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Formation problems for synchronous mobile robots
in the three dimensional Euclidean space

Yukiko Yamauchi1,a) Taichi Uehara1,b) Masafumi Yamashita1,c)

Abstract: We consider a swarm of autonomous mobile robots each of which is anonymous and oblivious (memory-
less), and synchronously executes the same algorithm. The plane formation problem requires the robots to land on a
common plane. The pattern formation problem requires the robots to form a given target pattern. We investigate these
two formation problems for oblivious fully-synchronous (FSYNC) robots moving in the three dimensional Euclidean
space (3D-space), and characterize these problems by showing necessary and sufficient conditions for the robots to
achieve these formation tasks by using the notion of symmetricity of the positions of robots in 3D-space. For solvable
instances of the pattern formation problem, we give a distributed algorithm for oblivious FSYNC robots.

1. Introduction
Distributed control of a system consisting of autonomous mo-

bile computing entities in the three dimensional Euclidean space
(3D-space) is one of the most challenging problems in distributed
computing theory and robotics. One of the most important prop-
erties that is expected for such systems is self-organization abil-
ity that enables the system to obtain the coordination by itself.
For example, drones are becoming widely available and their ap-
plications in sensing, monitoring, and rescues in harsh environ-
ment such as disaster area and active volcanoes, where they are
required to coordinate themselves without human intervention,
are attracting much attention.

As one of the fundamental tasks for robots in 3D-space, we
consider two formation problems. The plane formation problem
requires that a set of robots land on a common plane, that is not
predefined, without making any multiplicity. The pattern forma-
tion problem requires that a set of robots form a given 3D tar-
get pattern, that is given as the set of coordinates of points. A
robot is a point in 3D-space that autonomously moves according
to a given rule. Specifically, each robot repeats a Look-Compute-
Move cycle, where it observes the positions of other robots (Look
phase), computes its next position with a given algorithm (Com-
pute phase), and moves to the next position (Move phase). Each
robot is anonymous in the sense that they have no identifier and
the robots are uniform in the sense that all robots execute the same
algorithm. Each robot has no access to the global x-y-z coordi-
nate system and in a Look phase it observes the positions of other
robots in its local x-y-z coordinate system. The origin of the lo-
cal coordinate system of a robot is its current position and the
local coordinate system has arbitrary directions and unit distance.

1 Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
a) yamauchi@inf.kyushu-u.ac.jp
b) uehara@tcslab.csce.kyushu-u.ac.jp
c) mak@inf.kyushu-u.ac.jp

However we assume that all local coordinate systems are right-
handed. In other words, the robots have chirality. Each robot is
oblivious in the sense that in each Compute phase, the input to the
common algorithm is the observation of the current phase and the
robot does not remember the past. In a Move phase, each robot
reaches the computed destination, i.e., its movement is rigid. We
consider the fully-synchronous (FSYNC) model where the robots
execute the t-th Look-Compute-Move cycle at the same time with
each of the Look, Compute, and Move phases completely syn-
chronized. Here the configuration of robots is the positions of
robots observed in the global coordinate system, i.e., a multiset
of points. These assumptions mean that the robots do not have
explicit communication medium and they have to tolerate incon-
sistency among local coordinate systems. The robots coordinate
themselves by just observing the positions of other robots and
building some agreement on some reference points or some com-
mon coordinate system.

The pattern formation problem was first introduced by Suzuki
and Yamashita for the robots moving on the two-dimensional Eu-
clidean space (2D-space) [8]. They characterized the class of
formable patterns by using the notion of symmetricity of an initial
configuration. The symmetricity of a configuration is essentially
its rotational symmetry. Let P be a configuration of robots in
2D-space, i.e., a set of points. We consider the decomposition of
P into regular m-gons centered at the center of the smallest en-
closing circle of P. The symmetricity ρ(P) of P is the maximum
value of such m. Here we consider a point as a regular 1-gon
with an arbitrary center and a set of two points as a regular 2-gon
with the center at the midpoint of the two points. When there is a
robot on the center of the smallest enclosing circle of P, ρ(P) = 1.
Then they showed that oblivious FSYNC robots can form a tar-
get pattern F from a given initial configuration P if and only if
ρ(P) divides ρ(F). This notion of symmetricity is based on the
fact that there exists an arrangement of local coordinate systems
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of robots that keeps the robots forming regular ρ(P)-gons forever.
Let P′ be one of the ρ(P)-gons of P. Then, we pick up one robot
(and its local coordinate system) from P′ and apply the rotations
by 2kπ/ρ(P) (k = 1, 2, · · · , ρ(P)) around the center of the small-
est enclosing circle of robots. This defines cyclic local coordinate
systems of robots forming P′ and because they all have the same
local observation and execute the same algorithm, their next lo-
cations form a regular ρ(P)-gon with the same center. The robots
are FSYNC and they all move to these symmetric next locations.
In this way, the robots never break regular polygons.

Yamauchi et al. focus on the fact that the above worst case
in 2D-space is caused by the rotations that form a cyclic group
and extended this impossibility result in 2D-space to 3D-space
by using the rotation groups when they consider the plane forma-
tion problem [10]. The rotation groups in 3D-space are defined
by a set of rotation axes and their arrangement. There are five
kinds of finite-order rotation groups; the cyclic groups, the dihe-
dral groups, the tetrahedral group, the octahedral group, and the
icosahedral group [1], [2]. Given a configuration P of robots in
3D-space, its rotation group γ(P) is the rotation group applica-
ble to P and none of its supergroup in these five kinds of rotation
groups is applicable to P, which of course is uniquely determined.
The rotation group γ(P) decomposes P into vertex-transitive set
of points by its group action on P. A set of points Q is vertex-
transitive regarding a rotation group G if (i) for any q, q′ ∈ Q,
there exists an element g ∈ G such that q = g ∗ q′ and (ii) for
each g ∈ G and for each q ∈ Q, g ∗ q ∈ Q. When a set of
positions of robots is vertex-transitive, the robots may have the
same local observation. Yamauchi et al. called the cyclic groups
and the dihedral groups two-dimensional (2D) groups because
they have the single (principal) rotation axis that is easily rec-
ognized by the robots. Then the robots can easily land on the
plane that is perpendicular to the recognized rotation axis and
contains the center of the smallest enclosing ball of robots. On
the other hand, they called remaining three rotation groups three-
dimensional (3D) groups, because these three rotation groups do
not have such distinguishable single rotation axis and when the
rotation group of a configuration is 3D, the robots are not on one
plane. Then they showed that the robots cannot form a plane from
a given configuration P if and only if γ(P) is a 3D group and all
robots are not on the rotation axis of γ(P). The intuition behind
this impossibility is completely same as that in 2D-space, i.e., we
can generate symmetric local coordinate systems regarding γ(P)
and the robots never break the vertex-transitive polyhedra regard-
ing γ(P) if none of the robots are on the rotation axis.

In this paper, we define the symmetricity of a configuration of
robots in 3D-space as a set of rotation groups that acts on the po-
sitions of robots and consists of rotation axes containing no robot.
For a set of points P, we denote its symmetricity by ϱ(P). Then
we will show the following theorem.

Theorem 1 Oblivious FSYNC robots can form a target pat-
tern F from an initial configuration P if and only if ϱ(P) ⊆ ϱ(F).

The impossibility is caused by symmetric arrangement of local
coordinate systems. For the solvable cases, we present a pattern
formation algorithm for oblivious FSYNC robots.

By using the notion of symmetricity, we can rephrase the

necessary and sufficient condition of the plane formation prob-
lem [10] as follows:

Theorem 2 Oblivious FSYNC robots can form a plane from
an initial configuration P if and only if ϱ(P) consists of 2D-
groups.
Related work. The pattern formation problem has been investi-
gated for the robots in 2D-space and little is known for the robots
in 3D-space. In the following, we briefly survey existing results
of the pattern formation problem in 2D-space.

The two classical synchrony models are the fully-synchronous
(FSYNC) model and the semi-synchronous (SSYNC) model [8].
In the FSYNC model, the robots execute the t-th Look-Compute-
Move cycle with each of the Look, Compute, and Move phases
completely synchronized for any t. In the SSYNC model, the
executions of Look-Compute-Move cycles are synchronized, but
some robots may not execute some cycles. The asynchronous
(ASYNC) model, which was first introduced by Flocchini et.
al. [5], puts no assumption on the execution of cycles.

Dieudonné et al. showed that for more than three oblivious
ASYNC robots, the leader election problem is solvable from P,
if and only if every pattern F is formable from P, provided that
F does not contain multiplicities [4]. Suzuki and Yamashita first
investigated the impact of availability of memory at robots and
synchrony among robots on the set of formable patterns for the
SSYNC and the FSYNC models [8], [9]. Fujinaga et al. ex-
tended the result to the ASYNC model [7]. It has been shown
that (i) non-oblivious FSYNC robots can form a target pattern F
from an initial configuration P if and only if ρ(P) divides ρ(F),
and (ii) oblivious ASYNC (SSYNC) robots can form a target pat-
tern F from an initial configuration P if and only if ρ(P) divides
ρ(F) except the case where F is a point of multiplicity 2. The ex-
ceptional case is called the rendezvous problem or the gathering
problem for two robots. However, the gathering problem for more
than two robots is solvable by oblivious SSYNC robots [8] and
ASYNC robots [3]. These results assume that the robots have the
weak multiplicity detection ability, i.e., they can check whether
a point is occupied by one robot or more than one robot. With-
out weak multiplicity detection ability, the gathering problem be-
comes unsolvable.

For most of the results known for mobile robots up to year
2012, see the book by Flocchini et al. [6].
Organization. In Section 2, we define the mobile robot model
and we introduce the rotation groups and symmetricity of a con-
figuration in Section 3. We prove the necessity of Theorem 1 in
Section 4 and sufficiency of Theorem 1 in Section 5 by showing
a pattern formation algorithm for oblivious FSYNC robots. We
then discuss the results of [10] and show Theorem 2 in Section 6.
We conclude this paper with Section 7.

2. Preliminary
Let R = {r1, r2, . . . , rn} be a set of n ≥ 3 robots each of which

is represented by a point in 3D-space. Each robot is anonymous
and there is no way to distinguish them. We use the indexes just
for description.

By Z0 we denote the global x-y-z coordinate system. Let
pi(t) ∈ R3 be the position of ri at time t in Z0, where R is the
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set of real numbers. A configuration of R at time t is denoted
by a multiset P(t) = {p1(t), p2(t), . . . , pn(t)}. We assume that the
robots initially occupy distinct positions, i.e., pi(0) ! p j(0) for all
1 ≤ i < j ≤ n. *1 The robots have no access to Z0. Instead, each
robot ri observes the positions of other robots in its local x-y-z co-
ordinate system Zi, where the origin is always its current location,
while the direction of each positive axis and the magnitude of the
unit distance are arbitrary but never change.*2 We assume that Z0

and all Zi are right-handed. In other words, they have chirality.
By Zi(p) we denote the coordinates of a point p in Zi.

We consider discrete time 0, 1, 2, · · · and at each time step
the robots executes a Look-Compute-Move cycle with each of
Look, Compute, and Move phases completely synchronized, i.e.,
we investigate the fully-synchronous (FSYNC) robots in this pa-
per. We specifically assume without loss of generality that the
(t + 1)-th Look-Compute-Move cycle starts at time t and finishes
before time t + 1. At time t, each ri ∈ R obtains a multiset
Zi(P(t)) = {Zi(p1(t)), Zi(p2(t)), . . . , Zi(pn(t))}. We call Zi(P(t)) the
local observation of ri at t. Then ri computes its next position
using an algorithm ψ, which is common to all robots. If ψ uses
only Zi(P(t)), we say that ri is oblivious. Otherwise, we say ri

is non-oblivious, i.e., ri can use past local observations and past
outputs of ψ. Formally, ψ is a total function from P3

n to R3, where
P3

n = (R3)n is the set of all configurations (which may contain
multiplicities). Finally, ri moves to ψ(Zi(P(t))) in Zi before time
t + 1. Thus the movement of robots is rigid. In this paper, we do
not care for the track of the movement of robots, rather each robot
jumps to its next position. An infinite sequence of configurations
E : P(0), P(1), . . . is called an execution from an initial configu-
ration P(0). Observe that the execution E is uniquely determined,
once initial configuration P(0), local coordinate systems of robots
at time 0, and algorithm ψ are fixed.

The plane formation problem is to make the robots land on a
common plane without making any multiplicity from a given ini-
tial configuration.

The pattern formation problem is to make the robots form a
given target pattern F from a given initial configuration. The tar-
get pattern F is given to each robot as a multiset of coordinates of
n points in Z0. We assume that F does not contain any multiplic-
ity. Because robots do not have access to the global coordinate
system, it is impossible to form F itself. Let T be the set of all
rotations, translations, and uniform scalings. We say F′ is similar
to F if there exists Z ∈ T such that F′ = Z(F), which we denote
by F′ ≃ F. We say that the robots form a target pattern F from
an initial configuration P, if, regardless of the choice of initial lo-
cal coordinate systems of robots in the initial configuration, the
execution P(0)(= P), P(1), . . . reaches a configuration P(t) that is
similar to F in finite time.

*1 This assumption is necessary because it is impossible to break up multi-
ple oblivious FSYNC robots (with the same local coordinate system) on
a single position as long as they execute the same algorithm. The pro-
posed pattern formation algorithm does not make any multiplicity dur-
ing the formation. However, we have to consider configurations with
multiplicity when we prove impossibility by checking executions of any
arbitrary algorithm.

*2 Since Zi changes whenever ri moves, notation Zi(t) is more rigid, but we
omit parameter t to simplify its notation.

Table 1 Three polyhedral groups. The number of elements around k-fold
axes except the identity element is shown. The number in the
bracket is the number of rotation axes with that fold.

Polyhedral group Fold of rotation axes Order2 3 4 5
T 3(3) 8(4) - - 12
O 6(6) 8(4) 9(3) - 24
I 15(15) 20(10) - 24(6) 60

For any (multi)set of points P, by B(P) and b(P), we denote
the smallest enclosing ball of P and its center, respectively. A
point on the sphere of a ball is said to be on the ball, and we as-
sume that the interior or the exterior of a ball does not include its
sphere. The largest empty ball L(P) of P is the ball centered at
b(P) and contains no point of P in its interior, but contains at least
one point on it.

3. Symmetricity in 3D-Space
In this section, we define the rotation group and the symmetric-

ity of a set of points, and related notions.
We formally define the five kinds of rotation groups. The ro-

tation group S O(3) has five subgroups of finite order [1], [2];
the cyclic group Ck (k = 1, 2, · · · ), the dihedral group Dℓ (ℓ =
2, 3, · · · ), the tetrahedral group T , the octahedral group O, and the
icosahedral group I. Each of these groups is identified by a group
formed by the rotations of a regular pyramid, a regular prism, a
regular tetrahedron, a regular octahedron, and a regular icosahe-
dron, respectively. For example, consider a regular pyramid that
has a regular k-gon as its base. The rotation operations for this
regular pyramid are rotations by 2πi/k for i = 1, 2, · · · , k around
an axis containing the apex and the center of the base. We call
such an axis k-fold axis. Let ai be the rotation by 2πi/k around
this k-fold axis with ak = e where e is the identity element. Then,
a1, a2, . . . , ak form the cyclic group Ck.

A regular prism (except a cube) has two parallel regular k-gons
as its top and bottom bases and has two types of rotation axes,
one is the k-fold axis containing the centers of its top and bottom
bases, and the others are k 2-fold axes that exchange the top and
the bottom. We call this k-fold axis principal axis, and the re-
maining k 2-fold axes secondary axes. These rotation operations
on a regular prism form the dihedral group Dk. When k = 2, we
can define D2 in the same way. Though in the group theory we do
not distinguish the principal axis, when we consider the rotation
group of a set of points, we can show that we can distinguish the
principal axis from the three 2-fold rotation axes of D2.

The remaining three rotation groups T , O, and I are called
the polyhedral groups. Each of the three rotation groups consists
of rotation axes containing the midpoints of two opposite edges,
those containing the centers of opposite faces, and those contain-
ing opposite vertices. Table 1 shows the number of rotation axes
and the number of elements around each type of rotation axes for
each of the polyhedral groups.

Let S = {Ck,Dℓ, T,O, I |k = 1, 2, . . . , and ℓ = 2, 3, . . .} be the
set of rotation groups, where C1 is the rotation group with order
1; its unique element is the identity element (i.e., 1-fold rotation).
We denote the order of G ∈ S by |G|.

When G′ is a subgroup of G (G,G′ ∈ S), we denote it by
G′ ≼ G. If G′ is a proper subgroup of G (i.e., G′ ! G), we
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denote it by G′ ≺ G. For example, we have T ≺ O, T ≺ I, but
O ⊀ I. If G ∈ S has a k-fold axis, then Ck ≼ G. Clearly, Ck′ ≼ Ck

if k′ is a divisor of k, which also holds for dihedral groups.
Definition 3 Let P be a set of n points. The rotation group

γ(P) of a set of points P is the rotation group in S applicable to P
and none of its proper supergroup in S is applicable to P.

From the definition, γ(P) is always uniquely determined irre-
spective of the local coordinate systems through which a robot
observes P. We say a rotation axis of γ(P) is occupied when it
contains some points of P and unoccupied otherwise. For exam-
ple, when P forms a cube, γ(P) = O and all 3-fold rotation axes
of O are occupied while all 2-fold rotation axes and all 4-fold
rotation axes are unoccupied.

Given a set of points P, γ(P) determines the arrangement of
its rotation axes. We thus use γ(P) and its arrangement in P in-
terchangeably. A set of points P can be decomposed into dis-
joint subsets {P1, P2, . . . , Pm} where each element in the fam-
ily is an orbit of some element of P: For a point p ∈ P, let
Orb(p) = {g ∗ p | g ∈ γ(P)} be the orbit of the group action of
γ(P) through p. Then we let {P1, P2, . . . , Pm} = {Orb(p) | p ∈ P}
be its orbit space. Such partition is unique and we call it the γ(P)-
decomposition of P [10]. Note that the sizes of the elements of
the γ(P)-decomposition of P may be different. Such decompo-
sition does no depend on the local coordinate systems and each
robot can recognize it.

For two groups G,H ∈ S, an embedding of G to H is an em-
bedding of each rotation axis of G to one of the rotation axes of H
so that any k-fold axis of G overlaps a k′-fold axis of H satisfying
k|k′ with keeping the arrangement, where a|b represents that a di-
vides b. For example, we can embed T to O so that each 3-fold
axis of T overlaps a 3-fold rotation axis of O, and each 2-fold
rotation axis of T to a 4-fold axis of O. Note that there may be
many embeddings of G to H. Observe that we can embed G to H
if and only if G ≼ H.

We say that a set of points P is vertex-transitive regarding a
rotation group G, if (i) for any two points p, q ∈ P, g ∗ p = q for
some g ∈ G, and (ii) g ∗ p ∈ P for all g ∈ G and p ∈ P, where
∗ denotes the group action. On the other hand, a vertex-transitive
set of points is obtained by a rotation group G and a seed point s,
i.e., we apply the rotations of G to s. Clearly, each element of the
γ(P)-decomposition of a set of points P is a vertex-transitive set
of points regarding γ(P). For a vertex-transitive set of points P
and any p ∈ P, we call µ(p) = |{g ∈ G : g ∗ s = p}| the folding of
p.*3 We of course count the identity element of G for µ(p), and
µ(p) ≥ 1 holds for all p ∈ P. If p ∈ P is at b(P), its folding is
|γ(P)| and if p is on a k-fold rotation axis of γ(P), its folding is k.
Hence µ(p) for p ∈ P is identical for a set of points P generated
by a rotation group G and a seed point s. We abuse µ to a vertex-
transitive set of points P, and µ(P) represents µ(p) for p ∈ P.
When µ(P) > 1, the positions of points of P is uniquely deter-
mined in the arrangement of G if we ignore uniform scalings that
keep the center of G. Additionally, we have |P| = |G|/µ. Table 2
shows the set of points generated by the five kinds of rotation
groups.

*3 In group theory, the folding of a point P is the size of the stabilizer of p

Table 2 The folding of seed points and vertex-transitive sets of points

Group Order Folding Cardinality Polyhedron
Any G |G| |G| 1 Point

Ck k k 1 Point
1 k Regular k-gons

D2 4

2 2 Line

1 4
Regular tetrahedron,
Infinitely many sphenoids,
Infinitely many rectangle

Dk 2k
k 2 Line
2 k Regular k-gon
1 2k Infinitely many polyhedra

T 12
3 4 Regular tetrahedron
2 6 Regular octahedron
1 12 Infinitely many polyhedra

O 24

4 6 Regular octahedron
3 8 Cube
2 12 Cuboctahedron
1 24 Infinitely many polyhedra

I 60

5 12 Regular icosahedron
3 20 Regular dodecahedron
2 30 Icosidodecahedron
1 60 Infinitely many polyhedra

For a set of points P and G ≼ γ(P) (G ∈ S), an arrangement of
G (i.e., an embedding of G to γ(P)) defines a decomposition of P
into disjoint subsets by its group action. We call such a decom-
position a G-decomposition of P.

Definition 4 Let P be a set of n points. The symmetricity
ϱ(P) of a set of points P is the set of rotation groups G ∈ S that
acts on P and there exists an embedding of G to γ(P) such that
each element of G-decomposition of P is a |G|-set.

From the definition, ϱ(P) always contains C1 and if G ∈ ϱ(P),
ϱ(P) contains every element of S that is a subgroup of G. When
it is clear from the context, we denote the elements of ϱ(P) by
the set of rotation groups such that none of its proper super-
group in S is in ϱ(P). For example, if P forms a cube, ϱ(P) =
{C1,C2,C4,D2,D4}, and we denote it by ϱ(P) = {D4}.

Because any G ∈ ϱ(P) acts on P, G is a subgroup of γ(P) and
any initial configuration P is a set of n points, we can rephrase the
above definition as follows: For an initial configuration P, ϱ(P)
is the set of rotation groups G ∈ S that has an embedding to un-
occupied rotation axes of γ(P) and if all rotation axes of γ(P) is
occupied, ϱ(P) = {C1}. Because an initial configuration P does
not contain any multiplicity, if a point of P is on a rotation axis of
γ(P), none of G ∈ ϱ(P) has that axis because such point produces
a vertex-transitive set of points with size smaller that |G|.

We further introduce the rotation group of local coordinate sys-
tems of robots. Of course robots may recognize neither the local
coordinate systems of other robots nor the rotation group of local
coordinate systems at a glance. This notion is useful when we
prove impossibility results.

We denote an arrangement of local coordinate systems by a set
of four-tuples Q = {(pi, xi, yi, zi) | ri ∈ R} where pi represents
the position of ri ∈ R in Z0 and xi, yi, zi are the positions (1, 0, 0),
(0, 1, 0), and (0, 0, 1) of Zi observed in Z0. An arrangement of lo-
cal coordinate systems encodes the positions of the robots since
the current position of the robot is the origin of its local coordi-
nate system. We also use the set of points P = {p1, p2, . . . , pn} to

defined by G(p) = {g ∈ G : g ∗ p = p}.
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describe the positions of robots of Q.*4

We consider rotations on Q that produces the same arrange-
ment of local coordinate systems.

Definition 5 The rotation group σ(Q) of a set of local coor-
dinate systems Q is the rotation group in S applicable to Q and
none of its proper supergroup in S is applicable to Q.

Clearly, σ(Q) is uniquely determined and it also determines
the arrangement of rotation axes of σ(Q) in Q that decomposes
Q into disjoint subsets by the group action of σ(Q). We call this
partition σ(Q)-decomposition of Q. We focus on the decomposi-
tion of P by σ(Q) rather than the decomposition of Q by σ(Q).
If it is clear from the context, we denote σ(Q) by σ(P) and the
σ(Q)-decomposition of Q by the set of origins (i.e., positions of
robots) of Q.

We finally note that the robots can agree on γ(P) irrespective
of local coordinate systems, while they cannot agree on σ(P) by
just observing P in their local coordinate systems.

4. Necessity of Theorem 1
In this section, we prove the necessity of Theorem 1.
Theorem 6 Oblivious FSYNC robots can form a target pat-

tern F from an initial configuration P only if ϱ(P) ⊆ ϱ(F).
We first show the following relations between the rotation

group of local coordinate systems and the rotation group of posi-
tions of robots.

Property 7 Let P and {P1, P2, . . . , Pℓ} be a set of n points and
its σ(P)-decomposition. Then we have the following three prop-
erties:
(i) σ(P) ≼ γ(P), thus there is an embedding of σ(P) to γ(P).
(ii) For each Pi (1 ≤ i ≤ ℓ), the robot forming Pi have the same
observation.
(iii) |Pi| = |σ(P)| for each 1 ≤ i ≤ ℓ.

Lemma 8 Let P be an arbitrary initial configuration. For
an arbitrary deterministic algorithm ψ and its execution P(0)(=
P), P(1), P(2), . . ., we have σ(P(t)) ≽ σ(P) for any t ≥ 0, thus
γ(P(t)) ≽ σ(P).
Proof. Let P and {P1, P2, . . . , Pm} be an initial configura-
tion and its σ(P)-decomposition of P. Because P is a set of
n points, from Property 7, |Pi| = |σ(P)| for 1 ≤ i ≤ m. Let
P(0)(= P), P(1), P(2), . . . be the execution of an arbitrary algo-
rithm ψ. We focus on an arbitrary element Pi. Let p j ∈ Pi.
For any pk ∈ Pi, there exists an element gk ∈ σ(P) that satisfies
gk ∗ p j = pk and gk ! gk′ if k ! k′. We will show that the move-
ment of each pk ∈ Pi is symmetric regarding gk, hence the robots
of Pi keeps the rotation axes of σ(P).

Consider the Compute phase at time 0, and let ψ(Zj(P(0))) = d j

(in Zj). From Property 7, each robot pk ∈ Pi have the same
local observation and ψ(Zk(P(0))) = ψ(Zj(P(0))) = d j (in Zj).
Because p j, pk ∈ Pi, Zk(P(0)) = gk ∗ Zj(P(0)) = Zj(P(0)).
Hence, ψ(Zk(P(0))) = dk = d j (in Zk). Clearly, we have
Z−1

k (dk) = gk ∗ Z−1
j (d j), and after the movement the positions of

robots that formed Pi are symmetric regarding the same arrange-
ment of σ(P). Additionally, the local coordinate system of these
robots are symmetric regarding the same arrangement of σ(P).

*4 Here we assume that the robots occupy distinct positions.

Let Pi(1) ⊆ P(1) be the positions of robots that formed Pi in
P(0). Hence, we have σ(Pi(1)) = σ(P(0)). Because this property
holds for all Pi (1 ≤ i ≤ m), we have σ(P(1)) ≽ σ(P(0)). Note
that P(1) can be a multiset of points.

We can generate an infinite execution P(0)(= P), P(1), · · · such
that σ(P(t)) ≽ σ(P(0)) by repeating the above procedure to each
Pi(t − 1) (i = 1, 2, · · · ,m and t ≥ 1). Thus γ(P(t)) ≽ σ(P(0)) for
all t ≥ 0. !

We further have the following property.
Lemma 9 For an arbitrary configuration P without multiplic-

ity, σ(P) ∈ ϱ(P).
We now prove Theorem 6.
Proof. (Proof of Theorem 6) Let P and F be a given initial

configuration and a target pattern without multiplicity that satisfy
ϱ(P) " ϱ(F). Hence, there exists G ∈ ϱ(P) such that G " ϱ(F).

Assume that there exists an algorithm ψ that forms F from
P, for contradiction. Assume that σ(P) = G. From
the assumption, there exists at least one execution P(0)(=
P), P(1), P(2), . . . , P(t) ≃ F. From Lemma 8, we have σ(P(t)) ≽
σ(P(0)) = G.

From the definition of the symmetricity, we have the follow-
ing: if G′ ∈ ϱ(F), any subgroup of G′ is in ϱ(F). In other
words, if there exists a subgroup of G′ that is not in ϱ(F), then
G′ " ϱ(F). Because σ(P(0)) = G is not in ϱ(F), its supergroup
σ(P(t)) = σ(F) is not in ϱ(F).

This contradicts Lemma 9 that says for an arbitrary configura-
tion F without multiplicity, σ(F) ∈ ϱ(F). !

5. Sufficiency of Theorem 1
In this section, we show the sufficiency of Theorem 1.
Theorem 10 Oblivious FSYNC robots can form a target pat-

tern F from an initial configuration P if ϱ(P) ⊆ ϱ(F).
We present a pattern formation algorithm ψPF that makes

oblivious FSYNC robots form a target pattern F from a given
initial configuration P if P and F satisfies the condition of The-
orem 10. The proposed algorithm consists of three phases: The
first phase translates P into another configuration P′ that satis-
fies γ(P′) ∈ ϱ(P) and no robot is on the rotation axis of γ(P′)
in P′. The second phase makes the robots agree on an embed-
ding of F into P′ so that the embedded target pattern F̃ satisfies
b(F̃) = b(P′) and B(F̃) = B(P′). Finally, the third phase gives
each robot its final destination by making the robots agree on a
perfect matching between P′ and F̃, denoted by M(P′, F̃).

The following theorem has been shown in [10] that allows ψPF

to concentrate each element of the γ(P)-decomposition of the cur-
rent configuration P.

Theorem 11 [10] Let P be a set of points. Then P can be
decomposed into subsets {P1, P2, . . . , Pm} in such a way that each
Pi is a vertex-transitive set of points regarding γ(P). Furthermore,
the robots can agree on a total ordering among the elements of the
γ(P)-decomposition of P.
In [10], it is shown that there exists an ordering of the elements of
{P1, P2, . . . , Pm} so that P1 is on L(P), Pm is on B(P), and Pi+1 is
not in the interior of B(Pi). Additionally, robots can easily com-
pute and agree on such ordering. In the following, we assume that
{P1, P2, . . . , Pm} is ordered in this way.
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5.1 First phase: Symmetry breaking
In the first phase, robots execute a symmetry breaking algo-

rithm ψS Y M that translates an initial configuration P into another
configuration P′ that satisfies γ(P′) ∈ ϱ(P). Algorithm ψS Y M

is based on the “go-to-center” algorithm in [10] and it realizes
symmetry breaking in an initial configuration P whose γ(P)-
decomposition contains a regular tetrahedron, a regular octahe-
dron, a cube, a regular dodecahedron, or a regular icosahedron.
When robots form one of these polyhedra, they are on some ro-
tation axes of γ(P) and γ(P) " ϱ(P). Algorithm ψS Y M applies the
“go-to-center” algorithm so that the robots on the rotation axes
remove the rotation axes by leaving their current positions. Thus
the symmetricity of the new configuration is a proper subgroup
of the rotation group of the previous configuration. By repeat-
ing this procedure, the system reaches a configuration P′ with
γ(P′) ∈ ϱ(P). Additionally, ψS Y M makes the robots repeat this
procedure until no robot is on the rotation axes of the rotation
group of the current configuration.

We first note that there is no way for the robots to reduce the
rotation group of an initial configuration P when P forms a reg-
ular n-gon. Here, γ(P) = Dn and ϱ(P) = {Cn,Dn/2} if n is even,
ϱ(P) = {Cn} otherwise. Consider the case where n is even. To
show the symmetricity, the robots either show an orientation of
some single rotation axis or divide themselves into two groups to
form UDn/2 ,1. However, when σ(P) = Cn, the robots keep some
regular n-gon forever. The robots neither show an agreement on
the orientation of a single rotation axis nor divide themselves into
two groups. Because the robots are oblivious, they do not re-
member the previous trials without recognizing σ(P) = Cn, and
they keep on trying to show their symmetricity forever. We have
the same situation when n is even. We avoid this infinite trial by
leaving a regular n-gon as it is. Hence the proposed algorithm
ψS Y M do nothing when P forms a regular polygon. This is not a
problem for Theorem 1 since from such P, the target pattern F
satisfies Cn,Dn/2 ∈ ϱ(F) and hence γ(F) ≽ Dn, and the robots do
not need to break the symmetry.

Let {P1, P2, . . . , Pm} be the γ(P)-decomposition of an initial
configuration P. We focus on the element that consists of points
on rotation axes of γ(P). In other words, we focus not on the co-
ordinates of each point of Pi, but on the folding of Pi. We denote
a polyhedron generated by a rotation group G and a seed point s
with folding µ by UG,µ. For example, UO,3 represents a regular
cube.

We start with a symmetry breaking algorithm when the robots
form one of the seven polyhedra. Hence we consider UG,µ for
G ∈ {T,O, I} and µ > 1. The proposed “go-to-center” algorithm
is shown in Algorithm 1. If a current configuration forms one of
the above seven polyhedra, Algorithm 1 makes each robot select
an adjacent face and approach the center of the selected face, but
stop ϵ before the center.

Lemma 12 Let P be an arbitrary initial configuration that
forms a UG,µ for G ∈ {T,O, I} and µ > 1. One step execution
of Algorithm 1 translates P into another configuration P′ that sat-
isfies γ(P′) ∈ ϱ(P).
Proof. (Sketch.) Let P, P′ be an initial configuration that forms
one of the seven (semi-)regular polyhedra and a configuration ob-

Algorithm 1 Go-to-center(P) for robot ri ∈ R
Notation

P: The positions of robots forming an UG,µ for G ∈ {T,O, I} and
µ > 1 observed in Zi.
pi: Current position of ri.
ϵ: an arbitrarily small distance compared to the distance between any
two centers of the faces of P.

Algorithm
Switch (P) do

Case P forms a cuboctahedron:
Select an adjacent triangle face.
Destination d is the point ϵ before the center of the selected
face on the line from pi to the center.
Endcase

Case P forms a icosidodecahedron:
Select an adjacent pentagon face.
Destination d is the point ϵ before the center of the selected
face on the line from pi to the center.
Endcase

Default:
Select an adjacent face.
Destination d is the point ϵ before the center of the selected
face on the line from pi to the center.
Enddefault

Enddo

tained by one-step execution of Algorithm 1.
The proof follows the same idea as [10]. Let D be the set of all

points that can be selected by the robots as their destinations in P.
When P is a regular polyhedron, the points of D are placed around
the vertices of the dual of P, which we call base polyhedron for
D. For example, when P is a cube, the base polyhedron is a reg-
ular octahedron and the points of D are put around the corners of
a regular octahedron (Figure 1(c)). When P is a cuboctahedron
(an icosidodecahedron, respectively), the destinations are placed
around the 3-fold rotation axes of O (the 5-fold rotation axes of
I, respectively). In this case, we consider the cube (the regular
icosahedron, respectively) as its base polyhedron.

Figure 1 shows the base polyhedron and D for each of the seven
initial configurations. When P is a regular polyhedron, D forms
a polyhedron obtained by cutting the vertices of the base polyhe-
dron and bevel its original edges. For example, when P is a cube,
D is a polyhedron obtained by a regular octahedron with above
procedure and we call the polyhedron ϵ-cantellated octahedron
(Figure 1(c)). In the same way, if P is a regular tetrahedron, D
forms an ϵ-cantellated tetrahedron (Figure 1(a)), if P is a regu-
lar octahedron, D forms an ϵ-cantellated cube (Figure 1(b)), if P
is a regular dodecahedron, D forms an ϵ-cantellated icosahedron
(Figure 1(f)), and if P is a regular icosahedron, D forms an ϵ-
cantellated dodecahedron (Figure 1(e)). On the other hand, when
P is a semi-regular polyhedra, D forms a polyhedron obtained by
cutting the vertices of the base polyhedron. For example, when
P is a cuboctahedron, D is a polyhedron obtained from a cube
by cutting its vertices, and we call the polyhedron an ϵ-truncated
cube (Figure 1(d)). If P is a icosidodecahedron, D forms an ϵ-
truncated icosahedron (Figure 1(g)).

Algorithm 1 makes the robots select a subset of size |P| from
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(a) For UT,3 (b) For UO,4 (c) For UO,3 (d) For UO,2 (e) For UI,5 (f) For UI,3 (g) For UI,2

Fig. 1 Candidate set D for initial configuration UG,µ for G ∈ {T,O, I} and µ > 1.

D. We can show that the symmetricity of any such subset has the
rotation group that satisfies the statement. !

Now, we show the overview of algorithm ψS Y M that translates
an initial configuration P to another configuration P′ that satisfies
γ(P′) ∈ ϱ(P) if γ(P) " ϱ(P). Algorithm ψS Y M makes the robots
on each type (i.e., fold) of the rotation axes leave the positions
by repeating the following procedure: ψS Y M first selects an el-
ement of the γ(P)-decomposition of the current configuration P
that is on the rotation axes of γ(P) and make the element shrink
toward b(P) so that the other robots keep the smallest enclos-
ing ball. Then ψS Y M makes the innermost robots execute the go-
to-center algorithm (Algorithm 1) to eliminate the rotation axes.
Hence, it takes at most two steps to eliminate one type of rotation
axes. Because there are at most three types of rotation axes in
any rotation group, the proposed algorithm terminates at most six
steps.

Any terminal configuration P of ψS Y M satisfies one of the fol-
lowing two properties:
(i) If γ(P) ! C1, then P is a regular n-gon or no robot is on the

rotation axes of γ(P).
(ii) γ(P) = C1.
Hence P satisfies that the γ(P)-decomposition of P consists of el-
ements of size |γ(P)|, which is shown to be useful in the pattern
formation algorithm. Here, C1-decomposition of P divides P into
n subsets.

We can show that the movement of robots gradually eliminate
the occupied rotation axes of γ(P(0)) without adding any new ro-
tation axis. Thus we have Theorem 13. We omit the correctness
proof of ψS Y M because of the page restriction.

Theorem 13 Let P be an arbitrary initial configuration. Al-
gorithm ψ translates P into another configuration P′ that satisfies
(i) γ(P′) ∈ ϱ(P) and (ii) all rotation axes of γ(P′) are unoccupied,
in at most six steps.

5.2 Second phase: Agreement of F̃
As we have already seen in Section 5.1, algorithm ψS Y M trans-

lates an initial configuration P to another configuration P′ that
satisfies (i) γ(P′) ∈ ϱ(P), (ii) If γ(P′) ! C1, then P′ is a reg-
ular n-gon or no robot is on the rotation axes of γ(P′). Let
{P′1, P′2, . . . , P′m} be the γ(P′)-decomposition of P′. From the first
property and the condition of Theorem 10, we have γ(P′) ∈ ϱ(F).
From the second property, the size of each element |P′i | (1 ≤
i ≤ m) is |γ(P′)|. The second property implies σ(P′) = γ(P′) in
the worst case and the robots forming each element may forever
move symmetrically regarding γ(P′). Thus we make the robots
forming each element move to symmetric positions.

Because γ(P′) ∈ ϱ(F), there exists an embedding of γ(P′) to

unoccupied rotation axes of γ(F). Thus when we fix F in P′ in
such a way, γ(P′)-decomposition of F consists of elements of size
|γ(P′)|. We can overcome the symmetricity of each element of the
γ(P′)-decomposition of P′ by assigning it to an element of γ(P′)-
decomposition of F. The proposed pattern formation algorithm
ψPF first makes the robots agree on an embedding of F in P′ so
that γ(P′) overlaps unoccupied rotation axes of γ(F). We denote
the embedded target pattern by F̃. The size of F̃ is determined so
that b(P′) = b(F̃) and B(P′) = B(F̃) hold. Then ψPF makes the
robots compute a perfect matching between P′ and F̃ to assign a
final destination to each robot.

However, γ(P′) is not sufficient to fix F̃. For example, con-
sider the case where P′ is a pyramidal frustum with regular
hexagon bases (thus γ(P′) = C6 and ϱ(P′) = {C6}) and F is
an anti-prism with regular hexagon bases (thus γ(F) = D6 and
ϱ(F) = {D3,C6}). We can easily come up with an idea that we
fix F̃ considering the single rotation axis of γ(P′) as the principal
axis of γ(F̃). However, there are still infinite arrangement of F̃
depending on the rotation of the hexagonal anti-prism. This is
because the secondary axes of γ(F̃) is not fixed. Algorithm ψPF

fixes all rotation axes of F̃ by using the positions of points of P′.
For example, in this case, γ(P′)-decomposition of P′ consists of
two regular hexagons and we select the first element as reference
points so that the vertices of the regular hexagon fixes the three
secondary axes of γ(F̃). This also fixes the arrangement of the re-
maining three secondary axes of γ(F) and F̃. We call such refer-
ence points chosen from the elements of the γ(P′)-decomposition
of P′ a reference polygon. The robots can agree on the reference
polygon because of Theorem 11. Specifically, ψPF extracts ref-
erence polygon from P′ and F̃ and fixes F̃ in P′ by overlapping
rotation axes of γ(P′) to unoccupied rotation axes of γ(F̃) and the
reference polygon of P′ to that of F̃.

5.3 Third phase: Matching M(P′, F̃)
Let P′ be a terminal configuration of ψS Y M and F̃ be the tar-

get pattern fixed in P′. As described in Section 5.2, the robots
now compute a perfect matching between the points of P′ and the
points of F̃ to finally form the target pattern.

We now consider the rotation group of P′ ∪ F̃. We consider
the rotations that matches the points of P′ to P′ and those of F̃
to F̃. Hence, γ(P′ ∪ F̃) ≼ γ(P′). Actually, γ(P′ ∪ F̃) = γ(P′)
because γ(P′) ∈ ϱ(F̃) and each G ∈ ϱ(F̃) ≼ γ(F), i.e., any rota-
tion of γ(P′) is applicable to F̃. Hence, the group action of γ(P′)
divides P′ ∪ F̃ to a vertex-transitive set of points regarding γ(P′)
so that each element consists of only the point of P′ or only those
of F. Additionally, each element consists of |γ(P′)| points since
no robot is on γ(P′).
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Fig. 2 The white circles are positions of the robots, and the black circles are
the positions of destinations. P′ forms a cantellated octahedron and
F̃ forms a truncated cube. Each robots has two nearest target points.

Algorithm 2 Pattern formation algorithm ψPF for robot ri ∈ R
Notation

P: The positions of robots observed in Zi.
pi: current position of ri.

Algorithm
If P is not a terminal configuration of ψS Y M then

Execute ψS Y M .
Else

Let F̃ be the target pattern fixed in P.
Move to the matched point in M(P, F̃).

Endif

Now, in the same way as [10], the robots can order the ele-
ments. Let {P′1, P′2, . . . , P′m} and {F̃1, F̃2, . . . , F̃m} be the elements
of P′ and those of F̃ that appears in the entire decomposition in
this order. Then ψPF sends the robots forming P′i to the positions
of F̃i for 1 ≤ i ≤ m. In each element P′i , each robot selects the
nearest point in F̃i as its destination. We first show that there ex-
ists a minimum weight perfect matching between the points of P′i
and F̃i, where the weight is the sum of distances between matched
points.

Lemma 14 For each element P′i and F̃i, there exists a mini-
mum weight perfect matching between the points of P′i and the
points of F̃i.

Each point of p ∈ P′i may have multiple nearest destinations.
Figure 2 shows an example where P′i forms a cantellated cube and
F̃i forms a truncated cube. For each robot (white circle), there are
two nearest destinations (black circles) around the corner of the
cube. In such cases, we can show that the conflict forms a cycle
around a rotation axis, and the robots can resolve it by a right-
screw rule around the rotation axis with b(P′) being the positive
direction.

We denote the entire matching obtained with these rules by
M(P′, F̃). Remember that all computations consisting of finding
reference polygon, fixing F̃, decomposition P′ ∪ F̃, and comput-
ing M(P′, F̃) is done in one Compute phase in a terminal config-
uration of ψS Y M . Finally, robots move the corresponding position
in M(P′, F̃) to complete the pattern formation.

We finally show the proposed pattern formation algorithm ψPF

in Algorithm 2.

6. Discussion on Theorem 2
In [10], the following necessary and sufficient condition for the

plane formation problem has been shown: The oblivious FSYNC
robots cannot form a plane from an initial configuration P if and

only if γ(P) is 3D and the size of each element of the γ(P)-
decomposition {P1, P2, . . . , Pm} of P is in {12, 24, 60}. Remember
that {12, 24, 60} are the order of the 3D rotation groups, T , O, and
I. Hence when the condition is satisfied, ϱ(P) contains at least one
3D rotation group. From Lemma 8, oblivious FSYNC robots can-
not form a plane when ϱ(P) contains a 3D rotation group. In [10],
the authors showed a plane formation algorithm that uses the “go-
to-center” algorithm when γ(P)-decomposition of P contains a
regular tetrahedron, a cube, a regular octahedron, a regular do-
decahedron, or an icosidodecahedron. Hence, we can rephrase
the necessary and sufficient condition of [10] as shown in Theo-
rem 2.

7. Conclusion
We have shown a necessary and sufficient condition for the

oblivious FSYNC robots to form a given target pattern. We in-
troduce the notion of symmetricity of positions of robots in 3D-
space and used it to characterize the pattern formation problem.
The necessary and sufficient condition is a generalization of that
in 2D-space. (See [7], [8], [9].) The results of this paper are
directly extended to target patterns with multiplicities and non-
oblivious robots. We further rephrase the existing necessary and
sufficient condition for the plane formation problem [10]. Our
future direction is to consider formation problems with weaker
assumptions, such as asynchrony among robots, non-rigid move-
ment, and limited visibility.
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