Vol.34 No.2

Regular Paper

Transactions of Information Processing Society of Japan

Feb. 1993 .

On the Global Convergence of Some Iterative Formulas

TAKAHIKO MURAKAMI |

We showed two types of third order iterative formulas containing two parameters. Let f (x) be
a polynomial with only real zeros or an entire function of a certain type with only real zeros. Then
we established that the one type of the above-mentioned iterative formulas converges globally and

monotonically to the zeros of the f (x).

The purpose of this paper is to show that the other type

also converges globally and monotonically to the zeros of the f (x).

1. Introduction

Ostrowski? and Traub® have shown various
types of iterative formulas for the computation
of the numerical solutions of the nonlinear
scalar equation
f(x)=0 (1.1)

where f (x) is a real function of the real variable
x. In Ref. 3)~6), we also have shown various
types of iterative formulas.

Let f (x) be a polynomial of exact degree » >
I with only real zeros given by the following
form:

7
f=]1(x~a. (1.2)
Then, it has been shown that Ostrowski’s
method (Ref. 1), pp.110-115), Laguerre’s

method (Ref. 1), pp. 353-362), and Hansen and
Patrick’s methods” converge globally and
monotonically to the zeros of f (x).
Next, let f (x) be given by the following form:
f(x)=x?exp (a+bx—cx?)

-I;(Ifi—)em (1.3)

where p is a non-negative integer, a, b, ¢ are real
with ¢20, and @, are real. If the number of the
ar is infinite, then Yaz*< co. Furthermore, if the
number of the @, is finite, then we require that
there be at least one @, for p=1, and at least two
for p=0.

Then, it has been shown that Ostrowski’s
method (Ref. 1), pp. 124-126), Hally’s method®,
and Hansen and Patrick’s methods” converge
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globally and monotonically to the zeros of f
(x).
In Ref. 6), we considered the following type of
iterative formulas:
xﬂ+1:¢(xﬂ)s n=0,1, - (1.4)

where ¢ (x) =x—hAR(X), hzh(x):m X

f(x)
=4 / "(x)
f(x)”

and R (#) is a function of ¢. Then, it was shown
that the order of convergence for Eq. (1.4) is
equal to 3 for all simple zeros of Eq. (1.1), iff
R(0)=1 and R’ (0)=1/2.

Furthermore, we gave two examples of R(X)
in the form:

=X (x)

(@+—é~)x+1
Ex.1 R(X)=—gorloprr

(B, 6: parameters),
Ex.2 R(X)= atyb

a+Vb—yb (a+/b)X
(a, b: parameters).

In Ref. 6), we established that iterative for-
mulas for R(X) in Ex. | converge globally and
monotonically to the zeros of f(x) given by
both the form (1.2) and the form (1.3). In 2
and 3, we will consider the monotonic global
convergence of iterative formulas for R(X) of
Ex. 2.

2. Monotonicity of Convergence

We will consider the iterative methods for R
(X) of Ex.2 that form the sequence x, by the
iterative rule:

Xps1=Xn,— K (x,), n=0, 1, ---

2.1
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where
+Jb
K(x)=h 4
() at+yVb—yb (a+/D)X -
At first, let £ (x) be given by the form (1.3).
Then, taking the logarithmic derivative of (1.3)
and differentiating it, we have

(x) _ 1
G +?k),
(2.2)
_(f’(X) )’: ") P=fx)f(x)
S (x) (x)
_r
=2t S
(2.3)

Let the distinct zeros of f(x) be ordered
consecutively so that < &. Then, since the
right hand side of (2.3) is positive, it follows
S(x)
Fx)

open interval (&, &).

Furthermore, since lim L =400, and
X-8o+0 f

lim L(x =—o00, it follows that f’(x) has

x= 81— Of

exactly one zero & such that &< < &. Then,

for Vx&e (&, &) UL, &), we can define the

associated zero a(x) of f(x) to be a(x) =¢ if

H<x< & and a(x)=§ if H<x<&.
Furthermore % and x—a(x) have the

It now follows from (2.3) that

that - is monotonically decreasing in the

same sign.
_ 2 _*_L_}
1= X =i L4204 S >

>0 (H<x<&). (2.4)
It follows from (2.4) that for any real x such
that f (x) f’(x) =0, we have

2
1-X h

T x—a(x)P?

—h2|: +2C+2(X a)z
i

a0 @
Hence, it follows from (2.5) that

=l

We will need later the following lemma:
Lemma 1. If —/ b <a=0, then we have

I

(2.6)

0< a+Jb
atVb—Vb (aryb)X
= Lo (X< 2.7
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Proof. From the assumption, we have a+y 5 >
0.
It then follows that for X <1,

b—JVb (a+Vb)X>b—/b (a+/b)

=—a/b 20.

Putting @(X)=a+/b—yb (a+Jb )X, we
have @(X) >0 (1) (X<1).
On the other hand, since @ (1) =a++ —ay b >
a+lal=

O(X)>0 (X<1). (2.8)
In order to prove that we have (2.7), it suffices
to prove that the following inequality holds:

(a+V/D)JT=XZ0(X), (X<1)

(2.9)

In order to prove that (2.9) holds, we put

g(X)=0(X)— (a+yb)J1—X.

Then,
g( )= _\/—_(a+\/_)
b Vb (@17 X
n a+/b

Since /’T <0, we have ¢’ (X) <0 if X <0 and
g (X)=20if X 20.
we have g(X) =0.
Hence (2.9) is proved. Consequently, from
(2.8) and (2.9), we have (2.7).
Thus Lemma 1 is completely proved.

1t now follows from (2.6) and Lemma 1 that

lx—a(x)[>]K (x)] (2.10)
Then, on the monotonic convergence of the rule
(2.1), we have:
Theorem 1. Let f(x) be given by the form
(1.3). Then, if —y/ b <a=<0 and if we take the
real starting value in (2.1) X, such that f’(x,)
f (xo) #0, and x, is neither less nor greater
than all zeros of f (x), the sequence x, in (2.1)
converge monotonically to @(xo).
Proof. Assume that we take the starting value x,
such that &< x0< &
Then, we have a(x) =&, f {x0) /f’ (x) <0, and
K (x) <0. Next, applying (2.1) and (2.10),
we have
Xo<x1< a(X),

and by the definition of @ (x), a(x) =a(x).

In addition, since g(0) =
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By repetition of the same argument, we have
Xo< X1 < xp <+ < (X)) .
Hence, it follows that the sequence x, converge
monotonically to a certain limit «:
Xn T as a(X).
Therefore, it follows from (2.1) that
lim K (x,)=0.

Xn—a
Furthermore, if ¢<a(x), then from (2.4), we
have —co<lim X (x,) <I.

Xn—a

Therefore it follows from Lemma 1 and lim 4

Xn—a
(x,) <0 that we have
lim X (x,) <0.

We have our contradiction.
have ga=a(xp).

In the same way, taking x, such that {H<x<
{i, we can prove that the sequence x, converge
monotonically to @(x,). Then, Theorem 1 is
completely proved.

Next, let /' (x) be given by the form (1.2).

Also in this case, by repetition of the same
discussion as the above, we can show the
monotonic convergence of the rule (2.1). We
have:
Theorem 2. Let f (x) be given by the form (1.
2). Then, if —/b <a<0 and if we take the real
starting value x in (2.1) such that £/ (x) f (x0)
+0, the sequence x, in (2.1) converge
monotonically to @(x,) (see Ref. 1), pp. 110-
113).

Thus, it was shown that the iterative methods
(2.1) have the monotonic global convergence
under the same assumptions as those on
Ostrowski’s method for the starting value xo.
Remarks. For b=1, (2.1) coinsides with Han-
sen and Patrick’s methods.

Furthermore, for a=0 and #=0, (2.1) coin-
cides with Ostrowski’s method.

Consequently, we

3. Modification for Multiple Zeros

In Ref. 6), for the case where @ is a zero of
f(x) of multiplicity m>1, we considered the
order of convergence for Eq. (1.4). Then, we

showed that if R(I w—%n):#:m, then the conver-

gence of x, to ¢ is only linear. Also in this case,
it was shown that we can still have cubic conver-
gence to ¢ by modifying the rule (1.4) in the
form:

Xpt1= P (X)), n=0, 1,2, -+ (3.1
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where ¢n(x) =x—mhR(1—m+mX).
Furthermore, the asymptotic error constant of
¢m(x), Cp was given by

—1; ¢m(x) —a
Cn lxlzral (x—a)3
1 3 m
m?(m+1) 7{‘——'—7
(m+1)
—2R (0)}{ ot
(m+2)(a)
- m(m+1) (m+2) " f™(a) -
(3.2)
In our case, it follows from Lemma 1 that

RU—iy=—— L _rmem
m 1
J1=(1——=)
m
Therefore, the convergence of x, in (2.1) to ¢ is

only linear.
Modifying (2.1) by (3.1), we have

xn+1:xn_mhnR(l_m+an>,
n=0,1,2,-- (3.3)
where h,=h(x,), Xn(x,) =X, and R(X) =
at+/b

a+Jb—yb (a+/b )X .
Then, from (3.2), the asymptotic error constant
C, is given by

(35 ma |

1 (m+2)

_ . (a)
m(m+1) (m+2)

T ()
(3.4)

Then, we have:

Theorem 3. Let f (x) be given by the form (1.
3). Then, if under the conditions of Theorem 1
the muliplicity of a=a(x) is m, the sequence
Xn in (3.3) converge monotonically to o (x).
Furthermore, we have:

Theorem 4. Let f (x) be given by the form (1.
2). Then, if under the conditions of Theorem 2
the multiplicity of a=a(x;) is m, the sequence
X, in (3.3) converge monotonically to a(x).
In the case where « is a zero of f (x) of multi-
plicity m > 1, we have

mh?
X
_ g2 P 1 _ m
= L2ty o)
>0. (3.5)
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Therefore, from (3.5), we have

_ Imlh
[x a/(x)|>m. (3.6)
Furthermore, since |—m+mX <1, using
Lemma 1, we have
A > mR(1—m+mX). (3.7)

JI—X
Hence it follows from (3.6) and (3.7) that
(X —a(x)|>mhlR(1—m+mX). (3.8)
Finally, those Theorems can be shown in the
way similar to the proof of Theorem 1 and
Theorem 2.
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