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Abstract: The performance of different types of weighted citation networks for detecting emerging research fronts
was investigated by a comparative study in the existing work. The citation networks are constructed and then divided
into clusters to detect the research front. Additionally, some measures to weighted citations like difference in publica-
tion years between citing and cited papers and similarities of keywords between them, which are expected to be able to
effectively detect emerging research fronts, were applied. However, the functions of deciding the edge’s weight in the
citation networks are decided based on the experiments. For deciding the effective weight’s functions automatically
depending on the characteristics of the dataset, a learning method is important. In this paper, we propose the novel
learning method based on the Neural Networks for deciding the edge’s weights for the citation networks. We have
been evaluating our proposed method in three research domains including Gallium nitride, Complex Networks, and
Nano-carbon. We demonstrate that our proposed method has the best performance of each approach by using the
following measures of extracted research fronts: visibility, speed, and topological and field relevance than the existing
methods.
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1. Introduction

Over the past several decades, the number of academic papers
has increased exponentially [1], and each academic area has be-
come specialized and segmented. Davidson et al. [2] describe the
situation as follows: “For most of history, mankind has suffered
from a shortage of information. Now, in just the infancy of the
electronic age, we have begun to suffer from information excess.”
Therefore, it is hard for researchers to perceive their specialized
fields as a whole, and segmentation occurs simultaneously with
specialization, which brings a severe problem and also opportu-
nity to find crucial knowledge by integrating different domains.
Naturally, it is hard for researchers and managers to detect a re-
search front in the early stages by human effort only. There is
a strong need for computational tools of science mapping and
emerging topic detection. Previous studies have established ef-
fective algorithms for creating academic landscapes and for de-
tecting emerging topics for certain research fronts.

To support the detection of research fronts and visualization
of academic landscapes, methods of science mapping by cita-
tion analysis have been proposed and developed [3], [4], [5]. Re-
searchers have also focused on clustering and visualization. For
example, Leydesdorff [6] made a large-scale investigation of a
set of academic papers. Not only creating static academic land-
scapes, topological and semantic analysis of a citation network
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also helps us to focus on significant movements in research fronts
and emerging research fields in a broad context [7]. By analyzing
the relationships between the academic research and the social
problems, the important path for solving the social problems can
be detected [8]. The other approach is to detect emerging clusters
of densely connected papers. Price et al. [1] employed the con-
cept of a research front, that is, a research domain under develop-
ment where papers cite each other densely. Scientists tend to cite
the most recently published articles in their papers; therefore, the
network belonging in a research front becomes very tight. In a
given field, a research front refers to the body of articles that sci-
entists actively cite. Researchers have been studying quantitative
methods that can be used to identify and track a research front
as it evolves over time. Small and Griffith [9] showed that ac-
tivated scientific specialists generate clusters of co-cited papers.
Braam et al. [10] also investigated the topics discussed in co-cited
clusters by analyzing the frequency of indexing terms and classi-
fication codes occurring in these publications.

Fujita et al. [11] conducted the comparative studies for show-
ing the characteristics of paper-paper weighted citation networks
created by different citation patterns with different weight types.
In particular, average publication year, similarities of citation in-
formation and similarities of keywords are effective information
attributes for detecting research fronts. By introducing them as
weights of links to the citation network, it is expected to detect re-
search fronts compared with the non-weighted citation networks
effectively. However, the weighting functions of edges are de-
cided based on the human’s knowledge in this existing work. In
other words, the functions of deciding the edge’s weight in the
citation networks are decided based on the experiments in the
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existing work. For deciding the effective weight’s functions auto-
matically depending on the characteristics of the dataset, a learn-
ing method is important. In addition, the combinations between
four kinds of the weights proposed in the existing works (Fre-
quency of citations, Publication years, Reference Similarity and
Research Field Similarity) are effective for detecting the research
fronts. Therefore, the learning technique is necessary to find the
optimal combinations between four kinds of the weights.

In this paper, we propose a novel learning method based on
the Neural Networks for deciding the edge’s weights for the cita-
tion networks. By introducing the Neural Networks model to the
weighted citation networks, the optimal combinations between
four kinds of the weights (Frequency of citations, Publication
years, Reference Similarity and Research Field Similarity) can
be achieved. We also evaluate the performance of each method
in detecting a research front by comparing visibility, speed, and
topological and research field relevance of clustering. We eval-
uate the proposed method with the object of the best method for
detecting the research front is the one that can detect a large, tex-
tually and topologically uniform cluster of papers at an earlier
stage compared with the method without the learning. By con-
sidering the differences, we discuss which type of weight and ci-
tation patterns is most suitable for detecting emerging knowledge
domains from diverse facets of evaluation.

The remainder of this paper is organized as follows. First, we
give an overview of research domains analyzed in our compar-
ative case study. Next, we describe the methodology based on
the network clustering and network measures. Then, we present
and discuss the performance of the types of weighted citation net-
work for detecting emerging research fronts. Finally, we present
our overall conclusions.

2. Research Domains and Core Papers

This paper studies the following three research domains. Gal-
lium nitride (GaN) is widely recognized as a recent prominent
innovation in the fields of applied physics and material science.
Complex network (CNW) analysis is also recognized as pioneer-
ing a new research field after the leading works by physicists has
received attention. Nano-carbon (carbon nanotube [CNT]) is well
known as a recent prominent innovation in the fields of applied
physics and material science. They are typical examples of recent
remarkable innovations having somewhat different characteristics
(e.g., breakthrough of the rapid development, material or model-
based innovation). These three domains are the same with those
selected in our previous studies [11], [12].

Core Papers are research papers that receive citations soon af-
ter publication, relative to other papers of the same field and age.
Generally, papers reach their citation peak two, three, or even four
years after publication. However, core papers are recognized very
soon after publication, reflected by rapid and significant numbers
of citations [13]. These papers are often key researches in their
fields. In this paper, core papers are defined as highly cited papers
published in the rapid-growth years expected for the review pa-
pers using Web of Science, which is a Web-based user interface of
the Institute for Scientific Information’s (ISI) citation databases.
Rapid-growth years in each domain are as follows: Gallium ni-

tride, 1991-1994; CNW, 1998-2001; CNT, 1990-1994. A list of
core papers in each domain, which opened a new research fron-
tier, is shown as follows: In GaN, we define the core papers as
(A-1) NAKAMURA S, 1991, JPN J APPL PHYS PT 2, V30,
P1705 (Nakamura, 1991) and (A-2) NAKAMURA S, 1992, JPN
J APPL PHYS PT 1, V31, P1258 (Nakamura 1992). In CNW, we
define the core paper as (B-1) Watts DJ, 1998, NATURE, V393,
P440 (Watts and Strogatz, 1998) and (B-2) Barabasi AL, 1999,
SCIENCE, V286, P509 (Barabasi and Albert, 1999). In CNT, we
define the core paper as (C) IIJIMA, S, 1991, NATURE, V354,
P56 (Iijima, 1991).

3. Basic Methodology

3.1 Data Collection
First, we collected citation data from the Science Citation In-

dex (SCI) and the Social Sciences Citation Index (SSCI), which
maintains citation databases covering thousands of academic
journals and offers bibliographic database services, because SCI
and SSCI are two of the best sources for citation data. We used
the Web of Science, which is a Web-based user interface of the
ISI’s citation databases. We searched the papers using the follow-
ing terms as queries: “GaN OR gallium nitride” for the first do-
main, “social networks OR social network OR random networks

OR random network OR small-world OR scale-free OR complex

networks” for the second domain, and “carbon AND (nano* OR

micro*)” for the third domain.
In this paper, queries were selected according to the follow-

ing two steps: (a) the representative keyword, such as gallium
nitride and social network, is selected and (b) if the definition of
its domain is unclear, more keywords, such as random network,
small-world, scale-free, and complex networks, were added. The
second step is called as query expansion [14]. Our intention in
using so many terms is to retain wide coverage of citation data
in order to avoid omission of core papers. For example, we se-
lected the seven search queries in CNW by the query expansion.
After selecting the seven queries, we evaluated that these queries
retain wide coverage of citation data with avoiding omission of
core papers and stopped expanding the queries to eight or more.

The queries for each dataset explained in the previous para-
graph are the same as those in the previous paper [11], [12], but
retrieved data is not exactly the same because of the data expan-
sion of bibliographic records registered in ISI’s databases.

3.2 Creating Weighted Citation Networks
After collecting the data including the published year, title,

author(s), abstract, author keywords, and citation based on the
queries, we create weighted citation networks. We create cita-
tion networks by regarding papers as nodes and citations between
papers directly as edges.

We define the citation graphs G = (N, E, w) comprising a set N

of nodes, with each node Ni representing a paper pi and a set
E of edges, with each edge Ei j directed from the citing node
Ni to the cited node Nj, or from the citing node Nj to the cited
node Ni. Ei j means the number of citations between pi and p j.
Usually, the number of direct citations is one; however, the num-
ber of co-citations and bibliographic-couplings is more than one.
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In other words, we will build the citation networks defined as a
weighted non-directed graph, with each paper representing a node
and three patterns of citations representing the edges in the graph.
Each node (Ni) has several attributes: paper title, author(s), year
of publication (yi) and journal name, reference information (Ri),
and Research Field (Fi). Research Field is a set by the authors
when they write the papers.

The network is created in each year, enabling a time-series
analysis of citation networks. When we create citation networks
on year y, we use the data of papers published from 1970 to y. In
this paper, only the largest-graph component is used because this
paper focuses on the relationship among papers, and we should
therefore eliminate papers that have no link with the largest-graph
component.

The definitions of these weights are as follows:
(i) Frequency of citations: w(Ei j) = Ei j

(ii) Publication years: w(Ei j) = {(yi + y j)/2 − 1970} i f (yi +

y j)/2 < 1970, w(Ei j) = 0
(iii) Reference Similarity:
w(Ei j) = Jaccard(Ri,Rj) + 1

(iv) Research Field Similarity:
w(Ei j) = Jaccard(Fi, F j) + 1

*Jaccard(x, y) = x ∩ y/x ∪ y (Jaccard similarity is defined by
Jaccard [15]).

By introducing four types of weights based on the attributes,
we can detect the research fronts reflecting the important at-
tributes, such as new research fronts growing rapidly.

3.3 Topological Clustering
After that, we divided the papers in the network into clusters.

For dividing into clusters, a fast-modularity clustering proposed
by Newman [16] is applied in order to discover tightly knit clus-
ters with a high density of within-cluster edges, which enables
the creation of a weighted graph consisting of a large number of
nodes. The algorithm is based on the modularity Q, which is de-
fined as follows:

Q =
∑

s

(wss − a2
s) = Tr(w) − ||w||2 (1)

where wst is the possibility of the weights of edges in the net-
work that connected nodes in cluster s to those in cluster t, and
ss =
∑

t wst. In the first part of the equation, Tr(w) represents the
sum of density of weights of edges within each cluster. A high
value of this parameter means that nodes are densely connected
within each cluster. The second part of the equation, ||w||, repre-
sents the sum of density of weights of edges within each cluster
when all edges are placed randomly.

In Newman’s method, edges that connect clusters sparsely and
extract clusters within which nodes are connected densely are cut.
A high value of Q represents good community division where
only dense edges remain within clusters and sparse edges be-
tween clusters are cut off, and Q = 0 means that a particular
division gives no more within-community edges than would be
expected by random chance. Then, the algorithm to optimize Q

over all possible divisions to find the best structure of clusters is
as follows. Starting with a state in which each node is the only

member of one of the n clusters, we repeatedly join clusters to-
gether in pairs, choosing at each step the joining that results in the
greatest increase in Q. The change in Q upon joining two clusters
is given by

ΔQ = wst + wts − 2asat (2)

In this paper, we stop joining when ΔQ < 0.

3.4 Topological Measures for Evaluating Citation Networks
For comparing the tendency of four types of weighted citation

networks, visibility, speed, and topological and field relevance are
calculated after clustering for each cluster to which these selected
core papers belong. In this paper, we assume that the important
research front is detected as a larger and more relevant cluster at
an earlier stage.

When the normalized size of the cluster is larger, we can more
easily distinguish the existence of emerging clusters from other
clusters. When the average publication year of the cluster is
younger, it means that the cluster can be speedily detected at its
emerging stage. If there is a time lag during detection, the lack
of methodologies’ speed prevents us from finding the research
fronts in the emerging stage. In other words, the lack of speed of
emerging detections could fail to grow the seeds of innovations in
the industry. Therefore, we consider the speed as the one of the
most important measure for evaluating the methodologies. If the
cluster is denser, we can check whether clustering is successful
for dividing into clusters in the citation networks. If the cluster is
more textually relevant, we can detect the textually similar clus-
ters.

The size of a cluster is defined as normalized size to the relative
in order to compare certain types of weights:

|Ni ∈ C|/|N| × 100 (3)

where N is the total number of entire nodes N and |Ni ∈ C| is
the number of nodes in cluster C.

The density is defined as follows:

|Ei ∈ C|/|Ni∈C|C2 (4)

where |Ei ∈ C| is the number of edges, both of the nodes are in
cluster C, and |N|C2 is the number of combinations from N to 2.

The research field similarity between clusters are defined as
follows:
∑

i∈C

∑

j∈C(i� j)

|Fi ∩ F j|/|Fi ∪ F j| (5)

where |Fi ∩ F j| is the number of overlapped fields between Fi

and F j, and |Fi ∪ F j| is the number of fields in Fi or F j.
In addition, the average of the publication year of all papers is

defined as follows:
∑

i∈C
yi/|C| (6)

4. Learning Method for Weighted Citation
Network Analysis Using Neural Network
Model

The proposed approach is aimed at finding the most suitable

c© 2015 Information Processing Society of Japan 755



Journal of Information Processing Vol.23 No.6 753–758 (Nov. 2015)

Fig. 1 Neural Network Model.

Fig. 2 Weighted Citation Network Analysis with Learning.

weighting function of the citation network’s edges by combining
a weighting function defined in the previous section. After that,
we show the detailed descriptions of the proposed approach.
Neural Network Model

Figure 1 shows the Neural Network Model proposed in this
paper. The Neural Network has the input layer, the middle layers
and the output layer. The middle layer exists between the input
layer and the output layer. Each middle layer has nodes with at-
tributes and functions for linking the input and output layers. By
changing the function for combining the values from the input
layer, the values to the output layer become different. In other
words, the function for combining the values from the input layer
can be improved by repeating the procedures.

In our proposed model, we consider the four weighting func-
tions for calculating the edges of citation networks written in the
previous section as the nodes in the input layer. In the middle
layer, the combination functions among the four weighting func-
tions for calculating the edges of citation networks are regarded
as the nodes.

X = (x0, . . . , x3) means the weighting functions of the edges of
the citation network. Ω means the functions for combining every
input values (X). I = (i0, . . . , iM) means the outputs by calculat-
ing the function Ω when the number of the nodes in the middle
layer is M. We can get the I′ = (i′0, . . . , i

′
M) by generating the

weighted citation networks using I, and conducting the cluster-
ing. Finally, we get the size, year, similarity, and density written
in the previous section, and select a node with highest evaluation
value, which considers the size, year, similarity, and density.

Figure 2 shows the flow of the proposed method with learning.
One of the big difference between the existing work [11] and our
proposed method is the step of learning and updating the weights

based on the evaluation metrics. By repeating these procedures
until finding the optimal combinations of the four weighting func-
tions of deciding the weights of edges of the citation network, we
can find the research fronts more effective. After that, we show
the detail learning method using the Neural Network.
Weighting Functions between Initial Layer and Middle Layer

In the middle layer, the weights of the citations are calculated
using the functions between the initial layer and the middle layer.
In our method, the initial values of the functions for combining
every input values are set as 0 or 1, randomly. The renewed func-
tion between the initial layer and the middle layer is defined as
the Eq. (7).

in =
∑

j∈I
x jω jn (7)

in means the nth node in the middle layer. In the Eq. (7), in
is calculated using the weighted summing. i0, . . . , iM , which is
the output from the functions between the input and middle layer
have been normalized using the the highest and lowest limits in
the renewing step.
Updating the functions in the middle layer

After defining the weighting functions in the middle layer, the
cluster with the core paper is selected by generating the weighted
citation networks and conducting the clustering. The clusters
with the core paper generated by the functions are evaluated based
on the size, year, density, and field similarity written in the previ-
ous section. The detailed procedures of updating the function for
combining every input values are as follows:

We assume that �ω0 = (ω00, ω10, ω20, ω30), . . . , �ω3 =

(ω03, ω13, ω23, ω33) (�ω0, . . . , �ω3 ∈ Ω). The updating vector for
the function for combining every input values is �u.
( 1 ) The highest nodes of the middle layer based on each topo-

logical measure are selected. The set of the four selected
nodes are represented as S elect. The elements of S elect are
the nodes which are the highest values in the four topolog-
ical measures (size, year, density, similarity). For example,
when the i0 is the highest in the size and the year measures,
i2 is the highest in the density measure, and i3 is the highest
in the similarity measure, S elect = (i0, i0, i2, i3).

( 2 ) �u for the function for combining every input values is de-
fined as the average-sum of the functions for combining
every input values which outputs are S elect. For exam-
ple, �u is calculated as follows when S elect = (i0, i0, i2, i3):
�u = (�ω0 + �ω0 + �ω2 + �ω3)/4.

( 3 ) �ω(t)
i is updated to �ω(t+1)

i by the following function: �ω(t+1)
k =

(�ω(t)
k + �u)/2

These procedures are repeated until the conditions of stopping
learning. After the one-time repeating, the best weighting func-
tions of the edges of the citation networks are reserved for using
the step 1. In other words, the highest nodes of the middle layer
based on each topological measure are selected from I′ as imax.
Conditions of Ending the Learning Process

The conditions of ending the learning process are as follows:
( 1 ) The functions in the middle layer aren’t updated.
( 2 ) All patters of the functions in the middle layer are finished.

Usually, the learnin g is stopped when the functions in the mid-
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Table 1 Results of the topological measures and Qmax of each weighting function.

Research Field Core Paper Weighting function Qmax size year similarity density

Gallium nitride GaN-1 (i) 0.370599 9 1994.554 0.5625 0.0705
(ii) 0.379776 32 1989.545 0.6354 0.0146
(iii) 0.398590 28 1994.507 0.5926 0.0185
(iv) 0.383212 26 1993.321 0.6064 0.0175

(learning) 0.378652 30 1994.876 0.7590 0.0213
GaN-2 (i) 0.370599 26 1994.570 0.5819 0.0172

(ii) 0.379776 25 1994.496 0.6423 0.0178
(iii) 0.398590 28 1994.507 0.5926 0.0185
(iv) 0.383670 21 1994.919 0.6102 0.0236

(learning) 0.379593 29 1994.901 0.7690 0.0210
GaN-3 (i) 0.370599 31 1995.019 0.6269 0.0163

(ii) 0.379776 25 1994.496 0.6423 0.0178
(iii) 0.398590 21 1994.590 0.5879 0.0213
(iv) 0.383670 21 1994.919 0.6102 0.0236

(learning) 0.394264 31 1995.490 0.8910 0.0961

Complex Networks CN-1 (i) 0.814976 58 2000.484 0.6779 0.0074
(ii) 0.843881 59 2000.815 0.6640 0.0068
(iii) 0.858989 49 2000.929 0.6510 0.0081
(iv) 0.857758 47 2001.112 0.6405 0.0082

(learning) 0.851434 59 2001.095 0.7130 0.0082
CN-2 (i) 0.814976 58 2000.484 0.6779 0.0074

(ii) 0.843881 59 2000.815 0.6640 0.0068
(iii) 0.858989 49 2000.929 0.6510 0.0081
(iv) 0.857758 47 2001.112 0.6405 0.0082

(learning) 0.849351 52 2000.822 0.7020 0.0078

Carbon Nanotube Carb-1 (i) 0.856571 10 1993.812 0.7675 0.0159
(ii) 0.852119 10 1993.769 0.7706 0.0158
(iii) 0.854688 9 1993.885 0.7695 0.0168
(iv) 0.867004 9 1993.802 0.7800 0.0166

(learning) 0.856809 10 1993.882 0.6798 0.0166

dle layer aren’t updated because the updating functions lead to the
maximum point of each topological measure.

5. Experimental Results

In this experiment, we applied our proposed method to three
research fields (Gallium nitride, Complex network, and Carbon
Nanotube) to evaluate. We compared the Qmax and four topologi-
cal measures (cluster size, average publication year, field similar-
ity, density) among five types of the weighted citation networks.
The number of the nodes in the middle layer is four in this exper-
iment. As discussed in Sections 2 and 3, we have prepared the
datasets for those three domains and applied our method to them.

Table 1 shows the results of each weighting function and the
proposed approach. In Table 1, “(i)” means that the weighted
function of the citation network is decide by “(i) Frequency of
citations.” “(ii)” means that the weighted function of the citation
network is decide by “(ii) Publication years.” “(iii)” means that
the weighted function of the citation network is decide by “(iii)
Reference Similarity.” “(iv)” means that the weighted function of
the citation network is decide by “(iv) Research Field Similarity.”
“(learning)” means our proposed method.

By comparing the proposed learning method with the existing
weighted functions in each research field, our proposed method is
higher in the similarity, year, and density than the other weighted
functions in all core papers of the Gallium nitride field. In ad-
dition, our proposed method is higher in the size than the other
weighted functions in the Gallium nitride field expected for the
GaN-1. In the complex network field, the results of the compar-
isons between the learning method and others are almost same.
Especially, our learning method can detect the research fronts

clearly compared with other methods because the similarity and
the density are high in Gallium nitride and Carbon Nanotube.

On the other hand, the scores of our proposed learning method
aren’t the highest values than other methods in the Carbon Nan-
otube field. Our proposed method considers many kinds of the at-
tributes of paper, therefore, it tries to improve all measures when
there are trade-offs between the measures. However, this situation
is dependent on the characteristics of the dataset. Therefore, the
proposed learning method can improve for finding the research
fronts in several kinds of the datasets compared with the methods
without the learning.

6. Conclusion

This paper proposed the novel Neural Network Model for
defining the edge’s weights for the citation networks. By in-
troducing the Neural Network Model to the weighted citation
networks, the optimal combinations between four kinds of the
weights (Frequency of citations, Publication years, Reference
Similarity and Research Field Similarity) can be achieved. We
also evaluated the performance of each method in detecting a
research front by comparing visibility, speed, and topological
and research field relevance of clustering. Our proposed method
could detect the research fronts is the one that can detect a large,
textually and topologically uniform cluster of papers at an ear-
lier stage compared with the method without the learning in the
experiments.

Future works will address improvements of updating functions
in the neural network model. Our learning method sometimes
unspreads quickly despite that it isn’t optimal. The method for
solving this problem is to employ the random nature in updating
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the functions in the middle layer. Another important future work
is to address the temporal aspect of the analysis of a citation net-
work such as the evolution and emergence of new clusters and
their underlying knowledge domains using our proposed method.
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