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O(log* n) Time Parallel Algorithm for Computing Bounded Degree

Maximal Subgraphs*

ToMOYUKI UCHIDAT and SATORU MiyANOf

By using the vertex coloring technique, we give a fast parallel algorithm that finds a maximal
vertex-induced subgraph of degree at most %, where k£ is a given constant. This algorithm runs in
O (log* »n) time using O (%) processors on an EREW PRAM for a constant degree graph G=(V,
E) with | V|=n. We also describe an O(log* m) time O(m) processor EREW PRAM algorithm for
finding a maximal edge-induced subgraph of degree at most &, where m=|E|. For constant degree
graphs, we show that the coloring technique works very successfully to devise faster parallel

algorithms with fewer numbers of processors.

1. Introduction

For a given integer %, we consider the prob-
lem of finding a maximal subset of vertices
(resp., edges) whose induced subgraph is of
degree at mosk k. We denote the problem by
VIMS (k) (resp., EIMS(k)). Shoudai and
Miyano'®V have shown that VIMS(k£) and
EIMS (k&) are in NC by describing algorithms
which employ the parallel maximal independent
set (MIS) algorithm.®® 1In their algorithms,
maximal independent sets are repeatedly
computed £? times for VIMS (%) and 2/ times
for EIMS(k), respectively. Later, Diks et al. ¥
have independently given the same results as
Shoudai and Miyano!® with the same argument.
If we apply the fast parallel MIS algorithm in
Ref. 5) to the algorithms in Ref. 4), 10), we can
easily see that VIMS (%) (resp., EIMS(k£)) for
graphs of constantly bounded valence can be
solved in O (log* ) (resp., O(log* m)) time
with O(n) (resp., O(m)) processors on an
EREW PRAM, where #(resp., ) is the num-
ber of vertices (resp., edges) of an input graph.

Since log* % grows extremely slowly and can
be viewed as a constant for all practical pur-
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poses, it is important to focus on the constants %
and the degree 4 of an input graph. In this
paper, we apply the coloring technique to VIMS
(k) and EIMS(k), and obtain faster parallel
algorithms for these problems from this point of
view. When the vertex coloring algorithm by
Ref. 5) is used, for an input graph with degree at
most 4, our algorithm runs /£ times as fast as the
algorithm in Ref. 4), 10) equipped with the MIS
algorithm in Ref. 5). Moreover, the number of
processors needed by our algorithm is 4/ times
as few as that of their algorithm. If the degree 4
of an input graph satisfies 4=0(log %), our
method also provides an algorithm faster than
that in Ref. 4),10) even though we apply the
O((log »)® time parallel MIS algorithm by Ref.
9) to their algorithm.

Furthermore, the edge coloring technique
works efficiently to solve EIMS (%). While their
algorithms®® for EIMS (%) need to solve MIS
2k times, it is sufficient for our algorithm to
compute the edge coloring only once. Therefore,
our algorithm runs 2/ times as fast for graphs
with degree at most 4=o(log #).

2. Preliminaries

We consider a graph G=(V, E) as an undi-
rected graph without any multiple edges and
self-loops. Let |V|=# and |E|=m. For a
subset US V, we define E[Ul={{u, v}EE|«,
v& U}. The graph G[U]=(U, E[U])) is called
the vertex-induced subgraph of U. We define
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V[ F] to be the set of endpoints of the edges in
[ for a subset FSE. We denote by (F)=
(VIF], F) the graph formed from F and call it
the edge-induced subgraph of F. For a vertex
of G, the degree of # is denoted by de(x). For
a graph G, the maximum degree of G is denoted
by deg (G).

A vertex coloring C of G is a mapping C:
V—N from the vertices to positive integers
(colors), and it is valid if no two adjacent
vertices have the same color.

Definition 1. Let G=(V, E) be a graph and
let £=0 be any integer. The maximum degree
k vertex-induced maximal subgraph problem
(VIMS (%)) is to find a maximal subset /< I/
such that G[U] is of degree at most k.

Definition 2. Let G=(V, E) be a graph and
let £=1 be any integer. The maximum degree
k edge-induced maximal subgraph problem
(EIMS(%)) is to find a maximal subset FCFE
such that <F) is of degree at most A.

We assume an exclusive-read exclusive-write
(EREW) PRAM model of computation where
each processor is capable of executing a special
operation which counts the number of bit 1’s in
a word together with conventional simple word
and bit operations.¥  The word length is
assumed to be O(log n). We define two func-
tions F and H. Let

F(0)=1,

F(§)=2Ft=Y " for {>0.
The function H(xn)=log* # is defined to be the
smallest integer j such that F()>n. H(n)(=
log* n) grows extremely slowly and can be
viewed as a constant for all practical purposes.
(For instance, H(2°%%)=]og* 265365 )

Goldberg et al.? have presented a vertex color-
ing algorithm that yields the following lemma
under the above conditions of the PRAM model:

Lemma 1 (Goldberg et al. ). Let A be an
integer. Given a graph G=(V, E) with degree
at most 4, a valid vertex coloring of G with 4
+1 colors can be computed in O(A(J+log*
n)log 4) time on an EREW PRAM using An
PFrOCessors.

3. Finding Bounded Degree
Induced Maximal Subgraphs

In this section we show an algorithm which
solves VIMS (%) efficiently.
Theorem 1. Let %k and A be nonnegative

Vertex-

integers with 0<k<4. For a graph G=(V,
E) with degree at most A, VIMS (E) can be
solved in O (log* n) time using O(n) proces-
sors on an EREW PRAM.

Proof. Our VIMS algorithm takes a graph G
=(V, E) of degree at most 4 as an input and
outputs a maximal subset SS V' such that G[S]
is of degree at most 4.

We need to prepare some notations in order to
describe the algorithm precisely.

Let C:V—N be a (4+1)-vertex coloring of
G with degree at most 4. For each ;=0), ---, 4,
let C{V)={ve V|C(v)=3}. For a subset S
V and a vertex vE V, let U,[S] be the set of
vertices in S that are adjacent to ». For subsets
W and U of vertices with WN U=¢, let E}f=
{{v, wlv, wEW, w+v and there is we={/
such that {v, }EE and {w, u}EE).

The algorithm is described as follows:

VIMS Algorithm:

1 Se—¢, V'—V;i—0;
2 Compute g (4+1)-vertex coloring C of
G=(V,E),
3 while V¢ do
4 X‘—Cz( V');
5 Ve—V-X;
6 Y“*{Uesldc[suxl(v)>k}§
7 Y'~{veX|U[ Y]+ 4¢};
8 S—=SUX-Y);
9 if Y=+ ¢ then
10 Compute a (kd+1)-vertex coloring
D? of G;=(Y"| EY");

11 WeY"; j—0;

12 while W=¢ do

13 S—SUDIW);

14 We—W —DIW);

15 We—W —{we W|deg(G[S U
{w}]) >k}

16 J—7+1

17 od

18 Ve—V'—{we V'|deg(G[SU
{w}]) >k}

19 —i+1

20 od

We show that the algorithm computes a
required maximal subset S. First it colors the
input graph G with colors 0, -, 4 at line 2.
Then, for each color ;, the algorithm determines
which vertices colored 7 are added to S. Let Si,
X:, Y: and Y7 be the contents of S, X, ¥ and
Y’ at the end of the sth iteration of lines 3-20,
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respectively. We assume that S;_; is a maximal
subset of Co( V) U+ U Ci-1( V) which induces a
subgraph of degree at most k. For =0, the
assumption holds obviously since S, is an in-
dependent set Co( V). We show that the induced
subgraph G[S:] in G[S:-iU C V)] is of degree
at most %4 and is maximal.

Clearly, after executing lines 4-8, the graph
G[S] is of degree at most 4, but may not be
maximal. We now prove the induced subgraph
G[S;] becomes of degree at most £ and is
maximal after lines 9-19. Let D":Y'—N be the
(kA+1)-vertex coloring of the graph G,=(Y7,

¥5 computed at line 10. For any two vertices
v, w in Y’ which are adjacent to a vertex in Y,
we can see that D¥(v)==D*(w), since an edge {v,
w} is in EY’ by the definitions of ¥, Y and
EY’. Since the vertices in V' at line 18,
dopsiuxa(v)<k for a vertex v in X, For a
vertex w in Si-1, daiscuxa(w)< 4. Hence, from
the definitions of Y, ¥ and EY¥’, the degree of
G:=(Y;, E¥)) is at most k4. Therefore, by
using the (k4+1)-vertex coloring D’ of the
graph G;, the induced subgraph G[S] can be
made maximal, keeping the condition that the
degree of the graph G[S] is at most £. Hence,
we can see that the induced subgraph G[S;] is of
degree at most k£ and is maximal. Therefore, our
algorithm can solve VIMS (%), correctly.

Finally, we show that our algorithm can
compute the VIMS(£) in O(log* ») time using
O(n) processors on an EREW PRAM when a
constant degree graph is given as input. Let
T(G, 4) be the time needed to compute a valid
(A+1)-vertex coloring of the input graph G
with degree at most 4 using O(d#n) processors
on an EREW PRAM. Hence, line 2 requires
T(G, 4) time using O(4dn) processors on an
EREW PRAM. We show that the time needed
in the jth iteration of lines 3-20 as follows (0<
1< 4): Since the degree of the input graph G is
at most 4, lines 4-8 can be processed in O(log
A) time using An processors. Since deg(G;)<
EA, line 10 needs the time 7T(Gi, k4) using
O(k4n) processors on an EREW PRAM. It is
easy to see that T(G;, kA)< T(G, k4) since
|Y'|<|V]|. Since the graph G; is colored with at
most 24+ 1 colors, the while loop (lines 12-17)
repeats at most &4+ 1 times. Therefore, the time
needed in the 7th iteration is O(log 4)+ T(G,
EN+ O(kdlog 4) time using O(kd4n) proces-
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sors on an EREW PRAM. Hence, the :ith
iteration runs in 7(G, k4) time using O(kdn)
processors on an EREW PRAM. Moreover,
since the input graph G is colored with at most
A+1 colors, the while loop (lines 3-20) repeats
at most A+1 times. Line 3-20 requires
O(AT(G, k4)) time using O(kdn) processors.
Therefore, our algorithm runs in O(A4T(G, k4))
time using O(kdn) processors.

When we apply Lemma 1 to our algorithm, it
runs in O(kA¥kd+log™ n)logd) time using
O(kdn) processors. Hence, for the constant
degree graphs, our algorithm runs in O(log™* #)
time on an EREW PRAM using (%) proces-
SOrSs. O

Remark 1. Using the MIS algorithm in Ref.
5), the algorithm in Ref. 4), 10) can also solve
VIMS (k) in O(log* ) time on an EREW
PRAM using O(n) processors for constant
degree graphs. The MIS algorithm given by Ref.
5) uses a (44 1)-coloring of an input graph G.
Therefore, for an input graph G with degree at
most 4, their VIMS algorithm runs in
O(R* AL+ log* n)log 4) time with O(4%n)
processors. Hence, our algorithm is faster than
their algorithm with fewer numbers of proces-
SOTS.

4. Finding Bounded Degree Edge-Induced
Maximal Subgraphs

In this section we apply the vertex coloring
technique to EIMS(%).

Theorem 2. Let k and A be positive integers
with 1<k<A4. For constant degree graphs,
EIMS (E) can be solved in O(log* m) time on
an EREW PRAM using O(m) processors
where m is the number of edges of the input
graph.

Proof. The algorithm takes a graph G=(V,
E) with degree at most 4 as input, and outputs
a maximal subset P& FE such that <F) is a
graph of degree at most 4.

Let D:E—N be a (24—1)-edge coloring of G
with degree at most 4. For each 7=0, ---, 24
—2, let Di{(E)={e=E|D(e)=1}.

Formally the algorithm is described as fol-
lows:

EIMS Algorithm:

1 Fe¢; Z—E,
2 Compute a (24— 1)-edge coloring D of G
=(V, E);
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3 <0

4 while Z=+¢ do

5 Fe—FU Dz(Z),

6 Z2—7Z—DA{Z);

7 Z—7 —{e=Zldeg(KF U{e}>) > k};
8 7—i+1

9 od

We show the correctness of the algorithm. Let
Fy=¢ and Zy=FE. For 0<;<24-2, let F; and
Z; be the contents of F* and Z just after the sth
iteration. We assume that F;_; is a maximal
subset of Dy(Zo)U---UD;-i(Z:-1) such that
{F;-1> is a maximal subgraph with the degree at
most & of the graph <Do(Zo) U - U Di—(Zi-1)>.

It is easy to see that deg({F:>)<k since
D«Z;) is a matching of {(Z,_;> and since each
edge ¢ in DAZ,) satisfies deg(<Fi-1U{e}>)<k.
We can also see that F; is maximal subset of
FiaUD{(Z;-1). Therefore, after 24—1 itera-
tions, we see that the resulting /' is a maximal
set of edges such that deg(<F»)<k.

Next, we show that the algorithm runs in
O(T(G)+dlog 4) time on an EREW PRAM
with p processors for p=Adm where T(G) is the
time which our algorithm takes at line 2 on an
EREW PRAM using p processors. In lines 3-9,
since the number of colors of the edge coloring
of the graph G is 24—1, it takes O(dlog 4)
time on an EREW PRAM with m processors.
Therefore, we can see that the algorithm runs in
O(T(G)+ dlog 4) time on an EREW PRAM
with p processors for p=Adm.

For a constant degree input graph G with
degree at most A, line 2 can be implemented in
time T(G)=0(4(d+1log* m)log 4) by con-
structing a line graph G’ of G and computing a
valid vertex coloring of G’ with 24—1 colors.
Hence, for the constant degree graphs, our algo-
rithm runs in O(log* m) time on an EREW
PRAM using O(m) processors. U

Remark 2. By using the MIS algorithm in
Ref. 5), EIMS (%) can be solved by the algo-
rithm in Ref 4), 10) in O(log™ m) time on an
EREW PRAM with O(m) processors for con-
stant degree graphs. However, for a constant
degree graph G with degree at most /, the
algorithm in Ref. 4), 10) must compute the (24
—1)-edge coloring 2% times to solve EIMS (%),
since the MIS algorithm in Ref. 5) uses the (4
-+ 1)-vertex coloring algorithm. Therefore, the
algorithm in Ref. 4), 10) requires O(k4(4
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+log* m)log 4) time using O(dm) processors.
On the other hand, since our algorithm com-
putes the (24— 1)-edge coloring just once, the
running time of our algorithm reduces to O(4(4
+log* m)log 4) time using the same number of
processors to solve EIMS(£).

5. Conclusion

We have shown that the coloring technique is
very useful to devise faster parallel algorithms
with fewer numbers of processors for VIMS (%)
and EIMS(£), when instances are constant
degree graphs. This asserts that the idea of Cole
and Vishkin® helps to solve these problems
drastically faster. Other such cases are known
for the maximal independent set problem,®7? the
(4 1)-vertex coloring problem,®? the list rank-
ing problem,?® the tree contraction problem?
and the 5-coloring problem for planar graphs.®

Our approach for EIMS (&) does not seem to
work for graphs without any degree constraint,
since it uses the edge coloring. However, our
approach to VIMS(£) seems to work for graphs
which allow NC-vertex coloring algorithms with
constant colors, for example, planar graphs,®
bipartite graphs, etc.
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