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Abstract: On a retrieval of Linked Open Data using SPARQL, it is important to consider an execution cost of query,
especially when the query utilizes inference capability on the endpoint. A query often causes unpredictable and un-
wanted consumption of endpoints’ computing resources since it is sometimes difficult to understand and predict what
computations will occur on the endpoints. To prevent such an execution of time-consuming queries, approximating the
original query could be a good option to reduce loads of endpoints. In this paper, we present an idea and its conceptual
model on building endpoints having a mechanism to automatically reduce unwanted amount of inference computation
by predicting its computational costs and allowing it to transform such a query into a more speed optimized one by
applying a GA-based query rewriting approach. Our analysis shows a potential benefit on preventing unexpectedly
long inference computations and keeping a low variance of inference-enabled query executions by applying our query
rewriting approach. We also present a prototype system that classifies whether a query execution is time-consuming
or not by using machine learning techniques at the endpoint-side, as well as rewriting such time-consuming queries by
applying our approach.
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1. Introduction

Due to the rapid emergence of the use and publish of Linked
Open Data (LOD), constructing and refining efficiently query-
ing systems to the LOD is becoming more important than be-
fore. LOD is generally retrieved by sending a query written in
a standard query language called SPARQL *1 for the retrieval of
RDF data stored in an endpoint. Reasoning on LODs allows such
queries to obtain unstated knowledge from the distinct one [1].
Techniques to utilize reasoning capability based on ontology have
been developed to overcome several issues, such as its high com-
plexity in worst case [2], [7], [10], [12], [14].

On a retrieval of LOD using SPARQL, a client prepares a
SPARQL query and directly submits the query to a SPARQL end-
point. Even when the query prepared by the client might need a
long time for its execution, since the query is submitted directly to
the endpoint, a standard SPARQL endpoint implementation will
try to execute the query with lots of costs to return answers. If the
endpoint receives lots of heavy queries, it might cause a server-
down. This is especially important for endpoints that have infer-
ence engines to support OWL reasoning capability.

In order to avoid such executions of time-consuming queries
at the endpoint’s side, it might be valuable to classify whether
a query execution is time-consuming or not. There are two ap-
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proaches to predict the execution time for a query. One approach
is using machine learning techniques to predict the execution per-
formance from existing query logs. Another approach is to look-
up some similar queries executed before and take an average of
their execution time. In this paper, we take the former approach
to classify whether a query execution is time-consuming or not.

In this paper, we present an idea and its conceptual model
on building endpoints having a mechanism to automatically re-
duce unwanted amount of inference computation by predicting
its computational costs and allowing it to transform such a query
into a more speed optimized one by applying a GA-based query
rewriting approach. Our analysis shows a potential benefit on pre-
venting unexpectedly long inference computations but keeping
low variance of inference-enabled query executions by applying
our query rewriting approach. We also present a prototype sys-
tem that classifies whether a query execution is time-consuming
or not by using machine learning techniques at the endpoint-side,
as well as rewriting such time-consuming queries by applying our
approach.

The rest of the paper is organized as follows. Section 2 presents
backgrounds of our work as well as presenting some existing
works related to the issues, and clarify the aim of our research.
Section 3 shows the detailed design of our approach and overview
of our prototype implementation. Section 4 conducts evalua-
tions of the approach and presents some analysis on them. Sec-
tion 5 discusses about other possible approaches and difficulties

*1 http://www.w3.org/TR/rdf-sparql-query/
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on them. Section 6 concludes our work.

2. Background

2.1 Difficulty of Inference-performance Prediction
For reducing time of reasoning, a direct way is to develop a

faster inference algorithm. For example, Baumgartner et al. pro-
posed an efficient reasoning algorithm based on hypertableau [2].
HermiT [12] reasoner implemented such an improved hyper-
tableau reasoning algorithm.

In Ref. [14], for the classification task on ontological inference,
MORe has been presented that combines an OWL2 reasoner and
an external efficient reasoner. MORe has several versions, one is
using HermiT with ELK *2 [11], JFact with ELK, and other ex-
perimental versions *3. MORe is optimized for classification task
on ontologies by combining an extensively applicable reasoner
(HermiT or JFact) and a more efficient and profile specific rea-
soner (ELK).

Although those implementation-level inference speed im-
provements are very useful, there is another difficult issue: the
difficulty of predicting hardness of each inference problem. Kang
et al. presented a systematic study to tackle the problem and
argued that the hardness of reasoning about individual ontolo-
gies has not been easily characterized and there is a challenge of
predicting ontology classification performance by using machine
learning techniques [10].

In Ref. [10], they introduced a number of metrics that can be
used to predict reasoning performance and evaluated various clas-
sifiers to know how they accurately predict classification time for
an ontology based on its metric values. According to their results
of evaluation, they have prepared prediction models which can
predict in accuracy of over 80%, but they reported that there are
still major difficulties to improve them.

In Ref. [10], they finally argued that the ontology classifica-
tion is still a challenging task in spite of such progresses in the
design and development of optimized algorithms and reasoners,
and there are demands to be able to quantitatively analyze and
predict reasoning performance using syntactic features.

In Ref. [7], it is introduced that reasoning tasks on ontolo-
gies constructed from an expressive description logic have a high
worst case complexity, by analyzing experimental results that di-
vided each of several ontologies into 4 and 8 random subsets
of equal size and measured classification times of these subsets
as increments. They reported that some ontologies exhibit non-
linear sensitivity on their inference performance.

They also argued that there is no straightforward relationship
between the performance of a subset of each isolated ontology
and the contribution of each subset to the whole inference perfor-
mance when they merged into the ontology, while they provided
an algorithm that identifies ontology’s hotspots [7], that are the
parts that consume most of such huge amount of computation in
inference.

Hasan proposed a better prediction method to estimate the per-
formance of each SPARQL query [9]. Hasan’s prediction ap-
proach is based on algebra features of a SPARQL query. Before

*2 ELK is OWL 2 EL reasoner.
*3 https://code.google.com/p/more-reasoner/wiki/MOReCli

executing a query, it has been decomposed into a graph struc-
ture that is called SPARQL algebra expression. In their work,
they constructed a feature vector from the algebra expression and
then applied machine learning techniques such as SVM. They
reported that their prediction performance is nearly 0.94 in R2

coefficient value between the actual execution times and their es-
timated values for them. Now we have a good prediction method
for estimating query execution performance, however, their ap-
proach does not consider Description Logic (DL) reasoning on
those endpoints.

In this paper, we aim to solve the above mentioned issues
and difficulties on predicting reasoning performance as follows.
First, we focus on the prediction of performance on executing an
inference-enabled query but do not aim to apply it to arbitrary
reasonings in DL. Second, we apply machine learning-based ap-
proaches based on the features of a query and the used ontologies.
However, unlike Hasan’s approach, we do not aim to predict the
exact cost of executing queries but rather try to predict whether
the query is a time-consuming one based on those features and
a given threshold for the execution time. After that, we aim to
manage such queries that require a very long execution time.

2.2 Query Approximation
There are two possible approaches to managing long-running

queries. One is to utilize parallel and distributed computing tech-
niques to make those executions faster [16]. Another possible ap-
proach is rewriting a query that requires a long execution time to
a light-weight one.

A possible approach to approximate an inference problem is
deleting subsets of ontology that would increase the classifica-
tion complexity [13]. Ontology refinements to enable a faster in-
ference could be done by ontology engineers themselves. Ontol-
ogy engineers are often working on the side of endpoints. How-
ever, clients do not know how such ontologies were optimized
and what kind of inferences could be run on those ontologies. On
the other hand, endpoints cannot apply some approximate opti-
mizations since the endpoint could not fully predict clients’ ex-
pectations that were not expressed in SPARQL, even when some
dynamic ontology simplifications could be done for the queries.
For example, endpoints do not know about time constraint for
each query sender or demands for accuracy on those answers.
Same issues are on the use of destructive query optimization (i.e.,
approximate the result of query but no guarantee of the exact re-
sult).

There are some query rewriting approaches to improve the
quality of queries [3], [5], [6]. Also, there are some heuristic
techniques to approximate inference-enabled queries by modify-
ing some hotspots in the query that prevent faster execution [19].
However, since those hotspots are also dependent on their indi-
vidual ontologies, those query modifications should take into ac-
count both the query-structure and characteristics of the ontolo-
gies used.

3. Our Approach

3.1 Outline and System Architecture
If a query seems not to be a time-consuming one, the endpoint
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Fig. 1 Architecture of Front-end EP.

executes the query. If the query execution is classified as time-
consuming, the endpoint may have an option to reject the execu-
tion of the query or transform that query into an optimized one.
To implement such behaviors in an endpoint, some extensions
should be provided to allow a notification to the client that the re-
ceived query has been transformed into another one, or the query
has been rejected due to a heavy-load condition.

To realize the idea, we are implementing a preliminary sys-
tem to classify whether a query execution is time-consuming or
not, rewriting the query to a lighter-weight one, and extending the
protocol to notify the rejection of the query, the applied query-
transformation for the query, and so on. We applied a pattern-
based heuristic query rewriting technique that, for example, sub-
stitutes some named classes to subsets of their potential classes
that are derived by the inference. Our prototype system has a
unique proxy module called “Front-end EP” between the client
and the endpoint (called “Back-end EP” in this paper). Figure 1
shows a brief overview of the query execution process mediated
by a Front-end EP [19].

First, a client prepares a query for retrieving LOD. Then, the
query prepared by the client is sent to the Front-end EP instead
of its primary Back-end EP. Here, the Front-end EP predicts the
cost for query execution. If the Front-end EP judges the received
query be a heavy query, the Front-end EP can reject the query or
run an optimized one based on the specified policies.

When the Front-end EP optimizes the submitted heavy query,
an optimization process is applied and an optimized query is sent
to the Back-end EP. Then the Back-end EP executes the received
query optimized by the Front-end EP and returns the answer to
the Front-end EP. After that, the Front-end EP sends the answer
received from the Back-end EP to the client. When the query-
optimization process has been applied, the optimized query may
not return the exactly equivalent result to the one from the origi-
nal query. Here, an issue is how the client knows that the client’s
original query is rewritten by the optimization process. To realize
this mechanism, we re-used some related HTTP response codes
to keep consistency in the protocol. However, to work with this
extended protocol, a client should support this extension. In this
paper, we omit further details about this protocol extension due
to making much focus on query rewriting mechanism itself.

3.2 Query Classification
The aim of classifying queries is to classify whether a SPARQL

query execution is time-consuming or not. The classifier is
implemented based on machine learning implementations (i.e.,
Weka [8], in this case). The classifier is placed at the front-end
EP.

The classifier predicts whether or not the execution of the given
query requires a time that is longer than the threshold set in ad-
vance. The Front-end EP extracts attributes as input objects from
a query sent from client. The classifier classifies the query as
time-consuming or non-time-consuming one from extracted at-
tributes.

The classifier is built based on training data generated from
records of queries and their execution time. Here, we prepared
an attribute, “whether the query execution is time-consuming or
not,” as a desired output value. Other attribute values (e.g., the
number of each class URIs and what first appeared class URI is)
are extracted from records of queries as input objects.

If the input query seems to be time-consuming, the query will
not be executed as is, and a notification will be sent to the client
to notify that the query execution has been rejected or the query is
going to be rewritten into a cost friendly query and the client can
resubmit the query rewritten by the Front-end EP when the client
accepts it. If the input query seems not to be time-consuming, the
query will be executed as it is.

We used Weka [8] for the implementation of machine learn-
ing algorithms. On the classifier implemented in the Front-end
EP, several learning algorithms such as (e.g., bagged J48, boosted
J48, support vector machine, etc.) are available for use, and they
can be configured on each Front-end EP.

3.3 GA-based Query Rewriting
It is demanded to get a rewriting rule that could be applied to

some sort of queries generically, rather than that can only be ap-
plied to a particular query. The reason is that, when those rewrit-
ing rules cannot be applied to a specific query, the Front-end EP
executes each different heavy query on each time to get results for
generating query rewriting rules for it. This might be even worse
to execute such queries as is. Although it is possible to reduce
such an overhead by caching pair of a query and an optimized
query, it still makes a cost for optimization when each query is
executed at a first time. Furthermore, this approach cannot be
applied to a case that an original query was too heavy to be ex-
ecuted so that it is difficult to run the optimization process itself.
To solve those issues, we prepared a GA-based heuristic query-
rewriting-rule generation engine that can produce heuristic rules
to optimize some heavy queries that have never been executed
yet.

For generating heuristic query rewriting rules, each individual
in the GA-based engine represents a set of possible query mod-
ification operators (i.e., rules), and then the engine applies indi-
viduals to some test queries. Individuals are evaluated by fitness
values obtained by executing the rewritten queries *4. A ‘then’
part of each query rewriting rule is constructed with heuristic op-

*4 We execute the queries just once and memoize those values. When they
are executed twice ore more, the memoized values are used to avoid fur-
ther computation cost of executions.
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select ?x where {

{?x rdf:type <http://linklings#ConferenceSession>}

UNION

{?x rdf:type <http://linklings#Administrator>}

}

Fig. 2 Target query A.

select ?x where {

{?x rdf:type <http://linklings#Administrator>}

UNION

{?x rdf:type <http://linklings#ConferenceSession>}

}

Fig. 3 An approximated query.

select ?x where {

{?x rdf:type <http://linklings#ConferenceSession>}

UNION

{?x rdf:type <http://linklings#AdminRegistered>}

}

Fig. 4 Target query B.

erations such as “change the n-th class appeared in the query *5

to its superclass,” “change the n-th class to its randomly selected
subclass,” “swap left and right sides of UNION operator,” and so
on. Notice that, those may include some operations that do not
guarantee to produce the same result as the original query gen-
erated. Therefore, we used the term ‘approximate’ rather than
‘optimize’ for applying those heuristic rules. Furthermore, some-
times some operations may not be applied to a specific query. For
example, consider this scenario. At first, we applied an operation
“change the n-th class appeared in the query to another class at
random” to a specific query, it could be work well some times.
However, when there is no “n-th class appeared in the query,” the
operation could not be applied.

A more detailed description about how our approach works is
following. Figure 2 shows a target query for generating a query
rewriting rules. We may obtain an approximated query shown in
Fig. 3 and a query rewriting rule applied here is: “swap the first
class description and second class description.” Our GA-based
approach aims to produce the query rewriting rules that will pro-
duce the query shown in Fig. 3 from the original query shown in
Fig. 2. Here, this query rewriting rule can be applied to other sim-
ilar queries. For example, we consider the case that we want to
approximate a query shown in Fig. 4. This query has the same
structure of the query shown in Fig. 2. We will get an approxi-
mated query by applying the query rewriting rule that we previ-
ously got by approximating the query shown in Fig. 2. Since the
rule used here does not see the semantic structure of the target
queries, it can be applied to the queries which do not have the ex-
actly same structure of the original query, such as shown in Fig. 5.
This query has similar structure to the query shown in Fig. 2. We
will get an approximated query by applying the query rewriting
rule that we previously got by approximating the query shown in
Fig. 2. Unfortunately, this rule cannot be applied to some queries,

*5 In this case, the rule does not see the entire structure of the query but
just see the query lexically. The n-th class means the n-th appeared to-
ken which denotes a class name when a one-path parser is applied to the
query.

select ?x where {

{?x rdf:type <http://linklings#ConferenceSession>}

UNION

{?x rdf:type <http://linklings#Administrator>}

UNION

{?x rdf:type <http://linklings#Person>}

}

Fig. 5 Target query C.

select ?x where {

?x rdf:type <http://linklings#ConferenceSession>

}

Fig. 6 Target query D.

such as shown in Fig. 6. Here, we can not obtain an approximated
query by applying the query rewriting rule because in this query
a description of a class name appears only once.

Here let, “swap the first class description and second class de-
scription” be rule 1, another rewriting rule, “change the n-th class
appeared in the query to its superclass” be rule 2, our approach
generates a rule: “First try to apply rule 1 and if it can not be
applied, try to apply rule 2” for wider applicability of generated
rewriting rules.

4. Experimental Analysis

4.1 Baseline Inference Performance
As a first step of our evaluation, we conducted a set of ex-

periments to know a potential benefit on speed optimizations for
query executions by applying our query rewriting approach.

In the preliminary experiments, we used the dataset used in
the conference track on Ontology Alignment Evaluation Initiative
2013 (OAEI 2013). Here we used Linklings ontology from the
OAEI dataset in the preliminary experiment. To prepare datasets
to evaluate the performance sensitivity of ontology-level simpli-
fication techniques, we reduced Linklings ontology by cutting
several relational descriptions and added 10 instances for each
named classes by using protégé (v4.3) *6.

As an experimental environment we set up a SPARQL end-
point using Joseki (v3.4.4) in conjunction with server-side Pel-
let [17] reasoner to enable OWL-level inference capability on the
endpoint.

We used an Intel Core 2 Duo 2.6 GHz MacBookPro, with 6 GB
667 MHz DDR2 SDRAM dedicated to the Java Virtual Machine
(JVM v1.7) to run the endpoint. The system runs on OS X 10.8.5.

Here, we need to consider a caching effect, in other words, ma-
terializing [4] the inference results to be reused for later queries
on the query processing at the endpoint-side. The first time execu-
tion performance is calculated from the sum of 100 times of query
execution and the sum of 200 times of query execution from the
first time.

Figure 7 shows the result of average performance on each
query to get the specified class instances. Here, we can
see that the query to get instances of class <http://linklings#
ConferenceSession> is time-consuming in spite of the query to
get instances of superclass <http://linklings#Session> is not so

*6 http://protege.stanford.edu/
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Fig. 7 Baseline query execution performance (average).

Fig. 8 Baseline query execution performance (initial execution).

time-consuming. This observation shows the potential appli-
cability of our query rewriting approach. In this case, when
we assume <http://example#ConferenceSessionName> is mostly
equal to data property whose domain is ConferenceSession, we
can make a rewriting suggestion of the alternate query getting the
instances of <http://linklings#ConferenceSession> as follows:

SELECT ?x WHERE {

?x rdf:type <http://linklings#ConferenceSession> .

}

to
SELECT ?x WHERE {

?x rdf:type <http://linklings#Session> .

?x <http://example#ConferenceSessionName> ?y

}

Figure 8 shows the required time for the first time of query
execution measured by the above way.

Here, we can see that when we consider a case without caching
effect, a number of classes could also be time-consuming.

4.2 Query Classification Performance
The evaluation data set was generated by queries getting the

instances of a named class in the Linklings ontology. Each query
gets the instance of one named class. We prepared these queries
to cover all the named class to be retrieved. We also prepared
queries to join instances of two named classes. In these queries,
orders of getting instances of each class are taken into account.
For example a query:

Table 1 Classification performance on our approach (leave-one-out cross
validation).

Classifier Recall Precision F-Measure
C4.5 0.895 0.896 0.896

Bagged C4.5 0.959 0.977 0.964
Boosted C4.5 0.999 0.999 0.999

SELECT ?x WHERE {

{?x rdf:type <http://linklings#Submission> }

UNION

{?x rdf:type <http://linklings#Administrator>}

}

is treated as not identical to the following query:

SELECT ?x WHERE {

{?x rdf:type <http://linklings#Administrator> }

UNION

{?x rdf:type <http://linklings#Submission>}

}

In this experiment, as the attributes of the queries, we just used
two simple heuristic functions. One is just counting-up the num-
ber of classnames in the queries and the other is obtaining first-
appearing classnames and encoding it to a value.

We measured average elapsed time to execute these queries 100
times for light queries and 10 times for some quite heavy queries.
Here, we treat queries whose execution times exceed 200 ms as
heavy queries *7.

Table 1 shows the result of our query classifier performance,
based on the dataset that queries to the instances used in previous
experiments. Here, we conducted the experiment for total 1,369
queries *8 on leave-one-out cross validation. We used two classi-
fiers: Bagged C4.5, and Boosted C4.5, implemented in Weka [8],
with default parameters. Also we added C4.5 for a reference clas-
sifier to know the baseline difficulty of the problem. Here, we
can see that this performance is very good, especially on Boosted
C4.5. On Bagged C4.5, all ‘heavy’ queries were correctly classi-
fied but 54 non-heavy queries were wrongly classified as ‘heavy’
ones. On Boosted C4.5, all non-heavy queries were correctly
classified but two ‘heavy’ queries were wrongly classified as non-
heavy ones. Note that, in this experiment we did not consider any
noise caused by the variance of loads on the endpoints. Further
detailed evaluations considering those realistic conditions are our
future work.

4.3 Query Rewriting Performance
Here, we applied a very conventional GA [15] for generating

good query rewriting rules. We simply encode some heuristic
rules, such as, just replace the 1st appeared class to its superclass,
and so on. The Front-end EP stores some time-consuming queries
and their results. Then the GA is applied to those data. Here,
we assume that we could have the correct result for calculating
the fitness values for the individuals in GA. After generating the
heuristic rules by GA the rules could be applied to the queries that
may not return their results due to the timeout of their executions.

*7 We assume that this threshold value can be decided statically as the pol-
icy of operating an endpoint to protect it from denial of services.

*8 In these queries, 74 were marked as ‘heavy’ queries.
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Table 2 Performance of GA-based query approximation (Case 1).

Original GA based Optimal
Execution Time 4,760 ms 2 ms 2 ms

F-measure of results – 0.93 1

Table 3 Performance of GA-based query approximation (Case 2).

Original GA based Optimal
Execution Time 1,991 ms 12.5 ms 10.4 ms

F-measure of results – 0.87 1

We calculated an average F-measure of queries rewritten in ac-
cordance with a rewriting rule generated by our GA approach. We
also measured average times of query execution about an original
query and rewritten queries. A query prepared for this evalua-
tion is one of queries that we manually found as heavy queries.
Since we manually found an ideal query rewriting rule for this
query, we are able to show an ideal F-measure and query execu-
tion time. We show them in Tables 2 and 3. In this evaluation, we
used 50 individuals, set inversion rate 0.2, mutation rate 0.15 (to
superclass), 0.15 (to subclass), and 0.05 (random). Average gen-
erations was 35.3. According to Tables 2 and 3, our GA approach
can find an ideal query rewriting rule in most cases. Tables 2 and
3 also show there is a possibility that GA approach can find a
query rewriting rule generating a query that can execute within
short time compared with an original query and have a high F-
measure.

Fitness values for individuals are defined as

Vq = αFq + β
TQ − Tq

TQ
such that α + β = 1

Here, Vq is a fitness value of written query q. Fq is a F-measure.
TQ is an execution time of original query Q. Tq is an execution
time of rewritten query.

The following is an overview of our GA-based algorithm:

1: function GA-Optimizer(Q,GAParam)

2: CAns:= getCorrectAnswers(Q);

3: N := GAParam.topN

4: Individuals:= initInvividuals(Q,GAParam);

5: Evals:= getFitnessValues(Individuals,Q,CAns)

6: while stopping condition is false

7: Individuals = topN(Individuals, Evals,N)

8: Individuals = applyGeneticOPs(Individuals,GAParam)

9: Evals:= getFitnessValues(Individuals,Q,CAns)

10: end while
11: return topN(Individuals, 1)

Here, the function GA-optimizer has two arguments, Q that
contains the sample queries, and GAParam that specifies GA pa-
rameters as we described. The function gathers correct answers of
Q as well as their execution time and stores them into CAns. The
CAns is used to evaluate individuals by using the fitness function
that we described above. Then, Genetic operators are applied to
the selected individuals and continue this process while stopping
condition is false. Then the function returns the best one.

5. Discussion

We implemented our Front-end EP which behaves as a proxy

Fig. 9 Overview of implemented Front-end EP.

Fig. 10 Overview of our system.

endpoint. Figure 9 shows an overview of running the Front-end
EP. Since it behaves as a proxy endpoint, it can be placed to be
run on both a client-side and a server-side environment.

We also implemented a preliminary prototype client-system
that has some abilities to support the coding process of SPARQL
queries to make faster execution of queries, as well as helping
developers who do not know much about the stored LOD on the
endpoint. Figure 10 shows an overview of our system.

We implemented an approach which uses an advance investi-
gation to identify hotspots that are limiting the speed of query ex-
ecutions, as well as using machine learning techniques. The mod-
ule consists of several sub modules such as endpoint-investigator,
query classifier, etc.

Identifying hotspots often requires the actual loads of end-
points, as well as the structural hotspots existed in the ontology. A
possible approach, for example, is downloading the ontology and
identifying hotspots by analyzing the downloaded ontology if the
ontology is not so large and bulk-download of the whole ontology
is allowed. Based on such possible approaches, we implemented
a client-system to support developers to prepare better SPARQL
queries considering their reasoning times on the server-side.

The prediction method implemented on our system uses some
of characteristic attributes of the queries that are helpful to pre-
dict their query execution time to be used on machine learning al-
gorithms. However, avoiding time-consuming query executions
by a client-side has some limitations. For example, some peo-
ple may not care about the loads of an endpoint and send time-
consuming queries as is, even when they knew it. Even when an
endpoint receives only a limited number of such queries, the end-
point may not be able to respond to even simple queries. There-
fore, as shown in Fig. 11, our Front-end EP is also designed to
be used to cover multiple Back-end EPs which might share some
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Fig. 11 Basic query processing procedure.

computational resources.

6. Conclusion

In this paper, we presented a preliminary idea and concept on
building SPARQL endpoints having a mechanism to automati-
cally decrease or reject unwanted inference computation by using
machine learning and dynamic query rewriting techniques. Our
preliminary experiment showed a potential benefit on speed op-
timizations of query executions by applying our query rewriting
approach. We also presented a preliminary prototype system that
distinguishes whether a query execution is expected to be time-
consuming or not by using machine learning techniques at the
endpoint side.

Future works include gathering and using various queries and
its resulting attributes among multiple endpoints and clients. That
involves issues on protecting anonymity to protect privacy of
clients and the efficiency of such query gathering process itself.
The one of approach to cope with that issue is separating results
of machine learning from training data that are queries and their
execution time. Front-end EP only uses results to predict the re-
ceived query’s execution time.

Reducing overheads on the Front-end EP is also one of future
work. It might require a further analysis the actual computational
costs to classify whether a SPARQL query execution is time-
consuming or not based on different machine learning techniques,
and how the query rewriting method reduces costs by keeping its
query rewriting performance.

From the SPARQL 1.1 specification [18], a query has been
allowed to include sub-queries to another endpoints, called
Federated-query. Although our approach could be extended to
accept such Federated Queries, it makes each query very com-
plicated so that it might be difficult to directly optimize or ap-
proximate queries on an Front-end EP. When typical each sub
query is very simple, we could apply our approach to those sub
queries [20]. However, although we have done some discussions
about evaluations [21], currently our evaluation has been done
on rather simple queries. Therefore, the applicability of our ap-
proach to such complex queries should additionally be evaluated.
Giving evaluation for further complex and complicated condi-
tions is one of our future works. Also, even when such sub queries
could be intercepted and processed by the Front-end EP for fur-
ther optimization or approximation, it may spend a certain com-

putation cost on each interception. Presenting an architecture and
a method to reduce such costs is also our future work.
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