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Abstract: This paper addresses unsupervised training of DNN acoustic model, by exploiting a large amount of 

unlabeled data with CRF-based classifiers. In the proposed scheme, we obtain ASR hypotheses by complementary GMM 

and DNN based ASR systems. Then, a set of dedicated classifiers are designed and trained to select the better hypothesis and 

verify the selected data.  It is demonstrated that the classifiers can effectively filter usable data from unlabeled data for 

acoustic model training. The proposed method achieved significant improvement in the ASR accuracy from the baseline 

system, and it outperformed the models trained from the data selected based on the confidence measure scores (CMS) and 

also from the simple ROVER-based system combination. 

1. Introduction 

While the performance of acoustic model for speech 
recognition depends on the size of the training data, it is very 

costly to prepare accurate and faithful transcripts. We 
investigate an unsupervised training scheme which takes the 
advantage of a huge quantity of unlabeled data, particularly for 
the deep neural network (DNN) acoustic model. As described 
in [1, 2, 3, 4, 5, 6], the complete procedure of unsupervised 
training with unlabeled data includes preprocessing (e.g. 
speech segmentation, non-speech removal, speaker diarization, 
etc.), automatic transcription generation, and data selection 
before model training. Some recent studies [7, 8] extend the 

multi-task learning method for the multilingual acoustic 
modeling tasks [9, 10, 11] to the unsupervised training purpose, 
but the improvement is limited. In this paper, we focus on the 
automatic transcription generation and data selection as the 
most crucial part of this task, trying to solve several issues of 
the conventional paradigm of unsupervised training method. 

For data selection, the most commonly used method is 
based on the confidence measure scores (CMS) computed by 

the ASR system [1, 2, 3, 4, 5, 6]. The word-level CMS is 
averaged over the utterance unit for data selection. When 
tuning the threshold of CMS, there is a trade-off between the 
data increase and the growth of noise in the label. It is not 
straightforward to find the optimal threshold and it is not 
practical to conduct exhaustive searching. Moreover, the 
optimum threshold depends on the available data size. This 
means that we need to tune the threshold every time the data 

size is increased and the ASR system is updated. Instead of 
using CMS, we investigate a discriminative approach that uses 
dedicated classifiers to select usable data for model training. In 
recent years, conditional random fields (CRF) models [16], 
which can combine multiple sources such as acoustic, lexical 
and linguistic features with contextual information, are used 
for a variety of classification tasks including confidence 
estimation [17, 18].  

We have applied the scheme to the lightly supervised 
training setting, where closed caption text is available and 
combined with an ASR hypothesis [20]. However, the 
assumption of closed caption text limits the applicability of the 
method. In this work, we extend to the more general 
unsupervised setting. We can leverage the text quality by  
 
1 School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan. 

a )  lisheng@ar.media.kyoto-u.ac.jp 

combining hypotheses from a set of complimentary ASR 
systems with similar accuracy and enough diversity on 
recognition patterns [12]. Deng et al. [13] demonstrated 
enough diversity exists between GMM and DNN systems. 

Conveniently, we can reuse the GMM-HMM system that is 
produced in the process of the DNN-HMM acoustic model 
training as a complementary system. Conventionally, 
ROVER-based system combination [14] has been used, but it 
is not robust to the small number of complementary systems 
with different distributions of CMS. In this study, the problem 
is solved by using a cascade of CRF classifications. In the 
proposed method, the CRF-based classifiers are prepared for 

two sub-tasks: selector CRF and verifier CRF. The selector 
CRF is trained to select a correct (or better) hypothesis either 
from GMM-HMM or DNN-HMM on the character/word level. 
The verifier CRF is then used to determine whether the 
selected result is correct or wrong. Data selection for acoustic 
model training is conducted according to the verification result.  

In the remainder of the paper, we first describe the corpus of 

Chinese spoken lectures and the baseline ASR system in 

Section 2. Next, the proposed scheme for unsupervised 

training is formulated in Section 3. Then, the implementation 

of the method and experimental results are presented in 

Section 4. The paper is concluded in Section 5. 

2. Corpus and baseline ASR performance 

2.1. Data Preparation  

We have designed and constructed the Corpus of Chinese 

“Lecture Room” ( 百家講壇 ) [19], which is a popular 

academic lecture program of China Central Television (CCTV) 
Channel 10. Since 2001, a series of lectures have been given 
by prominent figures from a variety of areas. The closed 
caption text is also provided by CCTV and free-download 
from the official website for a part of the lectures.  

For the experimental purpose, we select 58 annotated 
lectures as the training set (CCLR-SV) and 19 annotated 
lectures as the test set (CCLR-TST). Additionally, 12 
annotated lectures are held out as a development set (CCLR-
DEV). Another set of 126 lectures that have closed caption 
texts only are used for lightly supervised training (CCLR-LSV) 
[20]. The CCLR-USV set is totally unlabeled, and are used for 
additional training in this work. It has 184 lectures in total 248 

speakers and 114.7 hours. All these data sets are listed in 
Table-1.  
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Table 1 Data sets in CCLR. 

Data Set Corpora #Lecture Duration (hours) 

Train CCLR-SV 58 35.2 

CCLR-LSV 126 62.0 
CCLR-USV 184 114.7 

Dev CCLR-DEV 12 7.2 

Test CCLR-TST 19 11.9 

 

2.2. Baseline ASR system 

The dictionary for ASR consists of 53K lexical entries 
extracted from CCLR-SV together with Hub4 and TDT4. The 
OOV rate on CCLR-TST is 0.368%. The pronunciation entries 
were derived from the CEDICT open dictionary.  

A word trigram language model (LM) was built for 
decoding. We interpolated the faithful annotation of CCLR-
SV and closed caption texts of CCLR-LSV with related LDC 
corpora (Hub4, TDT, GALE) and the Phoenix lecture archive. 

We adopt 113 phonemes (consonants and 5-tone vowels) 
as the basic HMM unit. We first built GMM-HMM and then 
DNN-HMM systems. The GMM system uses PLP features, 
consisting of 13 cepstral coefficients (including C0), plus their 

first and second derivatives, leading to a 39-dimensional 
feature vector. For each speaker, cepstral mean normalization 
(CMN) and cepstral variance normalization (CVN) are applied 
to the features. The DNN system uses 40-dimensional 
filterbank features plus their first and second derivatives with 
splicing 5 frames on each side of the current frame. It has 1320 
nodes as input, 3000 nodes as output, and 7 hidden layers with 
1024 nodes per layer. Training of DNN consists of the 

unsupervised pre-training step and the supervised fine-tuning 
step. They are implemented with Kaldi toolkit (nnet1) [21]. 
For decoding, we use Julius ver.4.3.1 (DNN version1) [22] 
using the state transition probabilities of the GMM-HMM. 
This baseline system achieved an average Character Error 
Rate (CER) of 24.2% and 27.5% with the MLLR speaker-
adapted GMM system, and 22.7% and 25.7% with the DNN 
system for CCLR-DEV and CCLR-TST, respectively. 

3. CRF based hypothesis combination and data 

selection 

We propose an effective system combination and data 

selection scheme with CRF-based classifiers as shown in Fig.1. 
The flowchart is as follows:  

 

DNN-HMM ROVER
(conventional)

Feature 
Extraction

ASR decoding

GMM-HMM CRF
(proposed)

Unlabeled
data 

Combination

Text
alignment

Data
selection

Train
acoustic
model

Post
processing

 
Fig.1 Flow-chart of proposed method. 

 

3.1. Process flowchart 

Preprocessing and Hypotheses Generation 

For pre-processing, we first conduct speech segmentation to 
the utterance unit based on the BIC (Bayesian Information 

Criterion) method [26] and speaker clustering to remove non-
speech segments and speech from other than the main lecturer 
in CCLR-USV. And then the unlabeled data is decoded by the 
DNN system and the speaker adapted GMM system, 
respectively. 

Hypotheses Combination and Verification 

Since different recognition patterns are observed between 
GMM and DNN based recognition hypotheses, we use CRF 
models to combine these diversities with their contextual 

information and determine which hypothesis should be 
selected for acoustic model training. At first, features are 
extracted from pair-wise aligned texts on the character level. 
Note that each Chinese character represents a syllable and has 
a corresponding meaning [29, 30]. We adopt the character unit 
in order to avoid the mis-alignment due to different word 
segmentations and OOV problem. Moreover, as the size of 
characters is much smaller than the vocabulary size, we can 

train CRF models more efficiently. Then, a correct (or better) 
hypothesis is selected from complementary hypotheses and 
verified.  

Post-processing and Acoustic Model Training 

Data selection for acoustic model training is conducted by 
aggregating the result of the CRF classifications in the 
utterance level. The DNN system is retrained by adding the 
selected data.  

3.2. Category of alignment patterns 

We automatically transcribed the CCLR-SV data and 
made a three-way character alignment among these two ASR 
hypotheses by the GMM system and the DNN system and also 
the faithful transcripts (reference). By analyzing the aligned 
character sequence, we can categorize patterns into five 
classes, as shown in Table 2. The insertion and deletion cases 
are handled by using a null token. The definition of the 
category is as follows: 

 

 C1: the DNN hypothesis is matched with the GMM 

hypothesis and also the correct transcript.  

 

 C2: although the DNN hypothesis is matched with the 

GMM hypothesis, neither of them is correct.  

 

 C3, C4 and C5: the DNN hypothesis is different from 

the GMM hypothesis. In C3, neither of them is correct. 

In C4, the DNN hypothesis is correct. In C5, the 

GMM hypothesis is correct. 

 

Table 2 Category of alignment patterns. 

Category DNN 

hypothesis 

GMM 

hypothesis 

reference 

text 

Percent 

% 

C1 发 √ 发 √ 发 75.2% 

C2 沦 √ 沦 √ 论 6.8% 

C3 雪 Ⅹ 学 Ⅹ 发 6.6% 

C4 法 √ 发 Ⅹ 法 7.7% 

C5 雪 Ⅹ 学 √ 学 3.7% 

(√ means matching with reference, Ⅹ means mismatching) 

 

 
1
Available at http://julius.osdn.jp/en_index.php#latest_version 
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3.3. Classifier design 

We use CRF [16] as the classifier for this task. It can model 
the relationship between the features and labels by considering 
sequential dependencies of contextual information. For this 
reason, it is used for many applications such as confidence 

measuring [17, 18], ASR error detection [23], and automatic 
narrative retelling assessment [24].  

Our objective is to accept effective data (C1, C4 and C5) and 
remove erroneous data (C2 and C3). We initially tried to 
design a flat classifier and cast the data selection and 
verification problem as a five-class classification problem, but 
it turned to be difficult because of the complex decisions and 
the data imbalance. Therefore, we adopt a cascaded approach.  

In the cascaded approach, we design two kinds of binary 
classifiers: selector CRF and verifier CRF. The selector CRF 
is for selection between the hypotheses, and the verifier CRF 
is for verification of the selected hypothesis. As described in 
the previous subsection, C1 and C2 are the matching cases 
between two different ASR hypotheses. In these cases, the 
data selection problem is reduced to whether to accept or 
discard the word hypothesis. On the other hand, C3, C4 and C5 

are the mismatching cases between these two ASR hypotheses.  
We train a binary classifier to make a choice between these 
ASR hypotheses. Then, we apply the other classifier to verify 
it.  

 

no yes
C3,C4,C5 C1,C2

Verifier CRF 
(CRF2)

Verifier CRF 
(CRF2)

Discard AcceptSelect GMM

Verifier CRF 
(CRF2)

C3,C4(C3),C5

C5(C3)

Discard Accept

C4C3

Selector CRF 
(CRF1)

Select DNN

Discard Accept

DNN hypo. matches GMM hypo.?

C2 C1

 
Fig.2 Cascaded classifiers for data selection. 

 
The classification is organized by the two binary classifiers 

in a cascaded structure as illustrated in Fig. 2. The binary 
classifiers are focused on specific classification problems, so 
they are easily optimized. This design also mitigates the data 
imbalance problem. In Fig. 2, one classifier is used for 
selection of the word hypothesis with highest credibility either 
from the DNN hypothesis or the GMM hypothesis, and the 

other one is used for verification of the selected (or matched) 
hypothesis. 

To make binary classification in the selector CRF (CRF-1), 
we merge C3 into C5, because it can make the data distribution 
more balanced. Erroneous patterns in C3 (i.e. GMM 
hypothesis is incorrect) will be rejected by the verifier-CRF 
(CRF-2). 

 

3.4. Feature design 

The input features used in CRF-1 and CRF-2 are listed in 

Table 3 and Table 4. We categorize these features into two 

groups: ASR-based features and text-based features.  

 

Table 3 Feature sets for CRF-1. 

Feature Type Features 

ASR-based  

feature 

1. Confidence measure score (CMS). 

2. Duration of the current word (DUR). 

3. Word trigram LM score (WLM). 

4. Averaged acoustic model score (AM). 

5. Number of left competing words (NLW). 

6. Number of right competing words (NRW). 

7. Density within word duration (DEN). 

Text-based  

feature 

1. Lexical feature (LEX). 

2. Part-of-Speech (POS). 

3. 5-gram char LM probability (CLM). 

4. 5-gram char LM back-off behavior (BO). 

 

Table 4 Feature sets for CRF-2. 

Feature Type Features 

ASR-based  

feature 

1. Confidence measure score of DNN system and 

posterior output of CRF-1 (CMS) 

Text-based  

feature 

1. Lexical feature (LEX) 

2. Part-of-Speech (POS) 

3. 5-gram char LM probability (CLM) 

4. 5-gram char LM back-off behavior (BO) 

 
These features are explained below.  
The ASR-based features are extracted for word unit, and 

distributed to each character in the word. They are numeric 
features: 

 The confidence measure score (CMS) is output by the 

Julius decoder [15] of the baseline ASR system. The 

value is between [0, 1] approximating a posterior 

probability of the hypothesis word. 

 The word duration (DUR) feature is the number of 

frames of the word. 

 The word trigram LM (WLM) feature is the word 

trigram language model score of the word while 

decoding. 

 Averaged acoustic model score (AM) feature is the 

acoustic likelihood score averaged for each frame.  

 The left competing words (NLW) feature is the number 

of the competing words to the left side of the current 

word in the word graph. 

 The right competing words (NRW) feature is the 

number of the competing words to the right side of the 

current word in the word graph. 

 The density (DEN) feature is how many words 

overlapping between the start time and the end time of 

the current word in the word graph. 

 

The text-based features are extracted by rescoring and 
syntactic analysis in the character level: 

 The lexical feature (LEX) is a lexical entry (ID) of the 

current character. It is a symbolic feature. 

 The Part-of-Speech (POS) feature is obtained for each 

character unit by a CRF classifier trained with a 

character based Chinese-Tree-Bank (CTB) 4 [25]. This 

feature is symbolic. 

 The language model probability feature (CLM) is a 

negative log probability of the current character rescored 

by a character 5-gram language model. This feature is 

numeric.  When back-off is used, it is recorded as back-

off behavior feature (BO). This feature is symbolic.  
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Because most of the CRF implementations are designed to 
work with symbolic features, we need to convert the numeric 
features (CMS, DUR, WLM, AM, NLW, NRW, DEN, CLM) 
into discrete features. Moreover, for the symbolic features 
(LEX, POS, BO), the contextual information of the current 

unit (character) is also incorporated by adding features of the 
preceding two characters and the following two characters.  

For the selector CRF (CRF-1), features from the GMM 

hypothesis and the DNN hypothesis are concatenated together, 

and the complementary information from both independent 

ASR systems can help make better classification. 

For the verifier CRF (CRF-2), we recalculate the text-based 
features after the classification by selector CRF (CRF-1). 
Another feature we use is the posterior probability output of 
CRF-1 (for the mismatching cases) and the confidence 
measure score of the DNN system (for the matching cases) as 

shown in Table 4.  

3.5. Utterance selection for acoustic model training 

The ASR hypotheses are merged into a single character 
sequence after the matching and selection process, and every 

character in the sequence will have a label, either “accept” or 
“discard”, based on the verification process according to Fig.2.  

Then, we need to make a decision whether or not this 
sequence of the data by the utterance unit is used for acoustic 
model training. We calculate the frame acceptance rate of each 
utterance, because the parameters of DNN are updated on the 
frame-level mini-batches. Using forced-alignment, we get the 
state-level label and their boundaries. In this way, the 

character-level labels can be distributed to all frames. 
A more simplified method is we compute the character 

acceptance rate (CA) for every utterance to approximate the 
frame acceptance rate. Since Chinese is syllabic language and 
each character is a syllable, the “CA” actually means the ratio 
of “accept” syllables over the total number of syllables in an 
utterance. Considering spoken Chinese is highly homophonic, 
we tolerant a maximum character rejection rate up to 30% in 
each utterance.  

4. Experimental evaluations 

The proposed method is applied to CCLR-USV to make an 
enhanced acoustic model, which are tested on CCLR-TST. 

4.1. Classifier implementation 

In our implementation, we train CRF classifiers using 
CCLR-SV: CRF-1, which is trained to discriminate C3+C5 vs. 
C4, and CRF-2, which is trained to verify the output of CRF-1 

(C3 vs. C5+C4) and to discriminate C1 vs. C2. 
   Since the feature of CRF-2 is depend on the result of CRF-1, 
We can use a five-fold cross validation method to get the 
features of CRF-2. Specifically, we partition the training data 

into five subsets, and train an individual CRF-1 using 4/5 of 
the data to work on the rest 1/5 data. 

In the training data set (CCLR-SV), there is serious 

imbalance in training samples between classes. The 

distribution of these patterns in CCLR-SV is shown in Table 2. 

It is observed that 75.2% of them are categorized into C1. 

Other four classes are 6.8% (C2), 6.6% (C3), 7.7% (C4) and 

3.7% (C5), respectively. This distribution will bias the training 

of the classifiers. Thus, we introduce a re-sampling technique. 

Specifically, we discarded part of samples which appear too 

frequently in C1. As a result, the calibrated distributions are as 

follows: C1: 60.3%, C2: 10.9%, C3+C5: 16.6% and C4: 

12.2%. For model generalization, we also incorporate data 

from CCLR-LSV to enlarge the training data.  

In the experiment, we use liner-chain CRF implemented in 
the CRFSuite package1. The standard Limited-memory BFGS 
(L-BFGS) [27] algorithm and L2 regularization are used to 
train the CRF models with the sparse features of a high 

dimension. Cut-off threshold for the occurrence frequency of 
feature is 1. The maximum number of iterations for L-BFGS 
optimization is 100. To minimize the information loss in the 
quantization, these numeric values are discretized with the 
method2 described in [28]. The same kind of numeric features 
from DNN and GMM based system can have different 
quantization levels.  

4.2. Classifier performances 

Classification performance with various feature sets is 
evaluated on CCLR-DEV, as shown in Table 5 and Table 6. 
Performance is measured by Precision, Recall and F-score. 

 

Recall)(Precision / RecallPrecision2scoreF

FN)FPTPRecall

FPTPPrecision







/(

/

 

 
where TP is true positives (correct output), FP is false 
positives (false alarm), and FN is false negatives (miss).  

 
Table 5 Feature Set Evaluation of CRF-1 on CCLR-DEV 

 

 CRF-1 

Select GMM (C3 + C5) Select DNN (C4) 
Feature Recall Precision F-score Recall Precision F-score 

LEX 0.504 0.498 0.501 0.711 0.716 0.713 

POS 0.458 0.449 0.453 0.681 0.689 0.685 

CLM 0.471    0.530 0.499 0.763 0.717 0.739 

BO 0.300 0.481 0.370 0.816 0.673 0.738 

All Text  0.546 0.560 0.553 0.756 0.746 0.751 

CMS 0.518 0.541 0.529 0.750 0.733 0.741 

DUR 0.491 0.511 0.501 0.733 0.717 0.725 

WLM 0.410 0.485 0.444 0.753 0.692 0.721 

AM 0.468 0.498 0.483 0.732 0.708 0.720 

NLW 0.491 0.455 0.472 0.667 0.697 0.682 

NRW 0.491 0.465 0.478 0.679 0.701 0.690 

DEN 0.483 0.458 0.470 0.677 0.697 0.687 

All ASR 0.572 0.569 0.570 0.754 0.756 0.755 

All Features 0.610 0.617 0.613 0.785 0.780 0.782 

 
Table 6 Feature Set Evaluation of CRF-2 on CCLR-DEV 

                                   

 CRF-2 

Discard (C2+ C3) Accept (C1+C4+C5) 
Feature Recall Precision F-score Recall Precision F-score 

LEX 0.044 0.697 0.082 0.996 0.832 0.907 

POS 0.002 0.730 0.003 0.999 0.826 0.905 

CLM 0.088 0.684 0.155 0.992 0.838 0.908 

BO 0.013 0.679 0.025 0.999 0.828 0.905 

All Text  0.237 0.662 0.350 0.975 0.859 0.913 

CMS (ASR) 0.631 0.588 0.609 0.907 0.921 0.914 

All Features 0.621 0.627 0.624 0.922 0.920 0.921 

 
We observe the overall performance of CRF-2 (Table 6) is 

higher than that of CRF-1 (Table 5). It suggests selection of 
the hypothesis is more difficult than verification of the 
hypothesis.  

 
 

 
1
 Available at http://www.chokkan.org/software/crfsuite/ 

2
 Available at http://www.irisa.fr/texmex/people/raymond/Tools/tools.html 
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Among the feature sets, the text-based features and their 

combinations are generally less effective than ASR-based 
feature in CRF-1 and CRF-2. But for both classifiers, 
combination of both feature sets shows further improvement. 

As an individual feature, the CMS feature is the most effective 
for CRF-1 and CRF-2.  

From these results, we adopt the complete feature set. 
Although errors by CRF-1 in the first stage of the 
classification is inevitable, part of them are detected and 
discarded in the second stage of classification by CRF-2, as 
shown in Fig. 2. 

 

4.3. ASR performance with enhanced model training 

Then, we conduct DNN acoustic model training by adding 
the data selected from CCLR-USV to the CCLR-SV and 
CCLR-LSV.  ASR performance of the model enhanced by the 

selected data is evaluated on both of CCLR-DEV and CCLR-
TST. The proposed data selection method is compared with 
other methods as follows: 
 

 Baseline GMM and baseline DNN model: the models 

are trained by only using CCLR-SV and CCLR-LSV as 

described in Section 2. 

 

 DNN (CMS): we select utterances from CCLR-USV 

using the baseline DNN system based on a threshold of 

averaged CMS score (CMS≥0.6). The optimal threshold 

was determined by using GMM (MLE) models and 

CCLR-DEV [20]. 

 

 Combine-ROVER: combine the ASR hypotheses of 

CCLR-USV from the baseline GMM and the baseline 

DNN systems using ROVER [14]. We select utterances 

according to the optimal threshold of the averaged CMS 

score (CMS ≥ 0.6). It is the conventional method for 

leveraging hypotheses and data selection. We also use 

all of the combined ASR hypotheses of CCLR-USV 

without any selection (CMS≥0.0). 

 

 Combine-CRFs: combine the ASR hypotheses of 

CCLR-USV from two different baseline systems by 

using a set of CRF models. This is our proposed method 

for leveraging hypotheses and data selection. Effect of 

data selection is investigated on three thresholds: CA≥

0.0 (no selection), CA=1.0 (use utterances with all 

characters accepted), and CA≥0.7. 

 

In this experiment, we use the same setting with the baseline 
system described in Section 2 for DNN acoustic model 

training and testing as well as the lexicon and the language 
model.  

ASR performance in CER is listed in Table 7. The results 
show that our proposed unsupervised training method 
significantly improved from the baseline. It also outperforms 
all other methods on both evaluation data sets.  

We observe that both of Combine-CRFs and Combine-
ROVER outperform DNN (CMS ≥ 0.6). This suggests the 

system combination effectively leverages the quality of 
automatic generated transcription texts. The fact that our 

proposed method Combine-CRFs (CA ≥ 0.0) further outper-

forms the Combine-ROVER (CMS ≥ 0.0) demonstrates the 

effectiveness of the CRF models using many features. The 
Combine-ROVER (CMS≥0.6) and Combine-ROVER (CMS≥

0.0) has no significant difference, while the improvement by 

Combine-CRFs (CA≥0.7) is statistically significant compared 

with the other two models (CMS≥0.0 and CA=1.0) among our 
proposed method. This confirms the data selection with the 

verifier CRF has some effect for further improvement.  
 

Table 7 ASR Performance (CER%) by Unsupervised Training 
(Measured with NIST SCLite Scoring Tool) 

 
 Amount of data (hours) CER% 

labeled unlabeled DEV TST 

Baseline GMM  97.2 0 24.2 27.5 

Baseline DNN 97.2 0 22.7 25.7 

DNN (CMS≥0.6) 97.2 97.1 22.8 26.2 

Combine-ROVER (CMS≥0.0) 97.2 114.7 21.9 24.9 

Combine-ROVER (CMS≥0.6) 97.2 82.3 21.9 25.0 

Combine-CRFs (CA≥0.0) 97.2 114.7 21.5 24.4 

Combine-CRFs (CA=1.0) 97.2  38.9 21.3 24.5 

Combine-CRFs (CA≥0.7) 97.2  78.3 21.1 24.2 

 

5. Conclusions  

We have proposed a new scheme for hypotheses leveraging 
and data selection for unsupervised training of DNN acoustic 
model. The method uses dedicated classifiers, which are 
trained with the training database of the baseline acoustic 
model, to combine complementary ASR hypotheses and select 
usable data for model training. 

We designed a cascaded classification scheme based on a 
set of binary classifiers, which incorporates a variety of 

features. Experimental evaluations show that the proposed 
unsupervised training method effectively filters usable data, 
and improves the ASR accuracy from the baseline model and 
in comparison with the conventional ROVER-based method.  
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