

target compound. A map of the KEGG PATHWAY is a minimum

unit, and three or four maps of the KEGG PATHWAY are chosen

and integrated as the reference network in each of our experi-

ments. As for species, a reference network includes the chemical

reactions of all species, whereas the metabolic networks of E. coli
are used for the host networks. The major difference between the

pathway alignment methods by KEGG and our developed method

is that our method is based on a Boolean model, whereas the path-

way alignment methods consider only the topology of networks.

In synthetic biology, it is of great interest to construct a mini-

mal genome that realizes the desired functions [24], [25], [26].

Since glycolysis, gluconeogenesis, citrate cycle and pentose

phosphate pathway are considered to be essential even in artificial

organisms, it is reasonable to assume that the host networks in the

computer experiments have some of these pathways in one of the

simplest organisms, E. coli. Because the purpose of this study is

not focused on the reconstruction of genome-scale metabolic net-

work model, but the design of a minimal genome in addition to

the existing pathways to produce a desired compound, each refer-

ence network consists of the maps of the KEGG pathway located

between the central metabolism and each target compound.

In the first computer experiment, the target compound is

propanol (C00479 in KEGG ID), the host network is glycolysis

and gluconeogenesis of E. coli (eco00010.xml), and the reference

network covers glycolysis, gluconeogenesis and glycerolipid

metabolism of other species (ko00010.xml and ko00561.xml).

The numbers of compound and reaction nodes are 58 and 85,

respectively, where 30 reactions are reversible. The source

nodes are D-glucose (C00031), oxaloacetate (C00036), salicin

(C01451), arbutin (C06186), UDP-glucose (C00029), acyl-CoA

(C00040), and diglucosyl-diacylglycerol (C06040). It took 0.19

s to solve MRI. The obtained additional reactions are Va =

{R01514, R01752, R01036, R01048, R02577, R02376}, where

these reactions produce propanol from 3-phospho-D-glycerate

(C00197) via glycerol (C00116). Since 3-phospho-D-glycerate

(C00197) is producible by glycolysis and gluconeogenesis of E.
coli and works as a connection between glycolysis and glyc-

erolipid metabolism, the obtained Va can be considered an ap-

propriate solution of MRI.

3.2 Difference between Developed Model and Shortest Path-
Based Model

To show the difference between the developed model

and the shortest path-based models, we conducted

the second experiment where PathComp of KEGG

(”http://www.genome.jp/tools/pathcomp/”) was used to cal-

culate the solution of the shortest path-based model. In the

experiment, the host network consists of glycolysis, gluco-

neogenesis and citrate cycle of E. coli (eco00010.xml and

eco00020.xml), and the reference network consists of glycolysis,

gluconeogenesis, citrate cycle and pentose phosphate pathway

of other species (ko00010.xml, ko00020.xml and ko00030.xml).

The numbers of compound and reaction nodes are 64 and
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108, respectively, where 59 reactions are reversible. There

are four source nodes, D-glucose(C00031), arbutin(C06186),

salicin(C01451), and acetate (C00033), and the number of

candidates for the additional reactions is 66. When the target

compound is sedoheptulose 7-phosphate (C05382), the solution

of MRI is Va = {R01827, R01830}, where the substrates

of R01827 are beta-D-fructose 6-phosphate (C05345) and

D-erythrose 4-phosphate (C00279). It took 32.58 s to obtain

the solution. Since D-erythrose 4-phosphate (C00279) is not

included in the host network, it is necessary to add R01830 in

which substrates are beta-D-fructose 6-phosphate (C05345) and

D-glyceraldehyde 3-phosphate (C00118) and the products are

D-xylulose 5-phosphate (C00231) and D-erythrose 4-phosphate

(C00279). It is to be noted that both beta-D-fructose 6-phosphate

(C05345) and D-glyceraldehyde 3-phosphate (C00118) are

producible by the host network.

On the other hand, PathComp just connects the pro-

ducible compounds and the target compound adds only R01827

since R01827 is adjacent to both beta-D-fructose 6-phosphate

(C05345) and sedoheptulose 7-phosphate (C05382). However,

it is clear that R01827 does not occur if D-erythrose 4-phosphate

(C00279) does not exist. Thus the difference between the shortest

path-based method and the developed method is that the devel-

oped method considers Boolean constraints for each reaction and

compound whereas the shortest path-based method only consid-

ers the connectivity of nodes.

3.3 Scalability
Next, we conducted the third experiment to show the scalabil-

ity of our method. The host network consists of the source nodes

of glycolysis and gluconeogenesis of E. coli (eco00010.xml), that

is, D-glucose(C00031), arbutin(C06186), salicin(C01451), ox-

aloacetate(C00036) and acetate (C00033). The reference net-

work consists of glycolysis, gluconeogenesis, citrate cycle, pen-

tose phosphate pathway and butanol metabolism of other species

(ko00010.xml, ko00020.xml, ko00030.xml and ko00650.xml),

where R01172 is treated as a reversible reaction. The target com-

pound is butanol (C06142). The numbers of compound and re-

action nodes are 93 and 150, respectively, where 87 reactions are

reversible. It took 919.79 s (15m19s) for the developed method

to solve MRI and the solution was Va = {R00235, R00238,

R01977, R03027, R01171, R01172, R03545}. These seven re-

actions form a path from acetate to 1-butanol via acetyl-CoA,

acetoacetyl-CoA, crotonoyl-CoA and butanoyl-CoA, which sat-

isfies the Boolean constraints. Since the number of reactions in

the reference network is 150, it is necessary to examine 150C7

cases if an exhaustive search is conducted. Since examining

150C7 � 2.941 × 1011 cases is almost impossible, it is seen that

the IP-based method is useful for solving MRI, particularly when

the given networks are not small.

3.4 Difference between Developed Model and FBA-Based
Model

Finally, we conducted an experiment to show the difference

between the developed model and the FBA-based model. We

assume that the reference network consists of glycolysis, glu-

coneogenesis, citrate cycle, pentose phosphate pathway and bu-

tanol metabolism of other species (ko00010.xml, ko00020.xml,

ko00030.xml and ko00650.xml), and the host network includes

only one reaction R04394 between salicin (C01451) and salicin

6-phosphate (C06188). Therefore, the source node is only salicin

(C01451). Note that reversible reactions are decomposed into two

reactions, and denoted by P and Q. The target compound is maleic

acid (C01384). The numbers of compound and reaction nodes are

93 and 150, respectively, where 87 reactions are reversible.

Then, the solution of MRI in our Boolean model is {R05134,

R02736, R02035, R02036, R05605, R00344, R00342, R01082,

R01087}, whereas the solution of FBA-based model is {R05134,

R02736, R02035, R02036, R05605, R01058, R01518, R00658,

R00200, R00344, R00342, R01082, R01087}. It is to be noted

that {R01058, R01518, R00658, R00200} is not necessary for

the Boolean model, but necessary for the FBA-based model. In

the Boolean model, R01058 is not necessary to produce C01384

since the lack of reactions in downstream does not affect. How-

ever, in the FBA model, R01058 is necessary. Otherwise, C00118

is not consumed and then R05605 cannot occur. Thus, the so-

lution of MRI in the FBA-based model tends to include more

reactions than that in the Boolean model. It took 7896.46 s

(2h11m36s) to solve the Boolean model of MRI.

4. Discussion
In this technical report, we formalized an optimization problem

MRI in a Boolean model with a notion of minimal valid assign-

ment. We proved that MRI in the Boolean model is NP-complete

and the minimal valid assignment is uniquely determined when

Va is given. Since an exhaustive search cannot be used to solve

MRI when the given networks are not small, we developed an

IP-based method for MRI. To improve the scalability of the de-

veloped method, it is necessary to reduce the number of vari-

ables appearing in IP formalization since the computational time

of IP is considered to be exponential to the number of variables.

Although the simple IP formalization with the notion of time is

useful for solving MRI, it needs O((m + n)2) variables in IP for-

malization. If the notion of FVS is used, the number of necessary

time steps reduces to f , where f denotes the size of FVS, and

the number of variables in IP is O( f (m + n + f )). Although the

idea of using FVS is similar to [23], many modifications are nec-

essary since the minimal valid assignment and the maximal valid

assignment have many different properties.

We also conducted four computer experiments in which data

were downloaded from the KEGG database, CPLEX was used as

the IP solver, and propanol, butanol, sedoheptulose 7-phosphate,

and maleic acid were used as the target compound for each ex-

periment. The host network was a metabolic network of E. coli
and the reference network of KEGG was used as the reference

network. The results of the computer experiments confirmed the

correctness and the scalability of the developed method, and the

appropriateness of the problem setting of MRI.

An important advantage of our Boolean model is its capabil-

ity of detecting the lack of substrates, whereas the connectivity-

based methods cannot appropriately handle this point. An ex-

tended type of connectivity-based method is BNICE, which enu-
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merates all possible pathways from the source nodes to the tar-

get compound, and uses thermodynamical feasibility and path-

way length to evaluate each candidate pathway. In contrast, the

developed method evaluates each candidate pathway based on the

number of additional reactions. Another advantage of the devel-

oped model is its capability of handling branches and/or cycles in

a pathway from the source compounds to the target compound,

whereas BNICE considers only the non-branching paths. How-

ever, since BNICE nicely evaluates each pathway by the ther-

modynamic free energy of the included compounds and length,

considering the thermodynamic free energy in a Boolean model

represents an important direction of our future work.

It is to be noted that the solution of MRI in the FBA-based

model is different from that in the Boolean model. In particular,

if the reference network includes a large redundant part, the FBA-

based model tends to output a larger solution than the Boolean

model, although the FBA-based model is very fast when com-

pared to the Boolean model. Therefore, one of our future works

is to develop a hybrid method combining the FBA-based method

and the Boolean-based method.
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