
IPSJ SIG Technical Report

Shortest Reconfiguration of Sliding Tokens on a Caterpillar

Takeshi Yamada1,a) Ryuhei Uehara1,b)

Abstract: Suppose that we are given two independent sets Ib and Ir of a graph such that |Ib| = |Ir |, and imagine that a
token is placed on each vertex in Ib. Then, the sliding token problem is to determine if there exists a sequence of inde-
pendent sets which transforms Ib into Ir so that each independent set in the sequence results from the previous one by
sliding exactly one token along an edge in the graph. The sliding token problem is one of the reconfiguration problems
that attract the attention from the viewpoint of theoretical computer science. The reconfiguration problems tend to be
PSPACE-complete in general, and some polynomial time algorithms are shown in restricted cases. Recently, the prob-
lems that aim at finding a shortest reconfiguration sequence are investigated. For the 3SAT problem, a trichotomy for
the complexity of finding the shortest sequence has been shown; that is, it is in P, NP-complete, or PSPACE-complete
in certain conditions. In general, even if it is polynomial time solvable to decide if two instances are reconfigured with
each other, it can be NP-complete to find a shortest sequence between them. We show that the problem for finding a
shortest sequence between two independent sets is polynomial time solvable for some graph classes; proper interval
graphs, trivially perfect graphs, and caterpillars. As far as the authors know, this is the first polynomial time algorithm
for the shortest sliding token problem for a graph class that requires detours.

1. Introduction
Recently, the reconfiguration problems attract the attention

from the viewpoint of theoretical computer science. The prob-

lem arises when we wish to find a step-by-step transformation

between two feasible solutions of a problem such that all inter-

mediate results are also feasible and each step abides by a fixed

reconfiguration rule, that is, an adjacency relation defined on fea-

sible solutions of the original problem. The reconfiguration prob-

lems have been studied extensively for several well-known prob-

lems, including independent set [9], [10], [11], [12], [16], satisfi-

ability [8], [14], set cover, clique, and matching [11].

The reconfiguration problem can be seen as a natural “puz-

zle.”The 15 puzzle is one of the most famous classic puzzles, that

had the greatest impact on American and European society of any

mechanical puzzle the word has ever known in 1880 (see [19]

for the details). The 15 puzzle has a parity; for any two place-

ments, we can decide if two placements are reconfigurable or not

by the parity. Therefore, we can solve the reconfiguration prob-

lem in linear time just by computing their parities. Moreover, we

can say that the distance between any two reconfigurable place-

ments is O(n3), that is, we can reconfigure from one to the other

in O(n3) sliding pieces on a n × n board. However, surprisingly,

for these two reconfigurable placements, finding a shortest path is

NP-complete [18]. Another interesting property of the 15 puzzle

is in another generalization. In the 15 puzzle, every peace is a unit

square of size 1 × 1. When we allow to use rectangles, we have

the other classic puzzles, called “Dad puzzle” and its variants (see

1 School of Information Science, Japan Advanced Institute of Science and

Technology, Nomi, Ishikawa 923–1292, Japan
a) tyama@jaist.ac.jp
b) uehara@jaist.ac.jp

Fig. 1). Gardner said that “These puzzles are very much in want

of a theory” in 1964 [7], and Hearn and Demaine have gave that

after 40 years [9]; they prove that these puzzles are PSPACE-

complete in general using their nondeterministic constraint logic

model [10]. Therefore, we can characterize these three complex-

ity classes using the model of sliding block puzzles.

From the viewpoint of theoretical computer science, one of the

most important problems is the 3SAT problem. For this 3SAT

problem, a similar trichotomy for the complexity of finding a

shortest sequence has been shown; for the reconfiguration prob-

lem of 3SAT, finding a shortest sequence between two satisfiable

assignments is in P, NP-complete, or PSPACE-complete in certain

conditions [15]. In general, the reconfiguration problems tend to

be PSPACE-complete, and some polynomial time algorithms are

shown in restricted cases. In the reconfiguration problems, find-

ing a shortest sequence can be a new trend in theoretical computer

science because it has a great potential to characterize the class

NP from a new viewpoint.

Beside the 3SAT problem, one of the most important problems

is the independent set problem. For this notion, the natural recon-

figuration problem is called the sliding token problem introduced

by Hearn and Demaine [9]: Suppose that we are given two inde-

pendent sets Ib and Ir with |Ib| = |Ir | of a graph G = (V, E), and

imagine that a token is placed on each vertex in Ib. Then, the

sliding token problem is to determine if there exists a sequence

〈I1, I2, . . . , I�〉 of independent sets of G such that (a) I1 = Ib,

I� = Ir, and |Ib| = |Ii| for all i, 1 ≤ i ≤ �; and (b) for each i,
2 ≤ i ≤ �, there is an edge {u, v} in G such that Ii−1 \ Ii = {u}
and Ii \ Ii−1 = {v}. Figure 2 illustrates a sequence 〈I1, I2, . . . , I5〉
of independent sets which transforms Ib = I1 into Ir = I5. Hearn

and Demaine proved that the sliding token problem is PSPACE-

1ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-155 No.1
2015/11/20

IPSJ SIG Technical Report

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

Fig. 1 The 15 puzzle, Dad’s puzzle, and its Chinese variant.

(a) Ib=I1 (b) I2 (b) I3 (b) I4 (b) I5=Ir
Fig. 2 A sequence 〈I1, I2, . . . , I5〉 of independent sets of the same graph, where the vertices in independent

sets are depicted by small black circles (tokens).

complete for planar graphs.

For the sliding token problem, some polynomial time algo-

rithms are investigated as follows: Linear time algorithms have

been shown for cographs (also known as P4-free graphs) [12] and

trees [4]. Polynomial time algorithms are shown for bipartite per-

mutation graphs [6], and claw-free graphs [2]. On the other hand,

PSPACE-completeness is also shown for graphs of bounded tree-

width [17], and planar graphs [10].

In this context, we investigate for finding a shortest sequence

of the sliding token problem, which is called the shortest sliding

token problem. That is, our problem is formalized as follows:

Input: A graph G = (V, E) and two independent sets Ib, Ir with

|Ib| = |Ir |.
Output: A shortest reconfiguration sequence Ib = I1, I2, . . .,

I� = Ir such that Ii can be obtained from Ii−1 by sliding

exactly one token on a vertex u ∈ Ii−1 to its adjacent vertex

v along {u, v} ∈ E for each i, 2 ≤ i ≤ �.
We note that � is not necessarily in polynomial of |V |; this is an

issue how we formalize the problem, and if we do not know that

� is in polynomial or not. If the length k is given as a part of in-

put, we may be able to decide if � ≤ k in polynomial time even

if � itself is not in polynomial. However, if we have to output the

sequence itself, it cannot be solved in polynomial time if � is not

in polynomial.

In this paper, we will show that the shortest sliding token

problem is solvable in polynomial time for the following graph

classes:

1.1 Proper interval graphs
We first prove that every proper interval graph with two inde-

pendent sets Ib and Ir is a yes-instance if |Ib| = |Ir |. Further-

more, we can find the ordering of tokens to be slid in a shortest

sequence in O(n) time (implicitly), even though there exists an

infinite family of independent sets on paths (and hence on proper

interval graphs) for which any sequence requires Ω(n2) length.

1.2 Trivially perfect graphs
We give an O(n)-time algorithm for trivially perfect graphs that

actually finds a shortest sequence if such a sequence exists. In

contrast to proper interval graphs, any shortest sequence is of

length O(n) for trivially perfect graphs. Note that trivially per-

fect graphs form a subclass of cographs, and hence its polynomial

time solvability has been known [12].

1.3 Caterpillars
We finally give an O(n2)-time algorithm for a caterpillar for

the shortest sliding token problem. To make self-contained, we

first show a linear time algorithm for decision problem that asks

if two independent sets are reconfigurable or not. (We note that

this problem can be solved in linear time for a tree [4].) For a

yes-instance, we show an algorithm that finds a shortest sequence

of token sliding between them.

We here remark that, since the problem is PSPACE-complete in

general, an instance of the sliding token problem may require su-

perpolynomial number of independent sets to transform. In such

a case, tokens should make detours to avoid violating to be inde-

pendent (as shown in Fig. 2). As we will see, caterpillars certainly

require to make detours to transform, but it can be bounded by a

polynomial.

As far as the authors know, this is the first polynomial time al-

gorithm for the shortest sliding token problem for a graph class

that requires detours.

2. Preliminaries
In this section, we introduce some basic terms and notations.

In the sliding token problem, we may assume without loss of

generality that graphs G = (V, E) are simple and connected, and

|V | = n and |E| = m.

2.1 Sliding token

For two independent sets Ii and I j of the same cardinality in

a graph G = (V, E), if there exists exactly one edge {u, v} in G
such that Ii \ I j = {u} and I j \ Ii = {v}, then we say that I j can

2ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-155 No.1
2015/11/20

IPSJ SIG Technical Report

be obtained from Ii by sliding a token on the vertex u ∈ Ii to its

adjacent vertex v along the edge {u, v}, and denote it by Ii � I j.

We remark that the tokens are unlabeled, while the vertices in a

graph are labeled.

A reconfiguration sequence between two independent sets I1

and I� of G is a sequence 〈I1, I2, . . . , I�〉 of independent sets of G
such that Ii−1 � Ii for i = 2, 3, . . . , �. We denote by I1 �∗ I� if there

exists a reconfiguration sequence between them. We note that a

reconfiguration sequence is reversible, that is, we have I1 �∗ I�
iff I� �∗ I1. Thus we say that two independent sets I1 and I� are

reconfigurable into each other if I1 �∗ I�. The length of a recon-

figuration sequence S is defined as the number of independent

sets contained in S.

The sliding token problem is to determine if two given inde-

pendent sets Ib and Ir of a graph G are reconfigurable into each

other. We assume that |Ib| = |Ir | without loss of generality; oth-

erwise the answer is clearly “no.” Note that the sliding token

problem is a decision problem asking for the existence of a re-

configuration sequence between Ib and Ir, and it does not ask an

actual reconfiguration sequence. In this paper, we will consider

the shortest sliding token problem that computes the length of a

shortest reconfiguration sequence between two independent sets.

Note that the length of a reconfiguration sequence may not be in

polynomial since the sequence may contain detours of tokens.

We always denote by Ib and Ir the initial and target independent

sets of G, respectively, as an instance of the (shortest) sliding to-

ken problem; we wish to slide tokens on the vertices in Ib to the

vertices in Ir. We sometimes call the vertices in Ib blue, and in Ir

red; each vertex in Ib ∩ Ir is blue and red.

2.2 Target-assignment
We here give another notation of the sliding token problem,

which is useful to explain our algorithm.

Let Ib = {b1, b2, . . . , bk} be an initial independent set of a graph

G. For the sake of convenience, we label the tokens on the ver-

tices in Ib; let ti be the token placed on bi for each i, 1 ≤ i ≤ k.

Let S be a reconfiguration sequence between Ib and an indepen-

dent set I of G. Then, for each token ti, 1 ≤ i ≤ k, we denote

by fS(ti) the vertex in I on which the token ti is placed via the

reconfiguration sequence S.

Let Ir be a target independent set of G, which is not necessarily

reconfigurable from Ib. Then, we call a mapping g : Ib → Ir a

target-assignment between Ib and Ir. The target-assignment g is

said to be proper if there exists a reconfiguration sequence S such

that fS(ti) = g(bi) for all i, 1 ≤ i ≤ k. Therefore, the sliding token

problem can be seen as the problem of determining if there exists

at least one proper target-assignment between Ib and Ir.

2.3 Interval graphs and subclasses
The neighborhood of a vertex v in a graph G = (V, E) is the

set of all vertices adjacent to v, and denoted by N(v) = {u ∈ V |
{u, v} ∈ E}. Let N[v] = N(v) ∪ {v}. For any graph G = (V, E),

two vertices u and v are called strong twins if N[u] = N[v], and

weak twins if N(u) = N(v). In our problem, strong twins have no

meaning: when u and v are strong twins, only one of them can be

used by a token. Therefore, we only consider the graphs without

strong twins. (We have to take care about weak twins; see Section

5 for the details.)

A graph G = (V, E) with V = {v1, v2, . . . , vn} is an interval
graph if there exists a set I of intervals I1, I2, . . . , In such that

{vi, v j} ∈ E if and only if Ii ∩ I j � ∅ for each i and j with

1 ≤ i, j ≤ n.*1 We call the set I of intervals an interval rep-
resentation of the graph, and sometimes identify a vertex vi ∈ V
with its corresponding interval Ii ∈ I. We denote by L(I) and R(I)

the left and right endpoints of an interval I ∈ I, respectively. That

is, we always have L(I) ≤ R(I) for any interval I = [L(I),R(I)].

To specify the bottleneck of the running time of our algorithms,

we suppose that an interval graph G = (V, E) is given as an in-

put by its interval representation using O(n) space. (If neces-

sary, an interval representation of G can be found in O(n + m)

time [13].) Precisely, G is given by a string of length 2n over

alphabets {L(I1), L(I2), . . . , L(In),R(I1),R(I2), . . . ,R(In)}.
An interval graph is proper if it has an interval representa-

tion such that no interval properly contains another. The class

of proper interval graphs is also known as the class of unit in-

terval graphs [1]: an interval graph is unit if it has an interval

representation such that every interval has unit length. Hereafter,

we assume that each proper interval graph is given in the interval

representation of intervals of unit length. In the context of the in-

terval representation, an interval graph is proper iff L(Ii) < L(I j)

if and only if R(Ii) < R(I j).

An interval graph is trivially perfect if it has an interval repre-

sentation such that the relationship between any two intervals is

either disjoint or inclusion. That is, for any two intervals Ii and I j

with L(Ii) < L(I j), we have either L(Ii) < L(I j) < R(I j) < R(Ii) or

L(Ii) < R(Ii) < L(I j) < R(I j).

A caterpillar G = (V, E) is a tree (i.e., a connected acyclic

graph) that consists of two subsets S and L of V as follows. The

vertex set S induces a path (s1, . . . , sn′) in G, and each vertex v

in L has degree 1, and its unique neighbor is in S . We call the

path (s1, . . . , sn′) spine, and each vertex in L leaf. In this paper,

without loss of generality, we assume that n′ ≥ 2, deg(s1) ≥ 2,

and deg(sn′) ≥ 2. That is, the endpoints s1 and sn′ of the spine

(s1, . . . , sn′) should have at least one leaf. The class of caterpillars

is a proper subset of the class of interval graphs.

3. Proper Interval Graphs
We first show that the answer of sliding token is always “yes”

for proper interval graphs. We give a constructive proof of the

claim, and it certainly finds a shortest sequence in linear time.

Theorem 1 For a (connected) proper interval graph G =

(V, E), any two independent sets Ib and Ir with |Ib| = |Ir | sat-

isfy Ib �∗ Ir. Moreover, the shortest reconfiguration sequence can

be found in linear time.

We give an algorithm which actually finds a shortest reconfig-

uration sequence between any two independent sets Ib and Ir. A

proper interval graph G = (V, E) has a unique interval represen-

tation (up to reversal), and we can assume that each interval is

of unit length in the representation [5]. Therefore, by renum-

bering the vertices, we can fix an interval representation I =
*1 In this paper, a bold I denotes an “independent set,” an italic I denotes

an “interval,” and calligraphy I denotes “a set of intervals.”

3ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-155 No.1
2015/11/20

IPSJ SIG Technical Report

{I1, I2, . . . , In} of G so that L(Ii) < L(Ii+1) (and R(Ii) < R(Ii+1))

for each i, 1 ≤ i ≤ n − 1, and each interval Ii ∈ I corresponds to

the vertex vi ∈ V .

Let Ib = {b1, b2, . . . , bk} and Ir = {r1, r2, . . . , rk} be any given

initial and target independent sets of G, respectively. Without loss

of generality, we assume that the blue vertices b1, b2, . . . , bk and

the red vertices r1, r2, . . . , rk are labeled from left to right accord-

ing to the interval representation I of G, that is, L(bi) < L(b j)

and L(ri) < L(r j) if i < j. Then, we define a target-assignment

g : Ib → Ir as follows: for each blue vertex bi ∈ Ib

g(bi) = ri. (1)

To prove Theorem 1, it suffices to show that g is proper, and each

token takes no detours.

3.1 String representation
By traversing the interval representation I of a connected

proper interval graph G from left to right, we can obtain a string

S = s1s2 · · · s2k which is a superstring of both b1b2 · · · bk and

r1r2 · · · rk, that is, each letter si in S is one of the vertices in Ib∪Ir

and si appears in S before s j if L(si) < L(s j). We assume without

loss of generality that s1 = b1. If a vertex is contained in both

Ib and Ir, as bi and r j, then we define that it appears as bir j in S .

Then, for each i, 1 ≤ i ≤ 2k, we define the height h(i) at i by the

number of blue vertices appeared in the substring s1s2 · · · si mi-

nus the number of red vertices appeared in s1s2 · · · si (we define

h(0) = 0). Then h(i) is recursively computed by

h(i) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if i = 0;

h(i − 1) + 1 if si is blue;

h(i − 1) − 1 if si is red.

(2)

Since |Ib| = |Ir |, h(2k) = 0 for any string S .

Using the notion of height, we split the string S into substrings

S 1, S 2, . . . , S h at every point of height 0, i.e., in each substring

S j = s2p+1s2p+2 · · · s2q, we have h(2q) = 0 and h(i) � 0 for all i,
2p + 1 ≤ i ≤ 2q − 1. Then, the substrings S 1, S 2, . . . , S h form a

partition of S , and each substring S j contains the same number

of blue and red tokens. We call such a partition the partition of S
at height 0.

Lemma 2 Let S j = s2p+1s2p+2 · · · s2q be a substring in the

partition of the string S at height 0. Then, (a) the blue vertices

bp+1, bp+2, . . . , bq appear in S j, and their corresponding red ver-

tices rp+1, rp+2, . . . , rq appear in S j; (b) if S j starts with the blue

vertex bp+1, each blue vertex bi (p + 1 ≤ i ≤ q) appears in S j

before its corresponding red vertex ri; and (c) if S j starts with the

red vertex rp+1, each blue vertex bi (p + 1 ≤ i ≤ q) appears in S j

after its corresponding red vertex ri.

Proof. By the definitions, the claim (a) clearly holds. We

thus show that the claim (b) holds (the claim (c) is symmet-

ric). Since h(2p) = 0 and S j starts with a blue vertex, we have

h(2p+ 1) = 1 > 0. We now suppose for a contradiction that there

exists a blue vertex sx = bi′ which appears in S j after its corre-

sponding red vertex sy = ri′ . Then y < x. We assume that y is

the minimum index among such blue vertices in S j. Then, in the

substring s1s2 · · · sy of S , there are exactly i′ red vertices. On the

other hand, since y < x, the substring s1s2 · · · sy contains at most

i′−1 blue vertices. Therefore, by the definition of height, we have

h(y) < 0. Since h(2p + 1) = 1 > 0 and h(y) < 0, by Eq. (2) there

exists an index z with h(z) = 0 and 2p < z < y. This contradicts

the fact that S j is a substring in the partition of S at height 0.

3.2 Algorithm
Since all intervals in I have unit length, the following proposi-

tion clearly holds.

Proposition 3 For two vertices vi and v j in G such that i < j,
there is a path P in G which passes through only intervals (ver-

tices) contained in [L(Ii),R(I j)]. Furthermore, if Ii′ ∩ Ii = ∅ for

some index i′ with i′ < i, no vertex in v1, v2, . . . , vi′ is adjacent to

any vertex in P. If I j ∩ I j′ = ∅ for some index j′ with j < j′, no

vertex in v j′ , v j′+1, . . . , vn is adjacent to any vertex in P.

Let S be the string of length 2k obtained from two given in-

dependent sets Ib and Ir of a proper interval graph G, where

k = |Ib| = |Ir |. Let S 1, S 2, . . . , S h be the partition of S at height

0. The following lemma shows that the tokens in each substring

S j can always reach their corresponding red vertices. (We some-

times denote simply by S j the set of all vertices appeared in the

substring S j, 1 ≤ j ≤ h.)

Lemma 4 Let S j = s2p+1s2p+2 · · · s2q be a substring in the

partition of S at height 0. Then, there exists a reconfiguration se-

quence between Ib∩S j and Ir∩S j such that tokens are slid along

edges only in the subgraph of G induced by the vertices contained

in [L(s2p+1),R(s2q)].

Proof. We first consider the case where S j starts with the blue

vertex bp+1, that is, s2p+1 = bp+1. Then, by Lemma 2(b) each

blue vertex bi (p + 1 ≤ i ≤ q) appears in S j before the cor-

responding red vertex ri. Therefore, we know that s2q = rq,

and hence it is red. Suppose that sx = bq, then all vertices ap-

peared in sx+1sx+2 · · · s2q are red. Intuitively, we slide the tokens

tq, tq−1, . . . , tp+1 from left to right in this order.

We first claim that the token tq can be slid from bq (= sx) to

rq (= s2q). By Proposition 3 there is a path P between bq and rq

which passes through only intervals contained in [L(bq),R(rq)].

Since Ib is an independent set of G, the vertex bq is not adja-

cent to any other vertices bp+1, bp+2, . . . , bq−1 in Ib ∩ S j. Since

L(bp+1) < L(bp+2) < · · · < L(bq−1) < L(bq), by Proposition 3 all

vertices in P are not adjacent to any of tokens tp+1, tp+2, . . . , tq−1

that are now placed on bp+1, bp+2, . . . , bq−1, respectively. There-

fore, we can slide the token tq from bq to rq. We fix the token tq
on rq = s2q, and will not move it anymore.

We then slide the next token tq−1 on bq−1 to rq−1 along

a path P′ which passes through only intervals contained in

[L(bq−1),R(rq−1)]. Since Ir is an independent set of G, the cor-

responding red vertex rq−1 is not adjacent to rq on which the to-

ken tq is now placed. Recall that L(rq−1) < L(rq), and hence by

Proposition 3, rq is not adjacent to any vertex in P′. Similarly as

above, the tokens tp+1, tp+2, . . . , tq−2 are not adjacent to any vertex

in P′. Therefore, we can slide the token tq−1 from bq−1 to rq−1.

Repeat this process until the token tp+1 on bp+1 is slid to rp+1.

In this way, there is a reconfiguration sequence between Ib ∩ S j

and Ir ∩ S j such that tokens are slid along edges only in the sub-

graph of G induced by the vertices contained in [L(bp+1),R(rq)].

4ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-155 No.1
2015/11/20

IPSJ SIG Technical Report

The symmetric arguments prove the case where S j starts with

the red vertex rp+1. Note that, in this case, we slide the tokens

tp+1, tp+2, . . . , tq from right to left in this order.

Proof of Theorem 1. We now give an algorithm for sliding all

tokens on the vertices in Ib to the vertices in Ir. Recall that

S 1, S 2, . . . , S h are the substrings in the partition of S at height

0. Intuitively, the algorithm repeatedly picks up one substring

S j, and slides all tokens in Ib ∩ S j to Ir ∩ S j. By Lemma 4 it

works locally in each substring S j, but a token in S j may be ad-

jacent to another token in S j−1 or S j+1 at the boundary of the

substrings. To avoid this, we define a partial order over the sub-

strings S 1, S 2, . . . , S h.

Consider any two consecutive substrings S j and S j+1, and let

S j = s2p+1s2p+2 · · · s2q. Then, the first letter of S j+1 is s2q+1. We

first consider the case where both s2q and s2q+1 have the same

color. Then, since s2q and s2q+1 are in the same independent

set, they are not adjacent on G. Therefore, by Proposition 3 and

Lemma 4, we can deal with S j and S j+1 independently. In this

case, we do not define the ordering between S j and S j+1. We

then consider the case where s2q and s2q+1 have different colors.

Suppose that s2q is blue and s2q+1 is red; then we have s2q = bq

and s2q+1 = rq+1. By Lemma 4 the token tq on s2q is slid to

left, and the token tq+1 will reach rq+1 from right. Therefore, the

algorithm has to deal with S j before S j+1. Note that, after slid-

ing all tokens tp+1, tp+2, . . . , tq in S j, they are on the red vertices

rp+1, rp+2, . . . , rq, respectively, and hence the tokens in S j+1 are

not adjacent to any of them. By the symmetric argument, if s2q is

red and s2q+1 is blue, S j+1 should be dealt with before S j.

Such an ordering is defined only for two consecutive substrings

S j and S j+1 with 1 ≤ j ≤ h − 1. Therefore, the partial order over

the substrings S 1, S 2, . . . , S h is acyclic, and hence there exists a

total order which is consistent with the partial order. The algo-

rithm certainly slides all tokens from Ib to Ir according to the

total order. Therefore, the target-assignment g defined in Eq. (1)

is proper, and hence Ib �∗ Ir. Thus there always exists a recon-

figuration sequence between two independent sets Ib and Ir of a

connected proper interval graph G.

We now discuss the length of reconfiguration sequences be-

tween Ib and Ir, together with the running time of our algorithm.

Proposition 5 For two given independent sets Ib and Ir of a

proper interval graph G with n vertices, (1) the ordering of tokens

to be slid in a shortest reconfiguration sequence between them

can be computed in O(n) time and O(n) space; and (2) a shortest

reconfiguration sequence between them can be output in O(n2)

time and O(n) space.

Proof. We first modify our algorithm so that it finds a shortest

reconfiguration sequence between Ib and Ir. To do that, it suffices

to slide each token ti, 1 ≤ i ≤ k, from the blue vertex bi to its cor-

responding red vertex ri along the shortest path between bi and

r j. We may assume without loss of generality that L(bi) < L(ri),

that is, the token ti will be slid from left to right. Then, for the

interval bi, we choose an interval I j ∈ I such that bi ∩ I j � ∅ and

L(I j) is the maximum among all I j′ ∈ I. If L(ri) ≤ L(I j), we can

slide ti from bi to ri directly; otherwise we slide ti to the vertex I j,

and repeat.

We then prove the claim (1). If we simply want to compute

the ordering of tokens to be slid in a shortest reconfiguration se-

quence, it suffices to compute the partial order over the substrings

S 1, S 2, . . . , S h in the partition of the string S at height 0. It is not

difficult to implement our algorithm in Section 3.2 to run in O(n)

time and O(n) space.

We finally prove the claim (2). Remember that each token ti,
1 ≤ i ≤ k, is slid along the shortest path from bi to ri. Further-

more, once the token ti reaches ri, it is not slid anymore. There-

fore, the length of a shortest reconfiguration sequence between

Ib and Ir is given by the sum of all lengths of the shortest paths

between bi and ri. It is clear that this sum is O(kn) = O(n2). We

output only the shortest paths between bi and ri, together with the

ordering of the tokens to be slid.

This proposition completes the proof of Theorem 1.

It is remarkable that there exists an infinite family of instances

for which any reconfiguration sequence requires Ω(n2) length.

Simple example is: G is a path (v1, v2, . . . , v8k) of length n = 8k
for any positive integer k, Ib = {v1, v3, v5, . . . , v2k−1}, and Ir =

{v6k+2, v6k+4, . . . , v8k}. In this instance, each token ti must be slid

Θ(n) times, and hence it requires Θ(n2) time to output them all.

A path belongs to proper interval graphs and caterpillars.

4. Trivially perfect graphs
The main result of this section is the following theorem.

Theorem 6 The sliding token problem for a trivially perfect

graph G = (V, E) can be solved in O(n) time and O(n) space.

Furthermore, one can find a shortest reconfiguration sequence be-

tween two given independent sets Ib and Ir in O(n) time and O(n)

space if there exists.

We explicitly give such an algorithm as a proof of Theorem 6.

Note that there are no-instances for trivially perfect graphs. How-

ever, for trivially perfect graphs, we construct a proper target-

assignment between Ib and Ir efficiently if it exists.

4.1 MPQ-tree for trivially perfect graphs
The MPQ-tree of an interval graph G is a kind of decomposi-

tion tree, developed by Korte and Möhring [13], which represents

the set of all feasible interval representations of G. For the notion

of MPQ-trees, the following theorem is known:

Theorem 7 ([13]) For any interval graph G = (V, E), its cor-

responding MPQ-tree can be constructed in O(n + m) time.

We here give a simplified definition of MPQ-tree only for triv-

ially perfect graphs. Let G = (V, E) be a trivially perfect graph.

Then, the MPQ-tree T of G is a rooted tree such that each node,

called a P-node, in T is associated with a non-empty set of ver-

tices in G such that (a) each vertex v ∈ V appears in exactly one P-

node in T , and (b) if a vertex vi ∈ V is in an ancestor node of an-

other node that contains v j ∈ V , then L(Ii) ≤ L(I j) ≤ R(I j) ≤ R(Ii)

in any interval representation of G, where vi and v j correspond to

the intervals Ii and I j, respectively (see Fig. 3 as an example). By

(b), the ancestor/descendant relationship on T corresponds to the

inclusion relationship in the interval representation of G. Thus,

N[v j] ⊆ N[vi] iff vi is in an ancestor of the node containing v j in

the MPQ-tree.

Let T be the (unique) MPQ-tree of a (connected) trivially per-

fect graph G = (V, E). For two vertices u and w in G, we denote

5ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-155 No.1
2015/11/20

IPSJ SIG Technical Report

I1
I2I3
I4 I5 I6

I7I8
I9

I10

(a)

(b) v1

v2,v3

v4 v5 v6

v7

v8,v9 v10
Fig. 3 (a) A trivially perfect graph in an interval representation, and (b) its

MPQ-tree.

by LCA(u, w) the least common ancestor in T for the nodes con-

taining u and w. By (a), the node LCA(u, w) can be uniquely

defined.

4.2 Basic properties and key lemma
Any interval representation of a trivially perfect graph has only

disjoint or inclusion relationship. This fact implies the following:

Observation 8 Every pair of vertices u and w in a trivially

perfect graph G has a path of length at most two via a vertex in

LCA(u, w).

Proof. Omitted.

Let LCA∗(u, w) be the set of vertices in V appearing in the P-

nodes on the unique path from LCA(u, w) to the root of the MPQ-

tree. By the definition of MPQ-tree, we clearly have the following

observation.

Observation 9 Consider an arbitrary reconfiguration se-

quence S which slides a token ti from bi ∈ Ib to some vertex

ri. Then, ti must pass through at least one vertex in LCA∗(bi, ri),

that is, there exists at least one independent set I′ in S such that

I′ ∩ LCA∗(bi, ri) � ∅.
We are now ready to give the key lemma for trivially perfect

graphs.

Lemma 10 Let g : Ib → Ir be a target-assignment between

Ib and Ir. Then, g is proper iff the nodes LCA(bi, g(bi)) and

LCA(b j, g(b j)) are not in the ancestor/descendant relationship on

T for every pair of vertices bi, b j ∈ Ib.

Proof. Omitted.

4.3 Algorithm and its correctness
We now describe our linear-time algorithm for a trivially per-

fect graph. Let T be the MPQ-tree of a connected trivially perfect

graph G = (V, E). Let Ib = {b1, b2, . . . , bk} and Ir = {r1, r2, . . . , rk}
be given initial and target independent sets of G, respectively.

Then, we determine if Ib �∗ Ir as follows: (A) construct some

particular target-assignment g∗ between Ib and Ir; and (B) check

if g∗ is proper or not using Lemma 10. We will show later in

Lemma 12 that it suffices to check only g∗ in order to determine

if Ib �∗ Ir or not. Indeed, our linear-time algorithm executes (A)

and (B) above at the same time, in the bottom-up manner based

on T .

4.3.1 Description of the algorithm
Since the vertex-set associated to each P-node in T induces a

clique, for any independent set I of G, each P-node contains at

most one vertex in I, and hence contains at most one token. We

put a “blue token” for each P-node containing a blue vertex in

Ib, and also put a “red token” for each P-node containing a red

vertex in Ir. Note that a P-node may contain a pair of blue and

red tokens. Our algorithm lifts up the tokens from the leaves to

the root of T , and if a blue token b meets a red token r at their

least common ancestor LCA(b, r) in T , then we replace them by a

single “green token.” This corresponds to setting g∗(b) = r. Pre-

cisely, at initialization step, the algorithm first collects all leaves

of T in a queue, called frontier. The algorithm marks the nodes

in the frontier, and lifts up each token to its parent P-node. Each

P-node P is put into the frontier if its all children are marked,

and then, all children of P are removed from the frontier after the

following procedure at P:

Case (1): P contains at most one token: the algorithm has nothing

to do.

Case (2): P contains only one pair of blue token b and red token

r: the algorithm replaces them by a single green token, and let

g∗(b) = r.

Case (3): P contains only green tokens: the algorithm replaces

them by a single green token.

Case (4): P contains two or more blue tokens, or two or more red

tokens: the algorithm outputs “no” and halts (i.e., Ib �
∗ Ir).

Case (4): P contains at least one green token and at least one blue

or red token: the algorithm outputs “no” and halts (i.e., Ib �
∗ Ir).

Repeating this process, and the algorithm outputs “yes” if and

only when the frontier contains only the root P-node r ofT which

is in one of Cases (1)–(3) above.

4.3.2 Correctness of the algorithm
It is not difficult to implement our algorithm to run in O(n)

time and O(n) space. Therefore, we here prove the correctness of

the algorithm. We first show that Ib �∗ Ir if the algorithm out-

puts “yes.” In this case, the algorithm is in Cases (1), (2), or (3)

at each P-nodes in T (including the root r). Then, the target-

assignment g∗ has been (completely) constructed: for each blue

vertex bi ∈ Ib, g∗(bi) is the red vertex in Ir such that LCA(bi, vi′)

has the minimum height in T among all vertices vi′ ∈ Ir. Then,

we have the following lemma.

Lemma 11 If the algorithm outputs “yes,” then Ib �∗ Ir.

Proof. Omitted.

The following lemma completes the correctness proof of our

algorithm.

Lemma 12 If the algorithm outputs “no,” then Ib �
∗ Ir.

Proof. Omitted.

4.4 Shortest reconfiguration sequence
To complete the proof of Theorem 6, we finally show that our

algorithm in Section 4.3 can be modified so that it actually finds

a shortest reconfiguration sequence between Ib and Ir. Roughly,

when the algorithm put a green token at a vertex w for a blue to-

ken b coming from a vertex u and a red token r coming from a

vertex v, we can slide a token on u to v through w. Therefore,

we need no detour, and the number of slides is at most 2k, which

6ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-155 No.1
2015/11/20

IPSJ SIG Technical Report

completes the proof of Theorem 6.

5. Caterpillars
The main result of this section is the following theorem.

Theorem 13 The sliding token problem for a connected

caterpillar G = (V, E) and two independent sets Ib and Ir of G
can be solved in O(n) time and O(n) space. Moreover, for a yes-

instance, a shortest reconfiguration sequence between them can

be output in O(n2) time and O(n) space.

Let G = (S ∪ L, E) be a caterpillar with spine S which induces

the path (s1, . . . , sn′), and leaf set L. We assume that n′ ≥ 2,

deg(s1) ≥ 2, and deg(sn′) ≥ 2. First we show that we can as-

sume that each spine vertex has at most one leaf without loss of

generality.

Lemma 14 For any given caterpillar G = (S ∪ L, E) and two

independent sets Ib and Ir on G, there is a linear time reduction

from them to another caterpillar G′ = (S ′ ∪ L′, E′) and two inde-

pendent sets I′b and I′r such that (1) G, Ib, and Ir are a yes-instance

of the sliding token problem iff G′, I′b, and Ir are a yes-instance

of the sliding token problem, (2) the maximum degree of G′ is at

most 3, and (3) deg(s1) = deg(sn′) = 2, where n′ = |S ′|. In other

words, the sliding token problem on a caterpillar is sufficient to

consider only caterpillars of maximum degree 3.

Proof. On G, let si be any vertex in S with deg(si) > 3. Then

there exist at least two leaves �i and �′i attached to si (note that

they are weak twins). Now we consider the case that two to-

kens in Ib are on �i and �′i . Then, we cannot slide these two

tokens at all, and any other token cannot pass through si since

it is blocked by them. If Ir contains these two tokens also, we

can split the problem into two subproblems by removing si and

its leaves from G, and solve it separately. Otherwise, the answer

is “no” (remind that the problem is reversible; that is, if tokens

cannot be slid, there are no other tokens which slide into the sit-

uation). Therefore, if at least two tokens are placed on the leaves

of a vertex of the original graph, we can reduce the case in lin-

ear time. Thus we assume that every spine vertex with its leaves

contains at most one token in Ib and Ir, respectively. Then, by

the same reason, we can remove all leaves but one of each spine

vertex. More precisely, regardless whether Ib �∗ Ir or Ib �
∗ Ir,

at most one leaf for each spine vertex is used for the transitions.

Therefore, we can remove all other useless leaves but one from

each spine vertex. Especially, removing all useless leaves, we

have deg(s1) = deg(sn′) = 2.

Hereafter, we only consider the caterpillars stated in Lemma

14. That is, for any given caterpillar G = (S ∪ L, E) with

spine (s1, . . . , sn′), we assume that deg(s1) = deg(sn′) = 2 and

2 ≤ deg(si) ≤ 3 for each 1 < i < n′. Then, we denote the unique

leaf of si by �i if it exists.

We here introduce a key notion of the problem on these cater-

pillars that is named locked path. Let G and I be a caterpillar and

an independent set of G, respectively. A path P = (p1, p2, . . . , pk)

on G is locked by I iff (a) k is odd and greater than 2, (b) I ∩ P =
{p1, p3, p5, . . . , pk}, (c)deg(p1) = deg(pk) = 1 (in other words,

they are leaves), and deg(p3) = deg(p5) = · · · = deg(pk−2) = 2.

This notion is simplified version of a locked tree used in [4]. Us-

ing the discussion in [4], we obtain the condition for the immov-

cab d
R L

Fig. 4 The most right R token a has to precede the most left L token c.

able independent set on a caterpillar:

Theorem 15 ([4]) Let G and I be a caterpillar and an inde-

pendent set of G, respectively. Then we cannot slide any token

in I on G at all if and only if there exist a set of locked paths

P1, . . . , Ph for some h such that I is a union of them.

The proof can be found in [4], and omitted here. Intuitively,

for any caterpillar G and its independent set I, if I contains a

locked path P, we cannot slide any token through the vertices in

P. Therefore, P splits G into two subgraphs, and we obtain two

completely separated subproblems. Therefore, we obtain the fol-

lowing lemma:

Lemma 16 For any given caterpillar G = (S ∪ L, E) and two

independent sets Ib and Ir on G, there is a linear time reduction

from them to another caterpillar G′ = (S ′ ∪ L′, E′) and two inde-

pendent sets I′b and I′r such that (1) G, Ib, and Ir are a yes-instance

of the sliding token problem if and only if G′, I′b, and Ir are a yes-

instance of the sliding token problem, and (2) both of I′b and I′r
contain no locked path.

Proof. Omitted.

Hereafter, without loss of generality, we assume that the cater-

pillar G with two independent sets Ib and Ir satisfies the condi-

tions in Lemmas 14 and 16. That is, each spine vertex si has at

most one leaf �i, s1 and sn′ have one leaf �1 and �n′ , respectively,

both of Ib and Ir contain no locked path, and |Ib| = |Ir |. By the

result in [4], this is a yes-instance. Thus, it is sufficient to show

an O(n2) time algorithm that computes a shortest reconfiguration

sequence between Ib and Ir.

It is clear that each pair (si, �i) can have at most one token.

Therefore, without loss of generality, we can assume that the blue

vertices b1, b2, . . . , bk in Ib (and the red vertices r1, r2, . . . , rk) are

labeled from left to right according to the order (s1, �1), (s2, �2),

. . ., (sn′ , �n′) of G; that is, L(bi) < L(b j) if i < j. Then, we define

a target-assignment g : Ib → Ir, as g(bi) = ri for each blue vertex

bi ∈ Ib. To prove Theorem 13, we show that we can slide tokens

with fewest detours in case analysis.

Now we introduce direction of a token t denoted by dir(t) as

follows: when t moves from vi ∈ {si, �i} in Ib to v j ∈ {s j, � j} in

Ir with i < j, the direction of t is said to be R and denoted by

dir(t) = R. If i > j, it is said to be L and denoted by dir(t) = L. If

i = j, the direction of t is said to be C and denoted by dir(t) = C.

We first consider a simple case: all directions are either R or

L. In this case, we can use the same idea appearing in the algo-

rithm for a proper interval graph in Section 3. We can introduce

a partial order over the tokens, and move them straightforwardly

using the same idea in Section 3.2. Intuitively, a sequence of R

tokens are moved from left to right, and a sequence of L tokens

are moved from right to left, and we can define a partial order

over the sequences of different directions. The only additional

7ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-155 No.1
2015/11/20

IPSJ SIG Technical Report

considerable case is shown in Fig. 4. That is, when the token a
moves to �i from left and the other token c moves to si+1 from

right, a should precede c. It is not difficult to see that this (and its

symmetric case) is the only exception than the algorithm in Sec-

tion 3.2 when all tokens move to right or left. In other words, in

this case, need detour is required.

We next suppose that Ib (and hence Ir) contains some token t
with dir(t) = C. In other words, t is put on si or �i for some i in

both of Ib and Ir. We have five cases. Here we show one case,

and the other simpler four cases are omitted.

We assume that t is put on si in Ib and Ir, and �i does not ex-

ist. By assumption, 1 < s < n′ (since �1 and �n′ exist). Without

loss of generality, we suppose t is the leftmost spine with the

condition. We first observe that |Ib ∩ {si−1, �i−1, si+1, �i+1}| is at

most 1. Clearly, we have no token on si−1 and si+1. When we

have two tokens on �i−1 and �i+1, the path (�i−1, si−1, si, si+1, �i+1)

is a locked path, which contradicts the assumption. We also have

|Ir ∩ {si−1, �i−1, si+1, �i+1}| ≤ 1 by the same argument.

Now we consider the most serious case since the other cases

are simpler and easier. The most serious case is that Ib contains

�i−1 and Ir contains �i+1. Since any token cannot bypass the other,

Ib contains an L token on �i−1, and Ir contains an L token on

�i+1. In this case, by the L token on �i−1, first, t should make a

detour to right, and by the L token in Ir, t next should make a

detour to left twice after the first detour. This three slides should

not be avoided, and this ordering of three slides cannot be vio-

lated. Therefore, t itself should slide at least four times to return

to the original position, and t can done it in four slides. During

this slides, since t is the leftmost spine with this condition, the to-

kens on s1, �1, s2, �2, . . . , si−1, �i−1 do not make any detours. Thus

we focus on the tokens on si+1, �i+1, Let t′ be the token that

should be on �i+1 in Ir. Since t is on si, t′ is not on {si+1, �i+1}. If

t′ is on one of �i+2, si+3, �i+3, si+4, . . . in Ib, we have nothing to do;

just make a detour for only t. The problem occurs when t′ is on

si+2 in Ib. If there exists �i+2, we first slide t′ to it; this detour for

t′ is unavoidable. If �i+2 does not exist, we have to slide t′ to si+3

before slide of t. This can be done immediately except the similar

situation that the only considerable case is that we have another

L or S token t′′ on si+3. We can repeat this analysis and confirm

that each detour is unavoidable. Since G with Ib and Ir contains

no locked path, this process will halts. Therefore, traversing this

process, we can construct the shortest reconfiguration sequence.

Proof of Theorem 13. For a given independent set Ib on a cater-

pillar G = (V, E), we can check if each vertex is a part of locked

path in O(n) time. Thus, we first check twice for (G, Ib) and

(G, Ir) in O(n) time, and check if the sets of locked paths coincide

with each other. If not, the algorithm outputs “no”. We assume

that they coincide. Then the algorithm splits the caterpillar G into

subgraphs G1,G2, . . . ,Gh by removing all locked paths. For each

subgraph G1, . . . ,Gh, the algorithm next checks if each subgraph

contains the same number of tokens from Ib and Ir. If they do not

coincide, the algorithm outputs “no.”After this process, we have

a yes-instance. The correctness of the algorithm so far follows

from Theorem 15 with results in [4] immediately. It is also easy

to implement the algorithm to run in O(n) time and space.

It is not difficult to modify the algorithm to output a shortest

sequence based on the previous case analysis. For each token, the

number of detours made by the token is bounded above by O(n),

the number of slide of the token itself is also bounded above by

O(n), and the computation for the token can be done in O(n) time.

Therefore, the algorithm runs in O(n2) time, and the length of the

sequence is O(n2).

6. Concluding Remarks
In this paper, we showed that the shortest sliding token prob-

lem can be solved in polynomial time for three subclasses of in-

terval graphs. The computational complexity of the problem for

chordal graphs, interval graphs, and trees are still open. Espe-

cially, tree seems to be the next target. We can decide if two in-

dependent sets are reconfigurable in linear time [4], then can we

find a shortest sequence for a yes-instance? As in the 15-puzzle,

finding a shortest one can be NP-hard. Even we do not know that

the length can be bounded by any polynomial or not for a tree.

It is an interesting open question whether there is any instance

on some graph classes whose reconfiguration sequence requires

super-polynomial length.

References
[1] Bogart, K.P., West, D.B.: A short proof that ‘proper=unit’. Discrete

Mathematics 201, pp. 21–23 (1999)

[2] Bonsma, P., Kamiński, M., Wrochna M.: Reconfiguration Indepen-
dent Sets in Claw-Free Graphs arXiv:1403.0359, 2014.

[3] Brandstädg, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey,
SIAM (1999)

[4] Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito T.,
Ono, H., Otachi, Y., Uehara, R., Yamada, T.: Linear-Time Algorithm
for Sliding Tokens on Trees. TCS 600, pp. 132–142 (2015)

[5] Deng, X., Hell, P., Huang., J.: Linear-time representation algo-
rithms for proper circular-arc graphs and proper interval graphs. SIAM
J. Computing 25, pp. 390–403 (1996)

[6] Fox-Epstein, E., Hoang, D.A., Otachi, Y., Uehara, R.: Sliding Token
on Bipartite Permutation Graphs. In Proc. of ISAAC, accepted, 2015.

[7] Gardner, M.: The Hypnotic Fascination of Sliding-Block Puzzles. Sci-
entific American 210, pp. 122–130 (1964).

[8] Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The
connectivity of Boolean satisfiability: computational and structural di-
chotomies. SIAM J. Computing 38, pp. 2330–2355 (2009)

[9] Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block
puzzles and other problems through the nondeterministic constraint
logic model of computation. TCS 343, pp. 72–96 (2005)

[10] Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A K
Peters (2009)

[11] Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri,
M., Uehara, R., Uno, Y.: On the complexity of reconfiguration prob-
lems. TCS 412, pp. 1054–1065 (2011)

[12] Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent
set reconfigurability problems. TCS 439, pp. 9–15 (2012)

[13] Korte, N., Möhring, R.: An incremental linear-time algorithm for rec-
ognizing interval graphs. SIAM J. Computing 18, pp. 68–81 (1989)

[14] Makino, K., Tamaki, S., Yamamoto, M.: An exact algorithm for the
Boolean connectivity problem for k-CNF. TCS 412, pp. 4613–4618
(2011)

[15] Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest Re-
configuration Paths in the Solution Space of Boolean Formulas. In
Proc. of ICALP 2015, LNCS 9134, pp. 985–996 (2015)

[16] Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki,
A.: On the parameterized complexity of reconfiguration problems. In
Proc. of IPEC 2013, LNCS 8296, pp. 281–294 (2013)

[17] Mouawad, A.E., Nishimura, N., Raman, V., Wrochna, M.: Reconfig-
uration over tree decompositions. In Proc. of IPEC 2014, LNCS 8894,
pp. 246–257 (2014)

[18] Ratner, R., Warmuth, M.: Finding a shortest solution for the N × N-
extension of the 15-puzzle is intractable. J. Symb. Comp., Vol. 10, pp.
111–137, 1990.

[19] Slocum, J.: The 15 Puzzle Book: How it Drove the World Crazy.
Slocum Puzzle Foundation, 2006.

8ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-155 No.1
2015/11/20

