
Electronic Preprint for Journal of Information Processing Vol.24 No.1

Regular Paper

Hybrid Numerical Solvers for Massively Parallel
Eigenvalue Computations and Their Benchmark with

Electronic Structure Calculations

Hiroto Imachi1,a) Takeo Hoshi1

Received: April 21, 2015, Accepted: May 26, 2015

Abstract: Optimally hybrid numerical solvers were constructed for massively parallel generalized eigenvalue prob-
lems (GEP). The strong scaling benchmark was carried out on the K computer and other supercomputers for electronic
structure calculation problems in the matrix sizes of M = 104 − 106 with up to 105 cores. The procedure of GEP is
decomposed into the two subprocedures of the reducer to the standard eigenvalue problem (SEP) and the solver of
SEP. A hybrid solver is constructed, when a routine is chosen for each subprocedure from the three parallel solver
libraries of ScaLAPACK, ELPA and EigenExa. The hybrid solvers with the two newer libraries, ELPA and EigenExa,
give better benchmark results than the conventional ScaLAPACK library. The detailed analysis on the results implies
that the reducer can be a bottleneck in next-generation (exa-scale) supercomputers, which provides guidance for future
research. The code was developed as a middleware and a mini-application and will appear online.

Keywords: massively parallel numerical library, generalized eigenvalue problem, electronic structure calculation,
ELPA, EigenExa, the K computer, mini-application

1. Introduction

Numerical linear algebraic solvers for large matrices have
strong needs among various applications with current and next-
generation supercomputers. Nowadays ScaLAPACK [1], [2] *1

is the de facto standard solver library for parallel computations,
but several routines give severe bottlenecks in the computational
speed with current massively parallel architectures. Novel solver
libraries were proposed so as to overcome the bottlenecks. Since
the performance of numerical routines varies significantly with
problems and architectures, the best performance is achieved,
when one constructs an optimal ‘hybrid’ among the libraries.

The concept of a hybrid solver is illustrated in Fig. 1. It is a nu-
merical middleware and has a unique data interface to real appli-
cations. One can choose the optimal workflow for each problem
without any programming effort.

The present paper focuses on dense-matrix solvers for general-
ized eigenvalue problems (GEPs) in the form of

Ayk = λkByk (1)

with the given M × M real-symmetric matrices of A and B.
The matrix B is positive definite. The eigenvalues {λk} and the
eigenvectors {yk} will be calculated. The computational cost is
O(M3) or is proportional to M3. The present hybrid solvers are
constructed among ScaLAPACK and the two newer libraries of
ELPA [3], [4], [5] *2, and EigenExa [6], [7], [8], [9]. The ELPA
and EigenExa libraries are written in Fortran and appeared in the

1 Tottori University, JST-CREST, Tottori 680–8552, Japan
a) D14T1001B@edu.tottori-u.ac.jp

Fig. 1 Concept of a hybrid solver; Structure of the program code (a) without
and (b) with hybrid solver or numerical middleware.

2000s for efficient massively parallel computations.
The present paper is organized as follows: Section 2 explains

the background of the electronic structure calculation. Section 3
describes the mathematical foundation. Sections 4 and 5 are de-
voted to the benchmark results and discussions, respectively. The
summary and future outlook appear in Section 6.

2. Background

2.1 Large-scale Electronic Structure Calculations
The GEP of Eq. (1) gives the mathematical foundation of elec-

tronic structure calculations or quantum mechanical calculations
of materials, in which an electron is treated as a quantum me-
chanical ‘wave’. The input matrix A or B of Eq. (1) is called a
Hamiltonian or an overlap matrix, respectively. An eigenvalue
of {λk} is the energy of one electron and an eigenvector of {yk}
specifies the wavefunction or the shape of an electronic ‘wave’.

*1 ScaLAPACK = Scalable Linear Algebra PACKage
*2 ELPA = Eigenvalue soLvers for Petascale Applications

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

Fig. 2 (a) The upper panel is a π-type electronic wavefunction in an
amorphous-like conjugated polymer (poly-((9,9) dioctyl fluorine)).
The lower panel shows the atomic structure (R≡C8H17) [10]. (b)
Strong scaling plot by ELSES for one-hundred-million-atoms calcu-
lations on the K computer [10], [11]. The calculated materials are a
nano-composite carbon solid (the upper line) and the amorphous-like
conjugated polymer (the lower line). The number of used processor
nodes are from P = 4,096 to 82,944 (full nodes of the K computer).

Figure 2 (a) shows an example of the wavefunction. A typical
number of the required eigenvalues is, at least, on the order of the
number of the electrons or the atoms in calculated materials. See
the ELPA paper [3] for a review, because ELPA was developed
under tight collaboration with the electronic structure calculation
society.

Here, our motivation is explained. The present authors
developed a large-scale quantum material simulator called
ELSES *3 [12], [13]. The theories are explained in Refs. [13], [14]
and the reference therein. The matrices are based on the real-
space atomic-orbital representation, and the matrix size M is
nearly proportional to the number of atoms N (M ∝ N). The
simulations mainly use novel ‘order-N’ linear-algebraic meth-
ods in which the computational cost is ‘order-N’ (O(N)) or
is proportional to the number of atoms N. Their mathemati-
cal foundation is sparse-matrix (Krylov-subspace) solvers. An
efficient massively parallel computation is found in Fig. 2, a
strong scaling benchmark on the K computer [10], [11] with
one hundred million atoms or one-hundred-nanometer scale ma-
terials. The simulated materials are a nano-composite carbon
solid with N = 103,219,200 or M = 412,876,800 [10] and an
amorphous-like conjugated polymer with N = 102,238,848 or
M = 230,776,128 [11].

The present dense-matrix solvers are complement to the order-
N solvers, because the order-n solvers give approximate solu-
tions, while the dense-matrix solvers give numerically exact ones
with a heavier (O(M3)) computational cost. The use of the two
methods will lead us to fruitful research. The exact solutions are
important, for example, when the system has many nearly degen-
erated eigen pairs and one would like to distinguish them. The
exact solutions are important also as reference data for the devel-
opment of fine approximate solvers.

The matrices of A and B in the present benchmark appear on
‘ELSES Matrix Library’ [15]. The Library is the collection of the
matrix data generated by ELSES for material simulations. The
benchmark was carried out with the data files of ‘NCCS430080’,
‘VCNT22500’ ‘VCNT90000’ and ‘VCNT1008000’ for the ma-
trix sizes of M = 22,500, M = 90,000, M = 430,080, M =

1,008,000, respectively. Files with the size of 0.5 GB or larger

*3 ELSES = Extra-Large-Scale Electronic Structure calculation.

are uploaded as a set of split files for user convenience.
The physical origin of the matrices is explained briefly. The

files in the present benchmark are carbon materials within mod-
eled tight-binding-form theories based on ab initio calculations.
The matrix of ‘NCCS430080’ appears in our material research on
a nano-composite carbon solid (NCCS) [16]. An sp-orbital form
[17] is used and the system contains N = M/4 = 107,520 atoms.
The other files are generated for thermally vibrated single-wall
carbon nanotubes (VCNTs) within a supercell. An spd-orbital
form [18] is used and each system contains N = M/9 atoms.
The VCNT systems were prepared, so as to generate matrices
systematically in different sizes with similar eigenvalue distribu-
tions. We used these matrices for the investigation on π-electron
materials with the present dense-matrix solver and the order-N
solver *4.

3. The Hybrid Solvers

A hybrid solver is constructed, when a routine is chosen for
each subprocedure from ScaLAPACK, EigenExa and ELPA. The
code was developed as a general middleware that can be con-
nected not only to ELSES but also to any real application soft-
ware, as in Fig. 1. A mini-application was also developed and
used in the present benchmark. In the benchmark, ScaLAPACK
was used as a built-in library on each machine. EigenExa ver-
sion 2.2a *5 and ELPA version 2014.06.001 were used. ELPA
and EigenExa call some ScaLAPACK routines.

3.1 Mathematical Formulation
The GEP of Eq. (1) can be written in a matrix form of

AY = BYΛ, (2)

where the matrix Λ ≡ diag(λ1, λ2, . . .) is diagonal and the matrix
Y ≡ (y1 y2 · · ·) satisfies YT BY = I. In the solvers, the GEP of
Eq. (1) is reduced to a standard eigenvalue problem (SEP) of

A′Z = ZΛ, (3)

where the reduced matrix A′ is real symmetric [20] and the ma-
trix of Z ≡ (z1 z2 · · ·) contains eigenvectors of A′. The reduction
procedure can be achieved, when the Cholesky factorization of B

gives the Cholesky factor U as an upper triangle matrix:

B = UT U. (4)

The reduced matrix A′ is defined by

A′ = U−T AU−1. (5)

The eigenvectors of the GEP, written as Y ≡ (y1 y2 · · ·), are cal-
culated from those of the SEP by

Y = U−1Z. (6)

This procedure is usually called backward transformation.

*4 The present matrices are sparse, which does not lose the generality of the
benchmark, since the cost of the dense matrix solver is not dependent on
the number of non-zero elements of the matrix.

*5 The present EigenExa package does not include the GEP solver. The
GEP solver routine for EigenExa in the present paper is that of
KMATH EIGEN GEV version 2.2b [19] that shares the SEP solver rou-
tine with the EigenExa package.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

Fig. 3 Workflow of the hybrid GEP solver.

The GEP solver is decomposed into the two subprocedures of
(a) the solver of the SEP in Eq. (3) and (b) the reduction from the
GEP to the SEP ((A, B) ⇒ A′) and the backward transformation
(Z ⇒ Y). The subprocedures (a) and (b) are called ‘SEP solver’
and ‘reducer’, respectively, and require O(M3) operations.

Figure 3 summarizes the workflows of the possible hybrid
solvers. A hybrid solver is constructed, when one chooses the
routines for (a) the SEP solver and (b) the reducer, respectively.

For (a) the SEP solver, five routines are found in the base
libraries; one routine is a ScaLAPACK routine (routine name
in the code: ‘pdsyevd’) that uses the conventional tridiagonal-
ization algorithm [21]. The ELPA or EigenExa library contains
a SEP solver routine based on the tridiagonalization algorithm.
The routine in ELPA is called ‘ELPA1’ (routine name in the
code: ‘solve evp real’) in this paper, as in the original paper [3],
and the one in EigenExa called ‘Eigen s’ or ‘EIGS’ (routine
name in the code: ‘eigen s’). ELPA and EigenExa also con-
tain the novel SEP solvers based on the narrow-band reduction
algorithms without the conventional tridiagonalization proce-
dure. The solvers are called ‘ELPA2’ (routine name in the code:
‘solve evp real 2stage’) for the ELPA routine and ‘Eigen sx’ or
‘EIGX’ (routine name in the code: ‘eigen sx’) for the EigenExa
routine in this paper. See the papers [4], [8] for details.

For (b) the reducer, three routines are found in the base libraries
and are called ScaLAPACK style, ELPA style, and EigenExa
style reducers in this paper. In the ScaLAPACK style, the
Cholesky factorization, Eq. (4) is carried out and then the re-
duced matrix A′, defined in Eq. (5), is generated by a recur-
sive algorithm (routine name ‘pdsygst’) without explicit calcu-
lation of U−1 nor U−T . Details of the recursive algorithm are ex-
plained, for example in Ref. [22]. In the ELPA style, the Cholesky
factorization (routine name: ‘cholesky real’) is carried out, as
in the ScaLAPACK style, and the reduced matrix A′ is gener-
ated by the explicit calculation of the inverse (triangular) matrix
R ≡ U−1 (routine names: ‘invert trm real’) and the explicit suc-
cessive matrix multiplication of A′ = (RT A)R (routine names:
‘mult at b real’) [3] *6. In the EigenExa style, the Cholesky fac-

*6 The benchmark was carried out in an ELPA style reduction algorithm.
The ScaLAPACK routine of ‘pdtrmm’ is used for the multiplication of
the triangular matrix R from right, while a sample code in the ELPA
package uses the ELPA routine (‘mult at b real’). We ignore the differ-
ence, since the elapse time of the above procedure is not dominant.

Table 1 List of the workflows in the benchmark. The routine names for the
SEP solver and the reducer are shown for each workflow. Abbrevi-
ations are shown within parentheses.

Workflow SEP solver Reducer
A ScaLAPACK (SCLA) ScaLAPACK (SCLA)
B Eigen sx (EIGX) ScaLAPACK (SCLA)
C ScaLAPACK (SCLA) ELPA
D ELPA2 ELPA
E ELPA1 ELPA
F Eigen s (EIGS) ELPA
G Eigen sx (EIGX) ELPA
H Eigen sx (EIGX) Eigen sx (EIGX)

torization is not used. Instead, the SEP for the matrix B

BW = WD, (7)

is solved by the SEP solver (Eigen sx), with the diagonal matrix
of D ≡ diag(d1, d2, ...) and the unitary matrix of W ≡ (w1 w2).
A reduced SEP in the form of Eq. (3) is obtained by

A′ = (D−1/2WT)A(WD−1/2) (8)

Y = WD−1/2Z, (9)

because of Z = D1/2WT Y and W−T = W. Equation (9) is solved
by the SEP solver (Eigen sx).

Though the SEP solver of Eq. (3) requires a larger operation
cost than the Cholesky factorization (See Fig. 1 of Ref. [23], for
example), the elapse time can not be estimated only from the op-
eration costs among modern supercomputers.

The benchmark of the hybrid GEP solvers was carried out for
the eight workflows listed in Table 1. In general, a potential issue
is the possible overhead of the data conversion process between
libraries. This issue will be discussed in Section 5.2.

4. Benchmark Result

Strong scaling benchmarks are investigated for the hybrid
solvers. The elapse times were measured for (i) the full eigen-
pair calculation (Tfull) and (ii) the ‘eigenvalue-only’ calculation
(Tevo). In the latter case, the elapse time is ignored for the calcu-
lation of the eigenvectors. The two types of calculations are im-
portant among electronic structure calculations [3]. The present
benchmark ignores small elapse times of the initial procedure for
distributed data and the comments on them will appear in Sec-
tion 5.1.

The benchmark was carried out on three supercomputers;
the K computer at Riken, Fujitsu FX10 and SGI Altix ICE
8400EX. The K computer has a single SPARC 64 VIIIfx proces-
sor (2.0 GHz, 8-core) on node. The FX10 is Oakleaf-FX of the
University of Tokyo. Fujitsu FX10 is the successor of the K com-
puter and has a single SPARC64 IXfx processor (1.848 GHz, 16-
core) on each node *7. We also used the SGI Altix ICE 8400EX
of the Institute for Solid State Physics of the University of Tokyo.
It is a cluster of Intel Xeon X5570 (2.93 GHz, 8-core). The byte-
per-flop value (B/F) is B/F=0.5, 0.36 or 0.68, for the K computer,
FX10 or SGI Altix, respectively. The numbers of used processor
nodes P are set to be square numbers (P = q2) except in Sec-
tion 4.3, since the ELPA paper [3] reported that the choice of a

*7 Additional options of the K computer and FX10 are explained; we did
not specify an MPI process shape on the Tofu interconnect. We used the
rank directory feature to alleviate I/O contention.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

Fig. 4 Results with M = 430,800 on the K computer. The elapse times are
plotted with the workflows for the (a) full (Tfull) and (b) eigenvalue-
only (Tevo) calculations. (c) The decomposed times for the SEP
solver (TSEP) and for the reducer (TRED) are plotted. The routines
for the reducers are labeled by ‘(RED)’. Detailed decomposed times
for subprocedures of the ELPA style reducer and the Cholesky de-
composition in the ScaLAPACK style reducer are also plotted in (c).
The ideal speedup in parallelism is drawn as a dashed gray line.

(near-)square number for P can give better performance.
When the non-traditional SEP solver algorithm of ELPA is

used on Altix, one can choose an optimized low-level routine
using SSE instructions (‘REAL ELPA KERNEL SSE’) and a
generic routine (‘REAL ELPA KERNEL GENERIC’) [3]. The
optimized code can run only on the Intel-based architectures com-
patible to SSE instructions and was prepared so as to accelerate
the backtransformation subroutine. Among the results on Altix,
the ‘ELPA2’ solver and the workflow D on Altix are those with
the optimized routine, while the ‘ELPA2′’ solver and the work-
flow D′ are those with the generic routine.

4.1 Result with the Matrix Size of M = 430,080
The benchmark with the matrix size of M = 430,080 was car-

ried out for up to P = 10,000 nodes on the K computer. The
elapse times for P = 10,000 nodes is shown in Table 2. The
elapse time for all the cases are shown in Fig. 4 for the (a) full

Table 2 Selected results of the benchmark. The elapse time for the full
(eigenpair) calculation (Tfull) and that for the eigenvalue-only cal-
culation (Tevo) with the workflows. The recorded time is the best
data among ones with different numbers of the used nodes. The
number of used nodes (P) for the best data is shown within paren-
theses. The best data among the workflows are labelled by ‘[B]’.
The saturated data are labelled by ‘[S]’. The workflow D′ on Al-
tix is that without the SSE optimized routine of the ‘ELPA2’ SEP
solver. See the text for details.

Size M/Machine WF Tfull (sec) Tevo (sec)
1,000,080/FX10 G 39,919 (P = 4,800) 35,103 (P = 4,800)

430,080/K A 11,634 (P = 10,000) 10,755 (P = 10,000)
B 8,953 (P = 10,000) 8,465 (P = 10,000)
C 5,415 (P = 10,000) 4,657 (P = 10,000)
D 4,242 (P = 10,000) 2,227 (P = 10,000)[B]
E 2,990 (P = 10,000) 2,457 (P = 10,000)
F 2,809 (P = 10,000) 2,416 (P = 10,000)
G 2,734 (P = 10,000)[B] 2,355 (P = 10,000)
H 3,595 (P = 10,000) 3,147 (P = 10,000)

90,000/K A 590 (P = 4,096) 551 (P = 4,096)
B 493 (P = 1,024)[S] 449 (P = 1,024)[S]
C 318 (P = 4,096) 298 (P = 4,096)
D 259 (P = 4,096) 190 (P = 4,096)[B]
E 229 (P = 4,096)[B] 194 (P = 4,096)
F 233 (P = 4,096) 210 (P = 4,096)
G 258 (P = 4,096) 240 (P = 4,096)
H 253 (P=4,096) 236 (P=4,096)

90,000/FX10 A 1,248 (P = 1,369) 1,183 (P = 1,369)
B 691 (P = 1,024)[S] 648 (P = 1,024)[S]
C 835 (P = 1,369) 779 (P = 1,369)
D 339 (P = 1,369) 166 (P = 1,024)[B][S]
E 262 (P = 1,369) 233 (P = 1,024)[S]
F 250 (P = 1,369)[B] 222 (P = 1,369)
G 314 (P = 1,024)[S] 283 (P = 1,024)[S]
H 484 (P=1,369) 456 (P=1,369)

90,000/Altix A 1,985 (P = 256) 1,675 (P = 256)
B 1,883 (P = 256) 1,586 (P = 256)
C 1,538 (P = 256) 1,240 (P = 256)
D 1,621 (P = 256) 594 (P = 256)
D′ 2,621 (P = 256) 585 (P = 256)[B]
E 1,558 (P = 256) 1,287 (P = 256)
F 1,670 (P = 256) 1,392 (P = 256)
G 1,453 (P = 256)[B] 1,170 (P = 256)
H 2,612 (P=256) 2,261 (P=256)

22,500/K A 65.2 (P = 1,024) 59.6 (P = 256)
B 45.8 (P = 1,024)[S] 43.2 (P = 1,024)[S]
C 41.7 (P = 2,025) 37.8 (P = 2,025)
D 28.4 (P = 2,025) 22.6 (P = 1,024)
E 28.3 (P = 2,025)[B] 22.6 (P = 1,024)[B]
F 28.8 (P = 1,024)[S] 26.9 (P = 1,024)[S]
G 29.7 (P = 1,024)[S] 27.8 (P = 1,024)[S]
H 39.3(P=1024)[S] 37.5(P=1024)[S]

22,500/FX10 A 126.2 (P = 256) 118.1 (P = 256)
B 71.3 (P = 256)[S] 67.1 (P = 256)[S]
C 103.5 (P = 256)[S] 96.3 (P = 256)[S]
D 30.5 (P = 529)[B] 24.4 (P = 529)[B]
E 34.3 (P = 256)[S] 31.2 (P = 256)[S]
F 32.1 (P = 529) 29.4 (P = 529)
G 45.3 (P = 529) 42.5 (P = 529)
H 74.9(P=529) 72.2 (P=529)

22,500/Altix A 51.4 (P = 256) 42.1 (P = 256)
B 70.0 (P = 256) 50.7 (P = 256)
C 45.6 (P = 256) 35.5 (P = 256)
D 41.8 (P = 256) 22.3 (P = 256)[B]
D′ 59.6 (P = 256) 21.8 (P = 256)[B]
E 32.3 (P = 256)[B] 26.7 (P = 256)
F 48.5 (P = 256) 37.3 (P = 256)
G 57.2 (P = 256) 39.6 (P = 256)
H 71.2 (P=256) 64.1 (P=256)

(Tfull) or (b) eigenvalue-only (Tevo) calculations. The decom-
posed times are also shown in Fig. 4 (c) for the SEP solver (TSEP)
and the reducer (TRED) (Tfull = TSEP + TRED).

Table 3 shows the decomposed time of the SEP solvers for

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

Table 3 Decomposition of the elapse time (sec) of the SEP solvers with
M = 430,080 and P = 10,000. See the text for the subroutine
names of ‘TRD/BAND’, ‘D&C’ and ‘BACK’.

SEP solver TRD/BAND D&C BACK Total (TSEP)
SCLA 3,055 465 633 4,152
ELPA2 966 141 1,892 2,999
ELPA1 1,129 138 400 1,667
EIGS 1,058 196 265 1,521
EIGX 828 390 255 1,473

P = 10,000. A SEP solver routine is decomposed into three
subroutines of (i) the tridiagonalization or narrow-band reduction
(‘TRD/BAND’), (ii) the divide and conquer algorithms for the
tridiagonal or narrow-band matrices (‘D&C’) so as to compute
the eigenvalues, and (iii) the backtransformation of eigenvectors
(‘BACK’) so as to compute the eigenvectors of the GEP.

One can observe several features on the results; (I) In the
full calculation benchmark (Fig. 4 (a)), the best data, the small-
est elapse time, appears in the workflow G for P = 10,000. The
workflow G is the hybrid solver that uses the ‘Eigen sx’ SEP
solver in EigenExa and the ELPA style reducer, since these rou-
tines are the best among the SEP solvers and the reducers, respec-
tively, as shown in Fig. 4 (c) and Table 3. In Table 2, the speed
(T−1

full) of the workflow G is approximately four times faster than
that of the conventional workflow A (11,634 sec)/(2,734 sec) ≈
4.3). (II) Figure 4 (c) shows that the ELPA style reducer gives
significantly smaller elapse times than those of ScaLAPACK
and those of EigenExa. The elapse time for P = 10,000 is
TRED = 1,261 sec with the ELPA style reducer and is TRED =

2,157 sec with the EigenExa reducer. The elapse time with the
EigenExa reducer is governed by that of the SEP solver for Eq. (7)
(TSEP = 1,473 sec in Table 3). (III) In the eigenvalue-only calcu-
lation (Fig. 4 (b)), the best data, the smallest elapse time, appears
in the workflow D for P = 10,000. The workflow D is the solver
that uses the ‘ELPA2’ SEP solver and the ELPA style reducer and
the eigenvector calculation consumes a large elapse time of Tvec;
Tvec ≡ Tfull − Tevo = (4,242 sec) − (2,227 sec) = (2,015 sec) in
Table 2. The time Tvec is contributed mainly by the backward
transformation subroutine (TBACK = 1,892 sec) in Table 3, be-
cause the backward transformation subroutine in ELPA2 uses a
characteristic two-step algorithm (See Section 4.3 of Ref. [3]).

4.2 Benchmark with the Matrix Sizes of M = 90,000, 22,500
The benchmark with the smaller matrix sizes of M = 90,000

and 22,500 are also investigated. The maximum number of used
processor nodes is Pmax = 4,096, 1,039 and 256, on the K com-
puter, FX10, and Altix, respectively *8. Figures 5 and 6 show
the data with M = 90,000 and with M = 22,500, respectively.
The decomposed times are shown in Fig. 7. Table 2 shows the
best data for each workflow among the different numbers of used
nodes. The results will help general simulation researchers to
choose the solver and the number of used nodes, since the elapse
times in Table 2 are less than a half hour and such calculations are

*8 We observed on Altix that the ‘ELPA2’ and ‘ELPA2′’ SEP solver re-
quired non-blocking communication requests beyond the default limit
number of NMPI MAX = 16, 384 and the job stopped with an MPI er-
ror message. Then we increased the limit number to NMPI MAX =

1, 048, 576, the possible maximum of the machine by the environment
variable ‘MPI REQUEST MAX’ and the calculations were completed.

Fig. 5 Benchmark with the matrix size of M = 90,000, (I) on the K com-
puter for the (a) full (eigenpair) and (b) eigenvalue-only calculation,
(II) on FX10 for the (c) full and (d) eigenvalue-only calculation, (III)
on Altix for the (e) full and (f) eigenvalue-only calculation. The ideal
speedup in parallelism is drawn as a dashed gray line.

popular ‘regular class’ jobs among systematic investigations *9.
Here, the results are discussed; (I) Table 2 shows that the small-

*9 One should remember that supercomputers are usually shared by many
researchers who run many calculations in similar problem sizes succes-
sively and/or simultaneously.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

Fig. 6 Benchmark with the matrix size of M = 22,500, (I) on the K com-
puter for the (a) full (eigenpair) and (b) eigenvalue-only calculation,
(II) on FX10 for the (c) full and (d) eigenvalue-only calculation, (III)
on Altix for the (e) full and (f) eigenvalue-only calculation. The ideal
speedup in parallelism is drawn as a dashed gray line.

est elapse time in the full calculation appears among the work-
flows with the ELPA style reducer (the workflows D, E, F, and
G) and that in the eigenvalue-only calculation appears with the
workflow D. The above features are consistent with the results

Fig. 7 Decomposition analysis of the elapse time into those of the SEP
solver and the reducer (I) on the K computer with (a) M = 90,000
and (b) M = 22,500, (II) on FX10 with (c) M = 90,000 and (d)
M = 22,500, (III) on Altix with (c) M = 90,000 and (d) M = 22,500.
The routines for the reducers is labeled by ‘(RED)’. The ‘ELPA2′’
SEP solver is that without the SSE optimized routine. The ideal
speedup in parallelism is drawn as a dashed gray line.

in the previous subsection. (II) Unlike the result in the previous
subsection, the speed up is sometimes saturated. An example is
observed in Fig. 6 (a), in the full calculation with M = 22,500 on

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

the K computer, because the elapse time in the workflow F gives a
minimum as the function of P at P = 1,024. The decomposition
analysis of Fig. 7 (b) indicates that the saturation occur both for
the SEP solver and the reducer, which implies that the improve-
ment both on the SEP solver and the reducer is desirable. The sat-
urated cases are marked in Table 2 with the label of ‘[S]’ *10. (III)
Finally, the SSE-optimized routine in the workflow D is com-
pared with the generic routine in the workflow D′ in the case of
M = 90,000 on Altix with P = 256. The SSE-optimized routine
is prepared only in the backward transformation process. Since
the process with the SSE-optimized routine or the generic one
gives the elapse time of TBACK = 929 sec or TBACK = 1,872 sec,
respectively, the process is accelerated with the SSE-optimized
routine by 1,872 sec/929 sec ≈ 2.02. As shown in Table 2, the
full calculation is accelerated with the SSE-optimized routine by
2,621 sec/1,621 sec ≈ 1.62.

4.3 Benchmark for a Million Dimensional Matrix
Finally, the benchmark for a million dimensional matrix is

discussed. A press release at 2013 [24] reported, as a world
record, a benchmark of a million dimensional SEP carried out by
EigenExa, in approximately one hour, on the full (82,944) nodes
of the K computer. An eigenvalue problem with a million dimen-
sional matrix (M = 106) seems to be the practical limitation of
the present supercomputer, owing to the O(M3) operation cost.

We calculated a million dimensional GEP in Dec. 2014 on the
full (4,800) nodes of Oakleaf-FX *11. Since our computational
resource was limited, only one calculation was carried out with
the workflow G, because it gives the best data among those with
M = 430,080 in Table 2. The calculation finished in approxi-
mately a half day, as shown in Table 2 (Tfull = 39,919 sec and
Tevo = 35,103 sec). The elapse time of the reducer (TRED =

Tfull − TSEP = 15,179 sec) is smaller than but comparable to that
of the SEP solver (TSEP = 24,740). The benchmark proved that
the present code qualifies as a software applicable to massively
parallel computation with up to a million dimensional matrix.

5. Discussions

5.1 Preparation of Initial Distributed Data
In the benchmark, the initial procedures including file read-

ing are carried out for the preparation of distributed data. Its
elapse time is always small and is ignored in the previous sec-
tion *12. These procedures, however, may consume significant
elapse times, when the present solver is used as a middleware
with real applications. The discussions on such cases are beyond
the present scope, since they depend on the program structure
of the real applications. Here, several comments are added for

*10 No saturation is found on Altix, unlike on the K computer and FX10,
partially because the maximum number of used nodes (Pmax = 256) is
smaller.

*11 We used FX10 not the K computer, because FX10 is in a newer archi-
tecture with a lower B/F value and the result on FX10 is speculated to be
closer to that on the next-generation (exa-scale) machine.

*12 In the case of the workflow G on the K computer with M = 430,080
and P = 10,000, for example, the elapse time of the initial procedures
is Tini = 123 sec and is much smaller than that of the total computation
(Ttot = 2,734 sec. See Table 2). It is noteworthy that the present matrices
are sparse, as explained in Section 2.

Table 4 The elapse times for data conversion; ‘(b → 1)’, ‘(1 → b)’ and
‘TRED’ are the times in seconds for, the conversion process from
block cyclic into cyclic distributions, the inverse process and the
whole reducer procedure, respectively. The saturated data of TRED

are labelled by ‘[S]’. The ‘ratio’ is ((b→ 1) + (1→ b))/TRED.

Size M Machine(P) (b→ 1) (1→ b) TRED ratio[%]
1,008,000 FX10(4,800) 51.4 51.7 8,208 1.26
430,080 K(10,000) 13.4 6.48 1,261 1.58
90,000 K(4,096) 6.89 0.797 124[S] 6.21

FX10(1,369) 1.89 0.973 84.0[S] 3.41
Altix(256) 2.01 2.02 394 1.02

22,500 K(2,025) 0.571 0.610 11.3[S] 10.4
FX10(529) 0.328 0.176 9.20 5.48
Altix(256) 0.120 0.279 11.9 3.35

real application developers: in general, the matrix data cost is, at
most, O(M2) and the operation cost is O(M3) in the dense-matrix
solvers and one should consider a balance between them. In the
case of M = 430,080, for example, the required memory size for
all the matrix elements is 8 B × M2 ≈ 1.5 TB, which can not be
stored on a node of the K computer. Therefore, the data should
be always distributed. In our real application (ELSES), the initial
distributed data is prepared, when only the required elements are
generated and stored on each node.

5.2 Data Conversion Overhead
As explained in Section 3.1, several workflows require data

conversion processes between distributed data formats, since
ScaLAPACK and ELPA use block cyclic distribution with a given
block size nblock(> 1) and EigenExa uses cyclic distribution
(nblock ≡ 1). In the present benchmark, the block size nblock in
ScaLAPACK and ELPA was set to be nblock = 128, a typical
value. Consequently, the workflows B, F, G require data con-
version processes. In the present paper, the elapse time of the
conversion procedures is included in the reducer part (Tred).

Table 4 shows the elapse time for the data conversion. The
elapse times are shown in the cases with the maximum num-
bers of used nodes (P = Pmax) among the present benchmark.
Two data conversion procedures are required. One is the conver-
sion from the block cyclic distribution into the cyclic distribution,
shown as ‘(b→ 1)’ in Table 4 and the other is the inverse process
shown as ‘(1 → b)’. The two procedures are carried out, com-
monly, by the ‘pdgemr2d’ routine in ScaLAPACK.

Table 4 indicates that the overhead of the data conversion pro-
cedures is always small and is not the origin of the saturation. In
general, the conversion requires an O(M2) operation cost, while
the calculation in a dense-matrix solver requires an O(M3) opera-
tion cost. The fact implies the general efficiency of hybrid solvers,
at least, among dense-matrix solvers.

5.3 Decomposition Analysis of the Reducer
The decomposition analysis of the ELPA-style reducer is fo-

cused on, since the ELPA-style reducer is fastest among the three
libraries. Figure 4 (c) shows the case on the K computer with
M = 430,080. The elapse times of the subprocedures of the
ELPA-style reducer are plotted; ‘ELPA(R1)’ is the Cholesky fac-
torization of Eq. (4), ‘ELPA(R2)’ is the explicit calculation of the
inversion R = U−1 of the Cholesky factor U, ‘ELPA(R3)’ and
‘ELPA(R4)’ are the successive matrix multiplication of Eq. (5)

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

Fig. 8 Decomposition analysis of the elapse time of subprocedures of the
ELPA style reducer and the Cholesky factorization in the ScaLA-
PACK style reducer (I) on the K computer with (a) M = 90,000
and (b) M = 22,500, (II) on FX10 with (c) M = 90,000 and (d)
M = 22,500, (III) on Altix with (c) M = 90,000 and (d) M = 22,500.
The ideal speedup in parallelism is drawn as a dashed gray line.

and ‘ELPA(R5)’ is the backward transformation of eigenvectors
by matrix multiplication of Eq. (6). The elapse times of the
Cholesky factorization in the ScaLAPACK style reducer is also
plotted as ‘SCLA(R1)’ as a reference data. The same decom-

position analysis is also carried out for other cases, as shown in
Fig. 8. One can observe that the Cholesky factorization of the
ELPA-style reducer does not scale and sometimes is slower than
that of the ScaLAPACK reducer. In particular, the saturation of
the ELPA-style reducer is caused by that of the Cholesky factor-
ization in Fig. 8 (a)(b)(c).

The above observation implies that the reducer can be a seri-
ous bottleneck in the next-generation (exa-scale) supercomputers,
though not in the present benchmark. One possible strategy is the
improvement of the Cholesky factorization for better scalability
and another is the development of a reducer without the Cholesky
factorization, as in the EigenExa-style reducer.

6. Summary and Future Outlook

In summary, hybrid GEP solvers were constructed between
the three parallel dense-matrix solver libraries of ScaLAPACK,
ELPA and EigenExa. The benchmark was carried out with up
to a million dimensional matrix on the K computer and other
supercomputers. The hybrid solvers with ELPA and EigenExa
give better benchmark results than the conventional ScaLAPACK
library. The code was developed as a middleware and a mini-
application and will appear online. Several issues are discussed.
In particular, the decomposition analysis of the elapse time re-
veals a potential bottleneck on next-generation (exa-scale) super-
computers, which indicates the guidance for future development
of the algorithms and the codes.

As a future outlook, the present code for the hybrid solvers is
planned to be extended by introducing the solvers with different
mathematical foundations. A candidate is the parallel block Ja-
cobi solver [25], [26]. Since the solver is applicable only to stan-
dard eigenvalue problems, the hybrid solver enables us to use the
solver in generalized eigenvalue problems.

Acknowledgments The authors thank Toshiyuki Imamura at
the RIKEN Advanced Institute of Computational Science (AICS)
and Takeshi Fukaya at Hokkaido University for fruitful discus-
sions on EigenExa. The authors also thank Yusaku Yamamoto
at The University of Electro-Communications on the parallel
block Jacobi solver. This research is partially supported by
Grant-in-Aid for Scientific Research (KAKENHI Nos. 25104718
and 26400318) from the Ministry of Education, Culture, Sports,
Science and Technology (MEXT) of Japan. The K computer
of RIKEN was used in the research projects of hp140069,
hp140218, hp150144. The supercomputer Oakleaf-FX of the
University of Tokyo was used in the research project of 14-NA04
in ‘Joint Usage/Research Center for Interdisciplinary Large-scale
Information Infrastructures’ in Japan, in the ‘Large-scale HPC
Challenge’ Project, Information Technology Center, The Univer-
sity of Tokyo and Initiative on Promotion of Supercomputing for
Young or Women Researchers, Supercomputing Division, Infor-
mation Technology Center, The University of Tokyo. We also
used the supercomputer SGI altix ICE 8400EX at the Institute
for Solid State Physics of the University of Tokyo and the su-
percomputers at the Research Center for Computational Science,
Okazaki.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

References

[1] Blackford, L.S. et al.: ScaLAPACK Users’ Guide, Society for Indus-
trial and Applied Mathematics, Philadelphia (1997).

[2] available from 〈http://www.netlib.org/scalapack/〉.
[3] Marek, A. et al.: The ELPA Library – Scalable Parallel Eigenvalue So-

lutions for Electronic Structure Theory and Computational Science, J.
Phys. Condens. Matter 26, 213201 (2014).

[4] Auckenthaler, T. et al.: Parallel solution of partial symmetric eigen-
value problems from electronic structure calculations, Parallel Com-
puting, Vol.37, Issue 12, pp.783–794 (2011).

[5] available from 〈http://elpa.rzg.mpg.de/〉.
[6] Imamura, T.: The EigenExa Library – High Performance & Scalable

Direct Eigensolver for Large-Scale Computational Science, ISC 2014,
Leipzig, Germany (2014).

[7] Imamura, T. et al.: EigenExa: high performance dense eigensolver,
present and future, 8th International Workshop on Parallel Matrix Al-
gorithms and Applications (PMAA14), Lugano, Switzerland (2014).

[8] Imamura, T., Yamada, S. and Yoshida, M.: Development of a high-
performance eigensolver on a peta-scale next-generation supercom-
puter system, Prog. Nucl. Sci. Technol., Vol.2, pp.643–650 (2011).

[9] available from 〈http://www.aics.riken.jp/labs/lpnctrt/index e.html〉.
[10] Hoshi, T., Yamazaki, K. and Akiyama, Y.: Novel Linear Algebraic

Theory and One-Hundred-Million-Atom Electronic Structure Calcu-
lation on The K Computer, JPS Conf. Proc. 1, 016004 (2014).

[11] Hoshi, T. et al.: Novel linear algebraic theory and one-hundred-
million-atom quantum material simulations on the K computer,
PoS(IWCSE2013)065 (2014).

[12] available from 〈http://www.elses.jp/〉.
[13] Hoshi, T. et al.: An order-N electronic structure theory with gener-

alized eigenvalue equations and its application to a ten-million-atom
system, J. Phys. Condens. Matter 21, 165502 (2012).

[14] Sogabe, T., Hoshi, T., Zhang, S.L. and Fujiwara, T.: Solution of gen-
eralized shifted linear systems with complex symmetric matrices, J.
Comput. Phys. 231, pp.5669–5684 (2012).

[15] available from 〈http://www.elses.jp/matrix/〉.
[16] Hoshi, T. et al.: Ten-million-atom electronic structure calculations on

the K computer with a massively parallel order-N theory, J. Phys. Soc.
Jpn. 82, 023710 (2013).

[17] Calzaferri, G. and Rytz, R.: J. Phys. Chem. 100, 11122 (1996).
[18] Cerdá, J. and Soria, F.: Phys. Rev. B 61, pp.7965–7971, (2000).
[19] available from 〈http://www.aics.riken.jp/labs/lpnctrt/

KMATH EIGEN GEV e.html〉.
[20] Golub, G.H. and Van Loan, C.F.: Matrix Computations, 4th Ed., Johns

Hopkins University Press, Baltimore, MD (2013).
[21] Tisseur, F. and Dongarra, J.: Parallelizing the divide and conquer

algorithm for the symmetric tridiagonal eigenvalue problem on dis-
tributed memory architectures, SIAM J. Sci. Comput., Vol.20, Issue 6,
pp.2223–2236 (1999).

[22] Poulson, J., v. d. Geijn, R. and Bennighof, J.: Parallel algorithms
for reducing the generalized hermitian-definite eigenvalue problem,
FLAME Working Note #56, The University of Texas at Austin, De-
partment of Computer Science, Tech. Rep. TR-11-05 (2011).

[23] Sears, M.P., Stanley, K. and Henry, G.: Application of a High Perfor-
mance Parallel Eigensolver to Electronic Structure Calculations, Proc.
1998 ACM/IEEE conference on Supercomputing (SC ’98), Orlando,
FL (1998).

[24] RIKEN, Press Release at 5. Dec. 2013 (in Japanese), available from
〈http://www.riken.jp/pr/press/2013/20131205 1/〉.

[25] Takahashi, Y., Hirota, Y. and Yamamoto, Y.: Performance of the block
Jacobi method for the symmetric eigenvalue problem on a modern
massively parallel computer, Proc. ALGORITMY 2012, pp.151–160
(2012).

[26] Yamamoto, Y., Zhang, L. and Kudo, S.: Convergence analysis of the
parallel classical block Jacobi method for the symmetric eigenvalue
problem, JSIAM Letters, Vol.6, pp.57–60 (2014).

Hiroto Imachi was born in 1988. He re-
ceived his M.E. from the University of
Tokyo in 2013. He is currently a doc-
toral student at Tottori University. His re-
search interest is massively parallel com-
putational algorithms and their applica-
tion to quantum material simulations.

Takeo Hoshi was born in 1970. He re-
ceived his M.E. and Ph.D. from the Uni-
versity of Tokyo in 1995 and 2003, re-
spectively. He became a research asso-
ciate of the University of Tokyo in 1995
and an associate professor of Tottori Uni-
versity in 2006. His research interest is the
disciplinary research on quantum material

simulations and massively parallel computational algorithms.

c© 2016 Information Processing Society of Japan

