Vol.34 No.2

Regular Paper

Transactions of Information Processing Society of Japan

Feb. 1993

An Automatic Testing Environment for Large-Scale

Operating Systems

SHUNJI TANAKA,T YASUFUMI YOSHIZAWA,T HIDENORI UMENO,T NAOKO IKEGAYA,T
KAzuyasu MiyAaMoTo T and NOBUYOSHI SUGAMA 1T

This paper presents testing methods for large-scale operating systems (OSs), including for 1/0
error recovery. To reduce the manpower required for OS testing, we developed the automatic OS test
driver (OSTD/AUTO) and the 1/O error simulator (I0SIM). OSTD/AUTO automates operations
in OS testing by using programmed test procedures written in a test procedure description language.
The language describes three types of operations: (a) submitting sequential control commands to the
OS in response to the messages displayed to the console, (b) detecting abnormalities in the OS, and

(c) collecting information for debugging in response to the detection.

OSTD/AUTO decreases

operation time to about 67% on the average in comparison with manual operations. In addition,
IOSIM can simulate errors during 1/0 processing and repeated 1/0 errors in response to the system
programmers’ specification. Automatic OS testing for I/O error recovery can be done by combining

10SIM and OSTD/AUTO.

1. Introduction

Reliability in computer systems is required,
because they are used in a widespread area of
activities throughout human society. In particu-
lar, large-scale computer systems are now deal-
ing with large-scale data processing indispens-
able in our daily lives. The OS kernel is a
critical element in the computer system. When
the OS kernel fails, the entire system is likely to
fail. To decrease the number of errors in the OS
kernel, a great deal of manpower is required to
carry out comprehensive OS testing. Therefore,
efficient and effective testing environments for
OS kernels must be provided.

OS testing accounts for more than one-third
of the total development effors which have been
made up to now? because OS testing processes
have been mainly done manually so far. As the
scale of an OS grows larger, the number of test
cases to confirm the operating normalities in the
OS before shipment is increasing more and
more. The OS tests consist of test preparation,
test execution and program correction (includ-

T Systems Development Laboratory, Hitachi, Ltd.
i1 Software Development Center, Hitachi, Ltd.

246

ing analysis of test results). It was considered
that the proportion of these three phases to each
other is about 2:3:5. However, it is difficult to
reduce the amount of time required for program
correction, because it requires knowledge of the
OS to be tested in detail to find out the causes of
program errors. Consequently, to reduce the
amount of time and effort required for OS
development, test execution has to be carried out
automatically. By re-using the programmed test
procedure, the amount of preparation time
required for retesting will be decreased.

To improve the reliability of computer sys-
tems, an OS provides a function to recover from
1/0 errors. To operate this function effectively,
the software that performs 1/O error recovery
must be reliable. However, about one-fourth of
OS failures occur in the error handling. 1/0
errors must be supplied for the OS to test the 1/
O error recovery function. It is difficult, how-
ever, to generate hardware errors in 1/0 devices.
As a result, tools to simulate 1/0 errors must be
developed.

We developed the automatic OS test driver
(OSTD/AUTO) and the 1/0O error simulator
(I0SIM) to satisfy these requirements. OSTD/
AUTO is developed based on the Operating



Vol.34 No.2 An Automatic Testing Environment for Large-Scale Operating Systems 247

System Test Driver (OSTD).# OSTD mainly
employs virtual machine technology®® to enable
multiple system programmers to develop and test
an OS simultaneously. OSTD provides each
TSS terminal with both the OS screen to operate
an OS and the OSTD screen to operate a virtual
machine.

Multiple OSs are allowed to achieve a simulta-
neous operation in a virtual machine system
(VMS). VMS is mainly used in a large-scale
computer system. A virtual machine monitor
(VMM) is a program effecting a control to
implement a VMS in which multiple logical
machines called virtual machines {VMs) seem to
exist in a real computer system. VMM also
performs scheduling and dispatching of OSs.
An OS on a virtual machine is operated from the
console. In addition, virtual machine operations
such as initial program loading (IPL) of an OS
is performed from the console.

To assure the reliability of large-scale OS, the
OS is to be tested under large-scale environments
similar to the largest customer’s computer sys-
tem. In addition, each system programmer must
prepare each testing environment. Because of
space and cost limitations, however, preparing
multiple large-scale computers for system pro-
grammers is almost impossible.

VMS provides various computer system
configurations for virtual machines by simulat-
ing computer resources. Regardless of the limi-
tations imposed by the real computer
configuration, an OS can be tested under a large-
scale computer configuration corresponding to
the customer’s computer system in VMS environ-
ment. VMS also enables multiple system pro-
grammers to test and debug OSs simultaneously
in a single computer system. In addition, an OS
on a virtual machine can be monitored by VMM
without modification of the OS. As above, VMS
is effective for OS testing.

Some research has already been devoted to OS
testing methods and 1/0 error simulation using
virtual machine technology as follows.

(1) A virtual machine system (VMS) with a
server virtual machine which automates OS
operations was developed.” The system includes
a server virtual machine and multiple virtual
machines to operate the OSs to be tested. The
server virtual machine receives 1/O operation
requests for a console from an OS to be tested,

investigates the I/O operation requests, and
informs the OS of the corresponding operation.

This system, however, does not automate
virtual machine operations such as virtual device
definition and initial program loading (IPL)
operation of the OS to be tested, nor detect
operating abnormalities in the OSs to be tested.
In addition, it does not automate the operation
of multiple OSs on loosely coupled multi-
processor (LCMP) configured virtual machines.
The system is unable to perform these functions
because the server virtual machine merely auto-
mates OS operations. However, these functions
are necessary to automate OS testing.

OSTD/AUTO supports automation of OS

testing by replacing the manual testing proce-
dures from the console with programmed test
procedures. OSTD/AUTO automates virtual
machine operations such as virtual device
definition and IPL operation of the OS to be
tested by monitoring and controlling both the
OS screen and the OSTD screen. OS commands
and OSTD commands can be submitted auto-
matically to the OS screen and to the OSTD
screen respectively. OSTD commands include
the ‘DEFINE’ command to define virtual
devices of the virtual machine and the ‘XIPL’
(eXtended IPL) command to perform the IPL
operation of the virtual machine. It is also able
to detect operating abnormalities in the OS to be
tested by monitoring the execution of the test
procedure. Furthermore, it makes automatic
operation of LCMP configured virtual machines
possible by communicating between multiple
test procedures.
(2) A hardware error generator which simu-
lates 1/0 errors using a virtual machine system
(VMS) was also developed.® The generator,
however, does not simulate either (a) errors
during 1/O processing or (b) repeated 1/0
errors because it simulates an 1/O error only in
response to a real 1/O terminate interruption.
However, these functions are necessary to test
the 1/0 error recovery functions of the OS to be
tested efficiently.

The 1/0O error simulator (IOSIM) proposed
in this paper can generate errors during 1/O
processing by embedding causes of errors in the
channel program, and can generate repeated
errors through the use of timer interrupts to
VMM.



248 Transactions of Information Processing Society of Japan

In Section 2 of this paper, OSTD is explained.
OSTD/AUTO and IOSIM are introduced in
Section 3 and 4 respectively. Conclusions are
presented in Section 5.

2. Operating System Test Driver (OSTD)

The Operating System Test Driver (OSTD) is
developed to support testing for large-scale OSs.
System programmers need to conduct the entire
OS development sequence from their own work-
stations at any time as needed. Based on the
analysis of system programmers’ needs, it was
determined that the basic structure of OSTD
should be a mixture of the VOS3/TSS, an OS to
operate a time sharing system (TSS), and a
virtual machine system (VMS). Using a TSS
connected to a VMS, a conventional OSTD
enables users to test and debug an OS inter-
actively with each TSS terminal in a single
computer system in the same manner as the TSS
enables them to develop and test application
programs interactively.

The configuration of OSTD is presented in
Fig. 1. As shown in the figure, the TSS terminals
used by the system programmers are controlled
by VOS3/TSS. The virtual machine which runs
VOS3/TSS is called the OSTD Control VM.
The following functions were developed for the
OSTD Control VM.

(1) The single terminal used by the system
programmer can be used for three different
purposes. The three sets of functions are the
VOS3/TSS terminal function, the VMS console
function, and the console function for the OS to
be tested. These functions are called the multi-
ple virtual console simulation functions. The
multiple virtual console simulation functions
were designed to control the terminal states
described above and to maintain the screen

Large-scale Mainframe Computer
MMLCmnmumcanon Control Multiple Virtual
B

etween VM's Console Control
ommunication Contro

TSS TSS TSS

erminal erminal ‘erminal
=~ o "

OSTD Control VM :,
Between VM's
Fig. 1 System configuration of OSTD system.

VOS3/TSS .
Virtual Machine
Tested OS
Multiple Virtua
Console Simulation

Feb. 1993

information for each state.

(2)  To collect the VMS console information
and the console information for the OS to be
tested, communication functions were developed
for communicating information between the
OSTD Control VM and the VMM,

The following are the principal features of
OSTD.

(1) System programmers’ workbench

The system programmers’ workbench allows
programmers to conduct the entire OS develop-
ment sequences, program creation, compiling,
and modification, and OS testing and debugging,
at any TSS terminal at any time as needed using
both terminal functions and console functions.
Using the functions of VMS, multiple OSs can
be executed simultaneously, raising the efficiency
of computer usage. In addition, the execution of
instructions by the OS to be tested can be
monitored, halted, and so forth, from the pro-
grammers’ workbench.

OSTD simulates the console screen of the
virtual machine operating the OS to be tested
using a TSS terminal under VOS3/TSS. It
provides OS screen to submit OS commands and
OSTD screen to submit OSTD commands for
each TSS terminal. OSTD commands are
executed for VOS3/TSS and VMM to assist the
OS testing. Virtual machine operations such as
initial program loading (IPL) are submitted
from OSTD screen by using OSTD commands.
(2) Storage and analysis of OS testing and
debugging information

System programmers investigate the causes of
program errors by overseeing the OS console
operations and analyzing the storage dumps.
Functions for collecting and analyzing the stor-
age dumps and for automatically collecting and
storing information on OS console operations in
a data set are provided.

(3) Efficient, automatic measurement and eval-
uation of testing thoroughness

System programmers need to know the
efficiency of the program testing. The test cover-
age ratio is useful for determining at what stage
testing of an individual module was conducted.
A hardware function called Test Coverage
Assist (TCA) allows automatic measurement of
the thoroughness of testing of program modules.
(4) High level monitoring and control func-
tions for OSs to be tested



Vol.34 No.2 An Automatic Testing Environment for Large-Scale Operating Systems 249

In investigating the causes of program errors,
system programmers must identify instructions
from multiple points which operate in a different
manner than intended or which write error data
into a program table. Functions are provided
for setting multiple control breakpoints within
the OS to be tested. In addition, multiple data
breakpoints can be set to monitor access to data
areas.

(5) Access to data areas using symbolic names

An OS includes a large number of control
tables. These control tables are often related in
a hierarchical manner. Thus, when accessing
storage contents, it is easier to access them not
by specifying the memory address, but by
defining the relationships among the control
tables instead, then specfying a defined symbolic
name. Thus, functions to access storage contents
by specifying the symbolic name are provided.
(6) Virtual device simulation functions

When testing an OS, it is often necessary to
use a very large number of devices and to test the
response of the OS to failures in the devices. In
addition, testing is often accompanied by man-
ual operation of the devices. For these reasons,
multiple virtual terminal simulations (Terminal
Traffic Simulator, or TTCS) and other virtual
device simulation functions are provided in
OSTD.

Implementing the features above, OSTD now
enables integrated OS developlent on a single
computer system. System programmers did not
need to go to the computer room to operate
virtual machines for OS testing. Instead, they
could perform most of the testing operations
interactively from their own TSS terminals at
any time, with no need to take over exclusive use
of the computer system. Scores of system pro-
grammers could perform testing and debugging
of OSs simultaneously using OSTD. This was a
major breakthrough for testing and debugging of
large-scale OSs.

3. Automatic OS Test Driver: OSTD/AUTO

3.1 Requirements for Automatic OS Test-
ing

OSs tend to be developed on the basis of an

existing OS. This is especially true for large-

scale OSs because they have many general-

purpose functions and the scale of them is enor-

mous. Therefore, to confirm the effect on the

existing functions in OS development, regression
testing accounts for a large part of OS testing.
To enable test data to be reused effectively in
regression testing and in development of suc-
ceeding OSs, tools needed to be developed to
execute re-usable programmed test procedures to
handle thousands of test cases.

In addition, each system programmer in
charge of a function must prepare each testing
environment by submitting control commands to
test the function. However, much time 1is
required to submit control commands manually
for OSs to be tested. To provide a testing
environment quickly for system programmers,
tools needed to execute automatic computer
operations from IPL to any required operation
during interactive operations.

In OS testing, system programmers start up for
the OS to be tested by submitting control com-
mands and monitor the operating state. [f they
detect any operating abnormalities in the OS to
be tested by console display and so on, they stop
the machine and investigate the causes of pro-
gram errors by checking contents of the general
registers (GRs), and memory dumps, etc. This
sequence of testing operations must be automat-
ed to perform automatic OS testing. This
sequence is executed more than one thousand
times in a large-scale OS development. In addi-
tion, mistakes of test procedures make it neces-
sary to revise the test procedures and do the
processing again. In particular, non-interactive
processing for an enormous amount of OS retest-
ing and regression testing is likely to be per-
formed at night when no system programmers
are present to raise the effciency of computer
usage. Consequently, mistakes made in the test
procedures in non-interactive processing will
cause the confirmation of the test results to be
delayed for one day. Therefore, the correctness
of the programmed test procedures must be
verified before execution. Furthermore, it is
difficult to prescribe all the test operations into
test procedures to cover unexpected events
caused by program errors in OS testing. In
addition, test procedures may have to be chang-
ed during OS testing. Therefore, it is required to
enable intercepting automatic testing to change
testing operations during OS testing.

Consequently, the following functions are
required for automatic OS testing.



250 Transactions of Information Processing Society of Japan

(1)  Submitting control commands automati-
cally

(2) Monitoring the operating state of the OS to
be tested

(3) Logging during OS testing

(4) Verifying test procedures

(5) Intercepting automatic execution

3.2 Facilities of OSTD/AUTO

OSTD/AUTO is developed based on OSTD.
The test procedure operates the OS to be tested
in OSTD/AUTO. The system consists of
OSTD, testing procedures, procedures inter-
preter, procedures executer, logging file, and
procedures verifier (see Fig.2).

OSTD/AUTO supports automation of OS
testing by replacing the manual testing proce-
dures from the console with programmed test
procedures. By using OSTD/AUTO, system
programmers can make effective use of time
during automatic operations. In addition, a lot
of regression testing and retesting needs to be
carried out in non-interactive processing (what
is called “batch” processing) to raise the
efficiency of computer usage. Therefore, OSTD/
AUTO is designed so that it can be executed
both in interactive processing and in non-
interactive processing.

Figure 3 shows the state transition involved in
switching the TSS mode. When the OSTD
command is input while the terminal is in TSS
mode, the terminal moves to the OSTD mode
and displays the OSTD screen. OSTD com-
mands and TSS commands can be input to the
OSTD screen. When the XIPL (eXtended Ini-
tial Program Loading) command, one of the
OSTD command, is input, the terminal changes
to display the OS screen. OS control commands
can be input to the OS screen. The switching
between the OSTD screen and the OS screen can
be done by inputting special key of the terminal.
When the ‘AUTO START’ OSTD command is
input, the terminal moves to the OSTD/AUTO
mode and the OS to be tested is operated auto-
matically according to the test procedure
specified by the command. Mode change from
OSTD/AUTO mode to OSTD mode can be
done by (a) termination of the test procedure,
(b) execution of the ‘STOP’ statement in the test
procedure, and (c) special key.

OSTD/AUTO provides system programmers
with the following functions.

Feb. 1993

Large-scale Mainframe Computer

vy Communication Contro
Between VM's

ultiple Virtual
Console Control

Non-interactive VM |
Automatic Testing

Batcl
Job

% ket

VOS3/TSS Communication

Control Between VM's

Interactive o VM
Automatic Testing P P
@ Executer | Tested
Timer 0s
rocedures] [ Procedures] [ Commands|
Verifier Interpreter| | Executer
Verifying Test Logging during
procedures

Testing Loggin OS testing
Procedures File

Fig.2 System configuration of OSTD/AUTO system.

OSTD OSTD mode AUTO (RE)START
command
T5S n ) command OSTDY
mode screen AUTO
OSTDEND g| Termination | Mode
XIPL Special
command | oo %eec; 'STO_P' statement
oS Special Key
screen

Fig.3 State transition of the terminal.

(1) Submitting control commands automati-
cally

OSTD/AUTO monitors the message dis-
played to the OS screen and the OSTD screen
according to the ‘MATCH’ statement in the test
procedure, and submits control commands
specified by the ‘COMMAND’ statement. In
other words, all messages are ignored until the
message specified in the executing ‘MATCH’
statement is displayed. Therefore, main routine
of the testing procedure is a sequence of the
messages to be monitored and the control com-
mands to be submitted. The test procedure is
usually executed sequentially to operate the OS
to be tested. However, console messages from
the OS to be tested are sometimes displayed out
of turn because of the operating timings.
OSTD/AUTO can conduct parallel processing
of the test procedure according to the description
specified by the ‘PARALLEL’ statement to sub-
mit the control commands corresponding to the
console messages out of turn. Thus, OS com-
mands and OSTD commands are submitted

- automatically by OSTD/AUTO.

Monitoring and controlling of the OS screen
and the OSTD screen are performed as follows.



Vol.34 No.2 An Automatic Testing Environment for Large-Scale Operating Systems 251

A start 1/0 instruction issued to the OS console
by the OS to be tested in a virtual machine is
intercepted and routed to VMM. VMM notifies
the contents of the console screen specified by
the start I/O instruction to the VOS3/TSS in
another virtual machine by using external inter-
ruption.  Thus, OSTD/AUTO can monitor
messages on the OS screen. In the same manner,
messages from VMM to OSTD/AUTO are
informed to the OSTD screen. Thus, OSTD/
AUTO can monitor the OSTD screen. In addi-
tion, requests from OSTD/AUTO to VMM such
as VMM command execution are informed by
using supervisor call (SVC) interruption.
(2) Monitoring the operating state of the OS to
be tested

The main routine of the test procedures
describes the normal console messages sequence
and the normal OS commands sequence. Thus,
operating abnormalities in the OS to be tested
are detected when the normal message is not
displayed to the console. Monitoring such as
execution time of the OS to be tested or waiting
time for the normal message aids detection of
operating abnormalities in the OS to be tested.
When an abnormal condition of the OS to be
tested specified in the ‘ON’ statement is detected,
the control of the test procedure is transferred to
the statement next to the ‘ON’ statement. After
information for debugging is collected by execut-
ing the OSTD commands described next to the
‘ON’ statement, the terminal moves to the OSTD
mode.
(3) Logging during OS testing

Commads submitted and messages displayed
during the tests are automatically collected in
files. Contents of the general registers (GRs)
and control registers (CRs) in time of detecting
program errors can be collected by submitting
the ‘DISPLAY’ OSTD command in the test
procedure. In addition, the memory dumps in
time of detecting program errors are collected by
submitting the ‘DUMP’ OSTD command in the
test procedure. The ‘DUMP’ OSTD command
can specify the range of real storage and virtual
storage. The contents of the dump storage is
stored in files of the OS to be tested.
(4) Verifying test procedures

A program to check test-procedure syntax was
made to confirm the correctness of test proce-
dures previously.

(5) Intercepting automatic execution

Test procedures can be freely intercepted at
specified points by submitting the ‘STOP’ state-
ment, and the test operations can be executed
manually. In addition, the suspended test proce-
dure can be restarted by submitting the ‘AUTO
RESTART OSTD command.

3.3 Specification of Test

Description Language

Table 1 shows an outline of test procedure
description language. The statements shown in
the table specify the following actions for
OSTD/AUTO.
(1) The ‘COMMAND’ statement executes a
specified control command for either OSTD or
the OS according to the specification.
(2) The ‘MATCH’ statement keeps the execu-
tion of the next statement waiting until the
specified message is displayed.
(3) The ‘ON’ statement observes the abnormal-
ity according to a specified condition such as the
execution time of the test procedure. When an
operating abnormality is detected, the control of
the test procedure is transferred to the statement
next to the ‘ON.
(4) The ‘PARALLEL’ statement conducts
parallel processing of the test procedure to sub-
mit the control commands corresponding to the
console messages out of turn.
(5) Test procedures can be intercepted by the
‘STOP’ statement, and the test operations can be
executed manually.
(6) ‘EXIT and ‘END’ statement terminate the
test procedure.

Procedure

Table 1 Specification of test procedure description
language.

No. | Statement Action

I | COMMAND | Executing specified command
to either OSTD or the OS

2 | MATCH Keeping specified message
waiting

3 |ON Observing the execution of test

procedure

4 | PARALLEL
5 | STOP

Executing processing parallel

Intercepting the execution of
test procedure

6 | EXIT/END Terminating the execution of

test procedure




252

3.4 Example of Test Procedure
(1) An example of a test procedure for a single
virtual machine

Figure 4 shows an example of a test procedure
for a single virtual machine. The test procedure
starts an OS and executes the TESTJOB. Fur-
thermore, if the message specified in each
‘MATCH’ statement is not displayed to the
console within ten minutes, OSTD/AUTO dis-
plays the contents of general registers (GRs)
and the program status word (PSW) and termi-
nates the execution of the test procedure. Conse-
quently, system programmers can investigate the
program errors by using the test results.
(2)  An example of test procedures for LCMP-
configured virtual machines

Figure 5 shows an example of a test procedure
for LCMP-configured virtual machines. The test
procedure synchronizes and starts two different
OSs running on two virtual machines.
(a) The DEFINE command defines a virtual
Channel-to-Channel Adapter (CTCA) for each
virtual machine. Then the COUPLE command
connects the virtual machines with the virtual
CTCAs. Consequently, LCMP-configured OSs
can communicate with each other using the
virtual CTCAs.

[IPLPROCO:
! COMMAND "XIPL 440’ 0STD;
MATCH/SPECIFY SYSTEM PARM/:
COMMAND R 00,CLPA',0S;
MATCH/SPECIFY JSS3 OPTIONS/;
COMMAND 'R 01,COLD,NOREQ',0S;
MATCH/ISS3 WAITING FOR WORK/;
COMMAND 'START TESTIOB',0S;
EXIT;

ON TIME(10);

COMMAND 'SLEEP',0STD

COMMAND DISPLAY PSW',0STD
COMMAND 'DISPLAY GR',0STD
ENDIPL; .. ..

Fig.4 A test procedure for a single VM.

Testing Procedure for Global Processor

Transactions of Information Processing Society of Japan

Feb. 1993

(b) Executing XIPL command of the OSTD in
two test procedures will perform IPL of OSs for
two virtual machines.
(c) After completion of the start-wp for one
virtual machine, the Job Spooling Subsystem 4
(JSS4) is loaded into other virtual machine.
(d) System programmers are ready for testing
programs in relation to LCMP,
(3)  Anexample of a test procedure on memory
patch

Figure 6 shows an example of a test procedure
on memory patch. Memory patch is a function
to modify the OS kernel to be tested. The test
procedure performs IPL operation of an OS
three times. Thus, system programmers can
confirm the influence of the three kinds of
memory patch, and modify the OS kernel to
operate normally.

3.5 Evaluation of OSTD/AUTO

OSTD/AUTO is evaluated from the view-
points of operation time of IPL, OS retesting
and regression testing, LCMP-configured multi-
ple OSs testing, and operation time of tape
initialize and data set copy as follows.
(1) Operation time of IPL

Table 2 shows comparison of the operation
time from IPL to the Job Spooling Subsystem 3
(JSS3) start for VOS3/ESI, a large-scale OS,
between interactive OSTD/AUTO operations
and manual operations. The console operations
include eight commands. As shown in Table 2,
OSTD/AUTO during interactive operations
decreases operation time to 67.2% on the average
in comparison with manual operations.
(2) OS retesting and regression testing

Formerly, the periods of test preparation, test
execution and program correction, which consist
of OS retesting and regression testing using
manual operations were in the ratio of about 2:
3:5. OSTD/AUTO, however, needs little test
preparation because of its re-use of the test

Testing Procedure for Local Processor

GIPL:PROC();

CMD 'DEFINE CTCA CIE,TD
MATCH /ENTER COUPLE/; <

CMD 'COUPLE CI1E TO LOCAL C1E',TD
CMD 'XIPL 440, TD

CMD 'MSG LOCAL GLOBAL READY',TD
END GIPL,

->

MATCH /GLOBAL READY/;

LIPL:PROC();

COMMAND 'DEFINE CTCA CIE',TD i
CMD 'MSG GLOBAL ENTER COUPLE'TD |

CMD 'XIPL 420/,TD |
CMD 'START JS§4',08

END LIPL;

Fig.5 A test procedure for LCMP-configured VMs.



Vol.34 No.2 An Automatic Testing Environment for Large-Scale Operating Systems

Table 2 Estimation of OSTD/AUTO.

253

No. (a) IPL Time by (b) IPL Time by (b)/(a) (%) Miss Operations
Manual Operation OSTD/AUTO
1 3 min. 06 sec. 2 min. 07 sec. 68.2 no miss operations
2 3 min. 27 sec. 2 min. 13 sec. 64.3 one miss operation
3 3 min. 38 sec. 2 min. 32 sec. 69.7 in manual operation
Average 3 min. 24 sec. 2 min. 17 sec. 67.2 —

-jogCPEO&(L:I;DEC ing the timings between the multiple processors.
&=l ’ Multiple system programmers were occupied for
DOCWAHILLll?Pfd@S); the IPL operation. OSTD/AUTO, however,

L ) .
IF &I~1 THEN automates IP-L for LCMP-con'ﬁgured multiple
CALL PATCHI, virtual machines; synchronization between the
EL%’:‘ &I=2 THEN test procedyres contro}ling each virtual machine
CALL PATCH2; enables this automation. Thus, each system
ELSE . . .
CALL PATCHS; programmer - can perform OS testing in an
COMMAND 'START TESTJCB',0S; LCMP environment.
COMMAND 'SLEEP',0STD; . . T
COMMAND 'SYSTEM CLEAR' OSTD:; (4) Operation time of tape initialize and data
&l=&it1; set copy
END; It needs three commands made up of 104
END JOB;

Fig. 6 A test procedure on memory patch.

Preparation ~Execution Program Correction
prpasion pereoion [ pos

Conventional

Retesting ’1 (20) l (30) " (50) -'|
) .srmm‘éégo _.—""/ e
Rewsing. | | U529 1 = |

="\ in OSTD/AUTO
Environment

Non-interactive - i
Retesting (50)

Fig.7 Evaluation for OS retesting.

procedure. In addition, it is easy to collect test
procedures for retesting and regression testing by
generating them automatically from manual
console operations. Thus, all regression testing
can be executed in OSTD/AUTO environmet by
using the collected testing procedures. Further-
more, OSTD/AUTO decreases the period of test
execution for system programmers to almost 0%
for non-interactive use, and to 50-95% for inter-
active use (depending on the frequency of the
console operation).  Consequently, OSTD/
AUTO cuts OS test time to 50% for batch use
and 65-79% for interactive use for system pro-
grammers (see Figure 7).,
(3) LCMP-configured multiple OSs testing
Conventionally, during IPL for a loosely
coupled multi-processor (LCMP) configured
system, IPL had to be performed while consider-

characters to initialize a tape and copy a data set
from disk unit. The operation takes 3 minutes 3
seconds in manual operation, and 1 minute 27
seconds in OSTD/AUTO operation. Further-
more, it takes 4 minutes 9 seconds in manual
operation with one miss operation. As above,
OSTD/AUTO is effective for shortening the OS
testing time.

4. 1/0 Error Simulator: I0SIM

4.1 Requirements for IOSIM

It is important for OSs to recover 1/O errors
for improving the reliability of computer sys-
tems. Formerly, hardware errors in the 1/0
devices must be supplied for the OS to test the 1/
O error recovery function. However, it is
difficult to generate hardware errors in the 1/0
devices, and it takes much time to develop each
hardware error generator corresponding to the
1/O device. As a result, a tool to simulate all
types of 1/O errors independent of real hardware
errors need to be developed. In addition, it is
desirable to automate OS testing for 1/0 errors.
The types of 1/O errors consist of (a) errors in
starting 1/O operations, (b) errors during 1/0
processing such as unit check interrupts, and (c)
repeated 1/0 errors. Thus, the IOSIM needs to
simulate those 1/0 errors.

When errors in starting 1/O operations or
during 1/0 processing occur, an OS investigates



254

the causes of the 1/O errors and tries to complete
the whole 1/O operations. This processing
depends on the times, range and contents of
errors.  When repeated /O errors occur for
channel errors, an OS tries to reset the channel
status to stop the repeated 1/0 errors and tries to
make use of /O devices under the channel. This
processing depends on interval and times of the
errors. Thus, those error conditions need to be
specified to IOSIM by system programmers. In
addition, multiple system programmers need to
test error processing simultaneously.

4.2 Facilities of IOSIM

It is suitable for the VMM to simulate 1/0
errors because both I/O instructions issued by
the OS to be tested and I/0 interruptions to the
OS to be tested are simulated by the VMM.
Thus, IOSIM is developed in the VMM. The
IOSIM can simulate errors during I/O process-
ing, and can simulate repeated 1/O errors
according to the system programmers’
specification. IOSIM can be used to test an OS
approximately 80% of the test cases for 1/O error
recovery without using a particular hardware
error generator. IOSIM can’t specify the busy
time of the 1/O control units so far. IOSIM is
activated by submitting a single ‘IOTEST’ VMM
command from OSTD screen. Thus, by execut-
ing the test procedure including the ‘1OTEST’
command, automatic testing for 1/0 error recov-
ery can be done. IOSIM has the following

Transactions of Information Processing Society of Japan

Feb. 1993

simulation functions (see Table 3):
(1) Simulation of errors in starting 1/0 opera-
tions

1/0 error recovery in an OS performs different
action according to the number of errors and
range of errors. IOSIM can simulate condition
codes for errors in starting I/O operations at
specified times for start 1/O instructions accord-
ing to the specification of the ‘IOTEST’ com-
mand. The ‘IOTEST’ command can specify
multiple 1/O devices as devices for which errors
will be simulated. When more than one 1/0
path are connected to one I/O device, the
‘IOTEST’ command can specify the error path.
(2)  Simulation of errors during 1/0 processing

An OS decides the method to recover the 1/0
operation according to the error status informed
by the 1/0O interruption. System programmers
can specify information for 1/0O interrupts by
using the ‘l1OTEST’ command. An I/O interrupt
to an OS can be delayed or deleted. 10SIM can
also simulate errors for a specified channel com-
mand word (CCW) in the channel program, for
specific types of channel commands and for
accessing specific address areas on a disk unit by
intercepting the 1/O processing at specified
CCW in the channel program. When a unit
check interrupt is simulated, the contents of the
sense byte (detailed information about the inter-
rupt) can be also simulated to the OS according
to the users’ specification.

Table 3 Facilities of 1/0O error simulator.

Kind of simulation
No. | Facilities 1/0 Error 1/0 Unit Check Repeated 1/0
Instruction Interruption Interruption Errors
I Specification of Target Device X X X X
1/0 path X X X X
2 | Specification of 1/O Error times X X X X
Error interval X X X X
Command code — X — —
Seek address X — —
3 | Specification of Last CCW — X — —
4 | Specification of — X — —
Interruption Delay
5 Simulated Information SCSW, CSW X X —= X
ESW, LCL X X — X
Sense Byte X

Explanation X: well suited, —: none.



Vol.34 No.2 An Automatic Testing Environment for Large-Scale Operating Systems 255

(3) Simulation of repeated 1/O errors

To confirm the recovery functions of the OS to
be tested for repeated I/O errors, IOSIM can
simulate the interrupts at specified periods using
timer interrupts to VMM according to the
specification of the ‘IOTEST’ command.
According to the clear I/O instruction issued by
the OS to be tested, IOSIM stops to simulate the
repeated I/O errors as if the channel status were
reset. Thus, an OS tries to make use of I/O
devices under the channel. The above sequential
actions of the testing OS for repeated 1/0O errors
can be tested using IOSIM.

5. Conclusions

We developed the automatic OS test driver
(OSTD/AUTO) and the 1/O error simulator
(I0SIM). OSTD/AUTO automates both OS
operations and virtual machine operations by
monitoring and controlling both the OS screen
and the OSTD screen. OSTD/AUTO, during
interactive operations, decreases operation time
to about 67% on the average in comparison with
manual operations. IOSIM can simulate errors
during 1/O processing and repeated 1/O errors
according to the system programmers’
specification. OSTD/AUTO can be used to
check and test approximately 80% of the OS test
cases (such as for normal or unusual cases,
conditions concerning boundaries, and combina-
tions of these conditions) without modifying the
OS to be tested. Automatic OS testing for 1/0
error recovery can be done by combining
OSTD/AUTO and IOSIM. They can be used
widely, not only to develop and test OSs, but
also database systems, data communication sys-
tems, and on-line systems.

Acknowledgements OSTD/AUTO and
IOSIM have been developed from a research
project to improve the reliability of large-scale
computer systems. They were completed thanks
to the efforts of many persons in the Software
Development Center, the Systems Development
Laboratory, and in subsidiary companies of
Hitachi, Ltd. The authors would like to particu-
larly thank Mr. S. Takasaki, Mr. K. Totsuka,
Mr. T. Hirotaka, Mr. T. Yamagishi and Mr. M.
Haraguchi for fruitful technical discussions on
this research.

References

1) Ramamoothy, C. V. and Ho, Siu-Bun, F.: Test-

ing Large Software with Automated Software
Evaluation Systems, [EEE Trans. Softw. Eng.,
Vol. SE-1, No. 1, pp. 46-58 (1975).

2) Chusho, T.: Test Data Selection and Quality
Estimation Based on the Concept of Essential
Branches for Path Testing, IEEE Trans. Softw.
Eng., Vol. SE-13, No. 5, pp. 509-517 (1987).

3) Iyer, R. K. and Rossetti, D. J. : Effect on System
Workload on Operating System Reliability: A
Study on IBM 3081, IEEE Trans. Softw. Eng.,
Vol. SE-11, No. 12, pp. 1438-1448 (1985).

4) Yoshizawa, Y. et al.: Test and Debugging
Environment for Large Scale Operating Systems :
OSTD, COMPSAC 87, The Computer Society of
the IEEE 1987, pp. 298-305 (1987).

5) Goldberg, R.P.: Survey of Virtual Machine
Research, Computer, Vol.7, No.6, pp.34-45
(1974).

6) Meyer, R. A. and Seawright, L. H.: A Virtual
Machine Time-Sharing System, [BM Syst. J.,
Vol. 9, No. 3, pp. 199-218 (1970).

7) Kagawa S. et al.: An Automatic Operation
Method in Virtual Machine System, Japanese
Laid-open Patent Applications 59-718 (1984).

8) Miyazaki, Y.: A Virtual Machine with Hard-
ware Error Generator, Japanese Laid-open Patent
Applications 62-70941 (1987).

(Received November 19, 1991)
(Accepted December 3, 1992)

Shunji Tanaka (Member)

Shunji Tanaka received the
B.S. and M. S. degrees in math-
ematics from Kyushu University
in 1979 and 1982, respectively. He
N is a researcher in Systems Devel-
opment Laboratory, Hitachi, Ltd. Since 1983, he has
been engaged in research on performance improve-
ments for virtual machine systems and reliability
improvements for operating systems. His current
research includes computer architectures. He is a
member of the Japan Society for Software Science

and Technology and the IEEE Computer Society.



256 Transactions of Information Processing Society of Japan

Yasufumi Yoshizawa (Member)

Yasufumi Yoshizawa was born
in Tokyo, Japan, in 1944. He
received B.S. degree in Applied
Physics from Tokyo Institute of

Technology, Tokyo, Japan, in
1967 and joined Central Research Laboratory
(CRL) of Hitachi, Ltd. He was a member of HITAC
5020/TSS Project in CRL. In 1973, Systems Devel-
opment Laboratory (SDL), Hitachi, Ltd. has been
established, and he was transferred to SDL at the
same time. He researched into program behavior in
virtual memory, performance evaluation of large
scale time-sharing systems and on-line transaction
systems and proposed several performance improve-
ment methods. He has received an engineering doc-
toral dissertation based on those researches in 1981
from Tokyo Institute of Technology. He also studied
for testing and debugging systems, especially operat-
ing systems. He is at present doing research work on
performance improvement of workstation and server
systems. He received an Award of the Excellent
paper of IPSJ in 1972. And he has been an extra-
mural lecturer of Tokyo University of Agriculture
and Technology from 1980, University of Electro-
Communications and Tokyo Institute of Technology
from 1990. He is a chief researcher of SDL. He is an
author of “Practical Operating Systems” published
by Shokodo. He is a member of IEEE Computer

Society.

Hidenori Umeno (Member)

Hidenori Umeno was born in
Oita, Japan, in 1947. He received
B. S. degree in mathematics from
Kyushu University in 1970. He
had been with Central Research
Laboratory, Hitachi Ltd. from 1970 to 1976, and
engaged in the study of productivity of compilers.

Since 1976 he has been engaged in research on

Feb. 1993

performance and reliability of virtual machines,
logical partitions, file systems, and operating sys-
tems. His main concerns are virtual machines, logical
partitions, file systems, operating systems, micropro-
grams, and architectures. He is a member of Associa-
tion for Computing Machinery and IEEE Computer

Society.

Naoko Ikegaya (Member)

Naoko Ikegaya was born in
Saitama, Japan. She received the
B. S. degree in mathematics from
Tsuda College in 1985. Since 1985
she has been with Systems Devel-
opment Laboratory, Hitachi, Ltd. and has been
engaged in research on control of virtual machine

systems and reliability of operating systems.

Kazuyasu Miyamoto (Member)

Kazuyasu Miyamoto received
B.E. degree from Yokohama
National University in 1965,
Since 19635, he has been with Soft-
ware Development Center, Hita-
hi, Ltd. His current interests include all areas of
software engineering, software quality assurance,
and computer assisted learning. He is a member of
the ISO/IEC JTC1/SC7 Committee and the IEEE
Computer Society.

Nobuyoshi Sugama (Member)

Nobuyoshi Sugama was born
in Ibaraki, Japan, in 1950. Since
1971, he has been with Software
Hitachi,
Ltd. He had been engaged in

Development Center,

quality assurance of software (FORTRAN com-
pilers). Since 1975, he has been engaged in develop-

ment of virtual machine system.



