
IPSJ SIG Technical Report

Better Online Steiner Trees on Outerplanar Graphs

AkiraMatsubayashi1,a)

Abstract: This report addresses the classical online Steiner tree problem on edge-weighted graphs. It is known that a

greedy (nearest neighbor) online algorithm is O(log n)-competitive on arbitrary graphs with n vertices. It is also known

that no deterministic algorithm is o(log n)-competitive even on series-parallel graphs. The greedy algorithm is trivially

1- and 2-competitive on trees and rings, respectively, but Ω(log n)-competitive even on outerplanar graphs. The author

proposed a non-greedy algorithm and proved that the algorithm is 8-competitive on outerplanar graphs. In this report,

we improve the analysis and prove that this algorithm is 7.464-competitive on outerplanar graphs. We also present a

lower bound of 4 for arbitrary deterministic online Steiner tree algorithms on outerplanar graphs.

Keywords: Steiner tree, outerplanar graph, online algorithm, competitive analysis

1. Introduction

This report addresses the classical online Steiner tree problem

on edge-weighted graphs. We are given a graph G = (VG, EG)

with non-negative edge-weights w : EG → R+ and a subset R

of vertices of G. The (offline) Steiner tree problem is to find a

Steiner tree, i.e., a subtree T = (VT , ET) of G that contains all

the vertices in R and minimizes its cost c(T) =
∑

e∈ET
w(e). In

the online version of this problem, vertices r1, . . . , r|R| ∈ R are

revealed one by one, and for each i ≥ 1, we must construct a tree

containing ri by growing the previously constructed tree for r1,

. . . , ri−1 (null tree for i = 1) without information of ri+1, . . . , r|R|.

It is known that a greedy (nearest neighbor) online algorithm

is O(log n)-competitive on arbitrary graphs with n vertices [6].

It is also known that no deterministic algorithm is o(log n)-

competitive even on series-parallel graphs [6]. The greedy al-

gorithm is trivially 1- and 2-competitive on trees and rings, re-

spectively, but Ω(log n)-competitive even on outerplanar graphs.

No other nontrivial class of graphs that admits constant compet-

itive deterministic Steiner tree algorithms had been known, until

the author recently presented a non-greedy algorithm that is 8-

competitive on outerplanar graphs [7]. As for randomized algo-

rithms, a probabilistic embedding of outerplanar graphs into tree

metrics with distortion 8, presented by Gupta, Newman, Rabi-

novich, and Sinclair [5], implies an 8-competitive online Steiner

tree algorithm against oblivious offline adversaries. Various gen-

eralizations of the online Steiner tree problem are also studied,

such as generalized STP [2], vertex-weighted STP [8], and asym-

metric STP [1].

In this report, we improve the analysis of the algorithm pro-

posed in [7] and prove that this algorithm is 7.464-competitive

on outerplanar graphs. This algorithm connects a requested ver-

tex and the previously constructed tree using a path that is con-

1 Division of Electrical Engineering and Computer Science, Kanazawa

University Kakuma-machi, Kanazawa, 920–1192 Japan
a) mbayashi@t.kanazawa-u.ac.jp

stant times longer than a shortest path between the requested ver-

tex and the tree. An interesting application of the online steiner

tree problem is the file allocation problem, in which we main-

tain a dynamic allocations of multiple copies of data file on a

network with servicing online read/write requests. Bartal, Fiat,

and Rabani [3] propose a file allocation algorithm based on any

online Steiner algorithm. With this result, our result implies a

7.464(2 +
√

3)(≈ 27.86)-competitive randomized file allocation

algorithm against adaptive online adversaries.

2. Preliminaries

Graphs considered here are undirected and have non-negative

edge-weights, w(e) ≥ 0 for any edge e. For a graph G, we denote

its vertex set and edge set by VG and EG, respectively. We use

the notation of w also for graphs, i.e., w(G) :=
∑

e∈EG
w(e). For

a subset R of vertices of G, a Steiner tree of G for R is a subtree

T of G such that R ⊆ VT . T is said to be minimum if T has the

minimum cost w(T) overall Steiner trees of G for R.

Suppose that G is a planar graph. The weak dual of G is a graph

H such that VH is the set of bounded faces of G, and EH is the set

of two bounded faces F and F′ that have a common edge. G is

outerplanar if it can be drawn on the plane so that all the vertices

belong to the unbounded face, or equivalently, if H is a forest [4].

We say an edge of G to be outer if the edge is contained in the

unbounded face, inner otherwise.

In the rest of the report, we assume that G is biconnected, be-

cause finding a minimum Steiner tree of G can easily be reduced

to finding minimum Steiner trees of biconnected components of

G. This assumption implies that H is a tree. Let dG(u, v) be the

distance (i.e., the length of a shortest path) of vertices u and v

in G. We use the notation of dG also for the distance between a

graph and a vertex, i.e., dG(G′, v) := min{dG(u, v) | u ∈ VG′ } for a

subgraph G′ of G and v ∈ VG.

1ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-155 No.2
2015/11/20

IPSJ SIG Technical Report

3. Algorithm and Analysis

3.1 Algorithm α-Detour

Suppose that we are given an outerplanar graph G with edge-

weights w : EG → R+, and a sequence r1, r2, . . . , r|R| ∈ R ⊆ VG.

Our algorithm, denoted by α-Detour (α > 1), constructs trees

T1,T2, . . . ,T |R| as follows:

For the first vertex r1, we define T1 as the tree consisting of

the single vertex r1. We suppose that the weak dual H of G is a

tree rooted by a face containing r1. We introduce a forest F with

VF = EG as follows: If C is the root of H, then all the edges of C

are the roots of the connected components of F. Moreover, if C

is a face of G, and C′ is a child of C in H, then all the edges of

EC′ \EC are the children of the unique edge e ∈ EC∩EC′ in F. For

any inner edge e of G, let Fe be the sub-forest of F induced by

the descendants of e in F, and GF
e be the subgraph of G induced

by VFe
, i.e., by the descendants of e in Fe. (Note that neither Fe

nor GF
e contains e.)

For the ith vertex ri with i ≥ 2, α-Detour performs the follow-

ing steps:

α-Detour

(1) If ri ∈ VTi−1
, then return Ti := Ti−1.

(2) Otherwise, find a shortest path P = (p1, p2, · · · , p|P|) be-

tween a vertex p1 in Ti−1 and p|P| = ri. If there are two

or more such shortest paths, then choose one consisting of

edges as close to roots in F as possible.

(3) Let Ti := Ti−1.

(4) For j = 1 to |P| − 1, if p j+1 < VTi
, then call Detour-

edge(α, p j, p j+1) defined below.

(5) Return Ti.

Detour-edge(x, u, v) is a procedure to modify Ti by adding a

maximal path between Ti and v of length at most x · w(uv), where

x ≥ 1, and uv is an edge such that u ∈ VTi
, v < VTi

, and

w(uv) ≤ dG(Ti, v). The procedure is formally defined as follows:

Detour-edge(x, u, v)

(1) If uv is outer, then add uv to Ti, and return.

(2) If uv is inner, then find a shortest path Q = (q1, . . . , q|Q|) from

a vertex q1 in Ti to q|Q| = v in GF
uv. If there are two or more

such shortest paths, then choose one consisting of edges as

close to uv in Fuv as possible.

(3) If w(Q)/w(uv) > x, then add uv to Ti.

(4) Otherwise, call Detour-edge(x ·w(uv)/w(Q), q j, q j+1) for j =

1 to |Q| − 1.

(5) Return.

3.2 Correctness

Since α-Detour and Detour-edge only add edges to Ti−1, Ti

contains Ti−1 as a subgraph. Therefore, it suffices to show that

α-Detour connects ri to Ti.

Lemma 1 Detour-edge(x, u, v) adds a path of length at most

x · w(uv) that connects a vertex of Ti and v.

Proof We prove this lemma by induction on the depth of uv, i.e.,

the distance in F from uv to the root. If uv is outer, then the pro-

cedure chooses uv as a path connecting u and v. Therefore, this

path has length w(uv) ≤ x · w(uv).

Assume that uv is inner, and that the lemma holds for any

depth larger than that of uv. If w(Q)/w(uv) > x in Step 3,

then the procedure chooses uv as a path connecting u and v, and

therefore, the lemma holds. Otherwise, by induction hypothesis,

Detour-edge(x · w(uv)/w(Q), q1, q2) adds a path of length at most

x ·w(uv)w(q1q2)/w(Q) that connects a vertex in Ti and q2 in GF
q1q2

.

We note that because q1q2 is a descendant of uv, every path con-

necting a vertex in Ti and v must pass through q2 at this point.

This means that q3 < VTi
and w(q2q3) = dG(Ti, q3). Therefore, by

induction hypothesis again, Detour-edge(x · w(uv)/w(Q), q2, q3)

adds a path of length at most x · w(uv)w(q2q3)/w(Q) that con-

nects a vertex in Ti and q3 in GF
q2q3

. Repeating this process for

all j < |Q|, we conclude that Detour-edge(x, u, v) adds a path of

length at most
∑

j(x · w(uv)w(q jq j+1)/w(Q)) = x · w(uv) that con-

nects a vertex in Ti and v.

�

Since α-Detour calls Detour-edge(α, p j, p j+1) unless p j+1 has

already been contained in Ti, by Lemma 1, we have the following

lemma:

Lemma 2 For i ≥ 2, α-Detour connects ri to Ti with a path of

length at most α · dG(Ti−1, ri).

3.3 Competitiveness

To analyze competitiveness of α-Detour, we modify F as the

Steiner tree grows. Then, we partition a planar drawing of G ac-

cording to the modified forest.

3.3.1 Modifying Forest

Every time Detour-edge(α, p j, p j+1) is called in Step 4 of

α-Detour, we mark p j p j+1 “greedy”. Before processing the

Detour-edge(α, p j, p j+1), if p j p j+1 is an ancestor of one or more

maximal subtrees of F rooted by “greedy” edges e, then we re-

move (e, e′) from EF , where e′ is a parent of e. This yields new

connected components rooted by “greedy” edges.

Let F∗ denote the modified forest. For any inner edge e in G,

just as defined for F, F∗e is the sub-forest of F∗ induced by the

descendants of e in F∗, and GF∗

e is the subgraph of G induced by

VF∗e , i.e., by the descendants of e in F∗e .

For every edge uv such that Detour-edge(x, u, v) is called, let

Quv be the path Q constructed in Step 2 for uv. We note that

Detour-edge(x, u, v) is processed only in GF
uv. Moreover, for any

edge u′v′ in Fuv that is an ancestor of an edge of Quv, Detour-

edge(·, u′, v′) will never be called later. This is because, by the

definition of Quv in Step 2 of Detour-edge, we can find a path

along Quv shorter than the edge u′v′ from the already constructed

Steiner tree to u′ or v′. This implies the following lemma:

Lemma 3 For any edge uv such that Detour-edge(x, u, v) is

called, uv and edges of Quv are contained in the same connected

component of F∗.

3.3.2 Partition of Planar Drawing

We regard edges and paths as line segments of the preserved

length on an outerplanar drawing of G. We partition the drawing

by subdividing edges in bottom-up fashion. We define that X is

2ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-155 No.2
2015/11/20

IPSJ SIG Technical Report

the set of inner edges e such that GF∗

e does not contain an outer

edge in G. Such e and any of its descendants in F are in differ-

ent connected components of F∗, or both of them are in X. The

following is the procedure to subdivide edges:

Subdivision

(1) We do not subdivide any outer edge. We consider the subdi-

vision of an outer edge to be itself.

(2) For an inner edge e, suppose that all its children c1, . . . , ck

in F∗ (or, all roots of connected components of F∗e) but not

in X have already been subdivided. Such children induces a

path in G. For otherwise, there would be two children in F∗,

and a child in F but not in F∗, which is between the former

two children in G. This implies that at least one of the two

children in F∗ should have been in X. We define S e as the

path in G obtained by concatenating k elements, ith of which

is ei if ei is outer or w(ei) ≤ w(S ci
), and S ci

otherwise.

(3) We subdivide e into ℓ consecutive line segments of lengths

w(e)w(s1)/w(S e), . . . , w(e)w(sℓ)/w(S e), where s1, . . . , sℓ are

the consecutive line segments into which S e has been subdi-

vided.

This procedure naturally induces a partition of the outerpla-

nar drawing of G, in such a way that in Step 3, si and the line

segment of e of length w(e)w(si)/w(S e) are in the same parti-

tion. We denote by e[si] the line segment on e in this parti-

tion. Generally, we consider S e to be projected onto e and de-

note e[
⋃

i∈I si] :=
⋃

i∈I e[si] for a subset I of {1, . . . , ℓ}, implying

e[S e] = e. For an edge e′ is in F∗e , by the definition of S e in

Step 2, either e′ or S e′ can be a part of S e. Therefore, if e′ is an

ancestor of an edge in S e, then it follows that S e′ is a subpath of

S e. For such e′, we define e[e′] := e[S e′]. For the case that e′

is a descendant of an edge in S e, we further extend this notion in

such a way that if e[e′′] and e′′[e′] are already defined for some

edge e′′, then e[e′] := e[e′′[e′]]. With these definitions, we have

defined e[e′] for any edges e and e′ in F∗e .

A path is said to cover an edge if the edge has its ancestor in

the path. We can observe that S e is:

Condition 1

(1) a path covering any outer edge in F∗e ;

(2) such a shortest path in GF∗

e passing through edges as close

to e in F∗ as possible.

Lemma 4 For any edge uv such that Detour-edge(x, u, v) is

called, it follows that Quv = S uv.

Proof By Lemma 3, it suffices to prove that Quv is a shortest

path satisfying Condition 1(1). Let O be the set of outer edges that

are descendants of uv when Quv is constructed. If O equals the set

of outer edges in F∗uv, then the lemma clearly holds. Assume that

some edges are removed from O at later point. I.e., an ancestor

ur of the removed edges is newly marked “greedy”, where u is a

vertex of the current Steiner tree T , and r is a new request. By

Lemma 3, ur is neither contained in Quv nor an ancestor of an

edge of Quv. Any path contains neither u nor r has unchanged

length not shorter than Quv by its minimality. Consider a path

containing u and r. Since ur is “greedy”, dG(T \ ur, r) ≥ w(ur).

Therefore, to cover the remaining outer edges, we need a cost at

least w(ur). This means that such a path has the length same as

the path containing ur, which is not shorter than Quv by its mini-

mality. Therefore, we cannot obtain a shorter path covering outer

edges. �

By a similar proof, we also have the following lemma:

Lemma 5 For any edge uv with w(uv) = dG(u, v), it follows that

w(uv) ≤ w(S uv).

Lemma 6 Suppose that uv is a “greedy” edge in Pi for some

i, and that P̄i is the path connecting a vertex of Ti and v that is

constructed by Detour-edge(α, u, v) in Step 4 of α-Detour. If e is

an edge in F∗e′ for some edge e′ in P̄i, then w(e) > α · w(uv[e]).

Proof We prove the lemma by induction on the number of re-

cursive depths for Detour-edge(α, u, v) to output e′.

Assume first that uv = e′, i.e., uv is added to Ti in Step 3 of

Detour-edge(α, u, v). If e is in Quv, then since w(Quv)/w(uv) > α,

it follows that

w(e) = w(e)w(Quv)/w(S uv) [by Lemma 4]

> w(e) · α · w(uv)/w(S uv)

= α · w(uv[e]). [by the definition of uv[·]]

Otherwise, since an edge in F∗uv that is an ancestor of an edge

of Quv cannot be “greedy”, e is a descendant of an edge e′′ of

Quv. Any path containing e and covering any outer edge in F∗e′′ is

not shorter than S e′′ , which is not shorter than e′′ by Lemma 5.

This means that w(e) ≥ w(e′′[e]). Combining with w(e′′) >

α · w(uv[e′′]), we have w(e) ≥ w(e′′[e]) > α · w(uv[e′′[e]]) =

α · w(uv[e]).

Assume next that e′ is output through two or more recursive

calls of Detour-edge, and that the lemma holds for a smaller num-

ber of recursive calls. By this assumption, Detour-edge(x, u′, v′)

is recursively called with x = α ·w(uv)/w(Quv) for some edge u′v′

in Quv. Regarding this Detour-edge as being called in x-Detour,

we have

w(e) > x · w(u′v′[e]) [by induction hypothesis]

= (α · w(uv)/w(Quv)) · w(u′v′[e])

= α · w(uv)w(u′v′[e])/w(S uv) [by Lemma 4]

= α · w(uv[u′v′[e]]) [by the definition of uv[·]]
= α · w(uv[e]).

Thus, we have the lemma. �

3.3.3 Comparison to Minimum Steiner Tree

Suppose that Z is any Steiner tree for R. If an inner edge uv,

shared by a face C and its child C′ of G, is contained in Z, then

we decompose G into two graphs G′ and G′′ induced by C and its

ancestor faces in H, and by C′ and its descendant faces in H, re-

spectively. Decomposing G by all inner edges contained in Z, we

obtain a set B of biconnected outerplanar subgraphs of G, each

of which contains edges of Z only in its unbounded face. Unless

B ∈ B contains the root of H, there is an edge eB in B that is an

3ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-155 No.2
2015/11/20

IPSJ SIG Technical Report

ancestor in F of all the other edges of B. We note that uv is con-

tained in Z. For convenience, if B contains the root of H, then we

suppose eB := r1r1 and regard eB to have weight 0. Let ZB be the

path induced by EB ∩ EZ .

Lemma 7 Suppose that for any edge z in ZB \ eB, ez ∈ EB is

the outermost “greedy” edge such that F∗ez
contains z. Then, it

follows that

∑

e

w(e[z]) <
α

α − 1
w(ez[z]),

where the summation is overall “greedy” edges e such that F∗e
contains z.

Proof Since z is contained in F∗ez
, any path S containing z and

covering any outer edge in F∗ez
not shorter than S ez

, which is not

shorter than ez by Lemma 5. This implies that w(z) ≥ w(ez[z]).

By Lemma 6, for any edges e and an descendant e′ of e

to be summed, it follows that w(e′) > α · w(e[e′]), implying

that α−1w(e′[z]) > w(e[e′[z]]) = w(e[z]). Therefore, we have
∑

e w(e[z]) <
∑

i≥1 α
−1(i−1)w(et[z]) < α

α−1
w(ez[z]). �

Lemma 8 Suppose that O is the set of edges contained in the

unbounded face of B but not in in ZB. Then, it follows that

∑

o∈O, e

w(e[o]) ≤ w(ZB),

where the summation is overall “greedy” edges e such that F∗e
contains o.

Proof Let D be the partitioned region of the outerplanar draw-

ing that contains edges O. Because no vertex in R resides inside

D, if a “greedy” edge e such that F∗e contains an edge of O first

enters D, then the edge must get out of D along a path consisting

of “greedy” edges and reach a vertex in ZB. We associate e with

the path on ZB connecting the end-vertices of the “greedy” path,

which is not longer than the associated path. These two paths

form a cycle.

A subsequent “greedy” edge e′ such that F∗e′ contains an edge

of O cannot join two vertices of the cycle, for otherwise, “greedy”

edges of the cycle are removed from F∗e′ , resulting only edges of

ZB in F∗e′ . Therefore, there exists a “greedy” path containing e′

and satisfying either of the following conditions: If the “greedy”

path connects two vertices in ZB and not in the cycle, then we

associate e′ with the path on ZB connecting these vertices. If the

“greedy” path connects a vertex u in ZB and not in the cycle, and a

vertex in the cycle, then we associate e′ with the path on ZB con-

necting u and the cycle. In either case, the associated path with e′

is edge-disjoint with the cycle and not shorter than the “greedy”

path containing e′. Repeating this argument, we have the lemma.

�

Lemma 9 It follows that w(T |R|) < α(3 + 1/(α − 1))w(Z).

Proof We can upper bound w(T |R|) by summing up w(e[z]) for z

and e satisfying the conditions of Lemma 7 and w(e[o]) for o and

e satisfying the conditions of Lemma 8, for all B ∈ B. Noting that

edge eB of B incurs not w(e[z]) in Lemma 7, it follows that

w(T |R|) ≤ α
∑

B∈B

∑

z,eB , e

w(e[z]) +
∑

o∈O, e

w(e[o])

[by Lm 2]

< α
∑

B∈B

∑

z,eB

α

α − 1
w(ez[z]) + w(ZB)

[by Lms 7 & 8]

= α
∑

B∈B

[

α

α − 1
w(ZB \ eB) + w(ZB \ eB) + w(eB)

]

= α
∑

B∈B

[(

2 +
1

α − 1

)

w(ZB \ eB) + w(eB)

]

= α

(

3 +
1

α − 1

)

w(Z).

�

Setting α = 1 + 1/
√

3 ≈ 1.577, we have the following theorem:

Theorem 10 Algorithm 1.577-Detour is 7.464-competitive.

4. Lower Bound

In this section, we prove a lower bound of 4 for any determin-

istic Steiner tree algorithm on outerplanar graphs.

4.1 Definition of Graph

Let m be a positive integer and ǫ be a positive real number. Let

G0 be a path of weight 1. The unique edge of G0 is said to be

of level 0. For i ≥ 1, let Gi be the graph obtained from Gi−1 by

adding mi edges of weight (1+ ǫ)i/
∏i

j=1 m j to each edge of level

i−1 in such a way that the added m edges form a path connecting

the end-vertices of the edge of level i−1. All the added edges are

said to be of level i. We suppose G := Gi with sufficiently large

i. We define F as the rooted tree with VF = EG such that for an

edge e of level i − 1, mi edges added to e are children in F of e.

We note that such children has the total weight of (1 + ǫ)w(e).

4.2 Adversary

We use a sequence Ki for i ≥ 0 defined as follows: Let K0 := 1

and K1 be less than but sufficiently close to 3. For i ≥ 1, we define

Ki+1 :=

(K0 + K1)(Ki − Ki−1) if Ki < (K0 + K1)(Ki − Ki−1),

Ki if Ki ≥ (K0 + K1)(Ki − Ki−1).

Our adversary Adv generates a request sequence against a de-

terministic Steiner tree algorithm Alg on G. In the initial phase,

called the 0th phase, Adv defines Z0 := G0 and requests vertices

of Z0. Let T0 be the Steiner tree computed by Alg for these re-

quests, and P0 be the path in T0 connecting the requests. For the

ith phase with i ≥ 1, Adv defines the path Zi consisting of chil-

dren in F of edges of Pi−1, and requests vertices of Zi that have

not been requested. Let Ti be the Steiner tree computed by Alg

for all the requested vertices thus far. For an edge e in Pi−1, ver-

tices incident to a child of e must be contained in the subgraph

S of Ti induced by the descendants of e. If S is connected, then

there is a path Qe in S connecting the end-vertices of e. Other-

wise, since Ti is connected, there is a unique child me such that

S ∪ me has a path Qe connecting the end-vertices of e. Let Pi

be the path obtained by concatenating Qe for all edges e in Pi−1.

4ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-155 No.2
2015/11/20

IPSJ SIG Technical Report

We can inductively observe that Pi and Zi are Steiner trees for the

requests up to the ith phase. If w(Pi) > γiw(Pi−1), then Adv quits

generating requests, where γi := Ki/Ki−1 ≥ 1. Otherwise, Alg

performs the next phase.

4.3 Analysis

The following lemma is used to guarantee that Adv quits in

finite phases.

Lemma 11 There exists ℓ ≥ 1 such that Kℓ+1 = Kℓ.

Proof Let (ai)i≥ be a sequence with the recurrence ai+1 =

b(ai − ai−1) with 0 < b < 4. If the recurrence is equivalent to

ai+1 − Aai = B(ai − Aai−1), i.e., ai+1 = (A + B)ai − ABai−1, then

A+ B = AB = b. Hence, A and B are solutions of x2 − bx+ b = 0,

i.e., (b ±
√

b2 − 4b)/2. These solutions are conjugate complex

numbers since 0 < b < 4. This means that ai =
Bi−Ai

B−A
(a1−Aa0)+Ai

obtained from the recurrence oscillates. Therefore, there exists

ℓ ≥ 1 such that aℓ ≥ aℓ+1 = b(aℓ − aℓ−1), implying Kℓ+1 = Kℓ. �

Lemma 11 implies γℓ+1 = Kℓ+1/Kℓ = 1, while

w(Pi) ≥ w(Zi) = (1 + ǫ)w(Pi−1) (1)

by the definitions of Pi and Zi. Therefore, Adv performs at most

ℓ + 1 phases.

The following lemma is used to estimate the ratio of the cost

of Alg to the cost of Adv.

Lemma 12
∑ j

i=0
Ki/K j−1 ≥ K0 + K1 for any j ≥ 1.

Proof We prove the lemma by induction on j. The lemma is

immediate for j = 1 since K0 = 1. For j ≥ 1, it follows that

∑ j+1

i=0
Ki

K j

≥
(K0 + K1)K j−1 + K j+1

K j

[by induction hypothesis]

≥
(K0 + K1)K j−1 + (K0 + K1)(K j − K j−1)

K j

= K0 + K1.

�

Lemma 13 If Adv quits at the qth phase, then w(Tq)/w(Zq)

tends to 4 as m→ ∞, ǫ → 0, and K1 → 3.

Proof By definition, Pi consists of descendants of edges in Pi−1.

This means that Pi and Pi−1 are edge-disjoint. Therefore, it fol-

lows that w(T j) ≥
∑q

i=0
w(Pi) − δ, where δ is the sum of w(me)

overall edges e in P0, . . . , Pq−1 having me. We can upper bound δ

by summing weight of one of all edges, i.e.,

δ ≤
∑

i≥1

i−1
∏

j=1

m j · (1 + ǫ)i

∏i
j=1 m j

=
∑

i≥1

(

1 + ǫ

m

)i

<

1+ǫ
m

1 − 1+ǫ
m

→ 0

as m→ ∞.

Since Adv quits at the qth phase, it follows that w(Pi) ≤
γiw(Pi−1) for 1 ≤ i < q and w(Pq) > γqw(Pq−1). Therefore, it

follows that

w(Tq)

w(Zq)
→

∑q

i=0
w(Pi)

w(Zq)
[m→ ∞]

=

∑q−1

i=0
w(Pi) + w(Pq)

(1 + ǫ)w(Pq−1)
[by (1)]

>

∑q−1

i=0

∏q−2

j=i
γ−1

j+1
w(Pq−1)

(1 + ǫ)w(Pq−1)
+
γq−1

1 + ǫ

=
1

1 + ǫ

∑q−1

i=0
Ki

Kq−1

+
Kq

Kq−1

[by the definition of γi]

≥ K0 + K1

1 + ǫ
[by Lemma 12]

→ 4. [ǫ → 0, K1 → 3, K0 = 1]

�

Thus, we have the following theorem.

Theorem 14 If a deterministic online Steiner tree algorithm is

ρ-competitive on outerplanar graphs, then ρ ≥ 4.

References

[1] Angelopoulos, S.: On the Competitiveness of the Online Asymmetric
and Euclidean Steiner Tree Problems, WAOA 2009, pp. 1–12 (2010).

[2] Averbuch, B., Azar, Y. and Bartal, Y.: On-Line Generalized Steiner
Problem, Theoret. Comput. Sci., Vol. 324, pp. 313–324 (2004).

[3] Bartal, Y., Fiat, A. and Rabani, Y.: Competitive Algorithms for Dis-
tributed Data Management, J. Comput. Sys. Sci., Vol. 51, No. 3, pp.
341–358 (1995).

[4] Fleischner, H. J., Geller, D. P. and Harary, F.: Outerplanar Graphs and
Weak Duals, J. Indian Math. Soc., Vol. 38, pp. 215–219 (1974).

[5] Gupta, A., Newman, I., Rabinovich, Y. and Sinclair, A.: Cuts, Trees,
and ℓ1-Embedding of Graphs, Combinatorica, Vol. 24, No. 2, pp. 233–
269 (2004).

[6] Imase, M. and Waxman, B. M.: Dynamic Steiner Tree Problem, SIAM
J. Discrete Math., Vol. 4, No. 3, pp. 369–384 (1991).

[7] Matsubayashi, A.: Online Steiner Trees on Outerplanar Graphs, IPSJ
SIG Technical Report, Vol. 2014-AL-150, No. 8 (2014).

[8] Naor, J. S., Panigrahi, D. and Singh, M.: Online Node-Weighted Steiner
Tree and Related Problems, Proc. 52nd Annual Symposium on Founda-
tions of Computer Science, pp. 210–219 (2011).

5ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-155 No.2
2015/11/20

