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Bug Localization Based on Error-Cause-Chasing Methods
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In program debugging, when programmers find errors during program execution, they hypothesize
the error causes and then verify their hypotheses. By repeating this process, they trace error causes
one by one and eventually find a bug, that is, the fundamental cause of an error. This paper first
classifies errors commonly found during program execution into five types: variable-value errors,
allocation errors, control-flow errors, omission errors and functional errors. It then presents
error-cause-chasing methods that chase the causes of each type of error. These methods help
programmers to examine error causes and eventually locate bugs. The paper also describes a
bug-locating assistant system CHASE that has been developed based on these error-cause-chasing
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methods.
program state there.

This system identifies the locations at which these errors are caused and restores the
It can further localize the error causes by analyzing the common cause of

multiple variable-value errors, and for omission errors, by chasing the conditional statements that
might have caused the errors through the use of path analysis.

1. Introduction

(1) Survey of Program Debugging Tech-
niques

Various kinds of program debugging tech-
niques have been developed, and they can be
classified into the following five categories.

Breakpoint Method. With symbolic debug-
gers, programmers first set breakpoints at the
locations that they think are related to errors,
then execute the program and examine the pro-
gram state when the execution is interrupted.
They locate a bug by repeating this process.
OMEGAD can easily set breakpoints that have
complicated conditions by using a query lan-
guage as used in relational database systems.
Path Rules? can detect erroneous function invo-
cation sequences based on specified assertions
with respect to execution paths. Dalek and the
like®=%) can easily detect the occurrences of
specific events. Dbxtool® displays the source
text of a program being debugged and indicates
the current execution line; it also displays the
values of specified variables every time execution
is interrupted. VIPS?® further facilitates debug-
ging by displaying complicated data structures
as figures.

Algorithmic Debugging. Programmers judge
the correctness of executed functions one by one.
They judge whether a function was executed
correctly or not according to whether its output
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values are correct or not for its input values. If
a function is judged to be incorrect, program-
mers examine the functions that it invoked. If a
function is judged to be correct, they examine
that function’s sibling functions. In Fig. 1, when
function Q2 is incorrect and its child functions
R1 and R2 are both correct, we can see that there
must be an error in the calling sequence with
which function Q2 invoked its child functions.
With algorithmic debugging, programmers do
not need to determine which function to examine
next. The system optimally orders the sequence
in which programmers are shown the function to
be examined and its input and output values. To
locate a bug, programmers have only to
repeatedly judge the correctness of each func-
tion. This technique is applied to functional
languages that do not have side effects?19,
Program Dependency Analysis. This method
can localize the part of a program that should be
examined by extracting the part of the source
program that might be related to errors. There
are two different types to this method, one which
analyzes programs statically and one which
analyzes them dynamically. Static slicing"»?
extracts the statements that might affect the value
of a variable at a certain statement, and dynamic
slicing®~1% extracts the executed statements that
might have affected the value of a variable at a
certain statement. In Fig.2, variable A is
defined at statements S1 and S3, and its value is
used at statement S6. Statement S2 is a condi-
tional statement like if-then-else. In this case,
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Fig.1 Algorithmic debugging.
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Fig.2 Program-dependency analysis.

static slicing extracts all the statements (S1 and
S3) that define variable A and the conditional
statements (S2) that determine whether those
defining statements are executed. If we assume
that the program was executed along the path
represented by thick arrows, dynamic slicing
extracts only the statement (S3) that defined
variable A such that its defined value was used
at statement S6. Thus, statement S1 is not
included in the dynamic slice. With program
dependency analysis, programmers locate a bug
by examining these localized statements.

Execution Replay. By recording the results of
executing each statement, when an error is
found, this method can examine previous pro-
gram states without rerunning a program. This
replay method has a problem, however, in that
the size of the execution history increases in
proportion to the number of the dynamic steps.
EXDAMS!® does not require the statement
numbers of executed statements to be output to
the execution history file. When it traverses an
execution path, it determines which statement is
to be traversed next by referring to both the
control structure of the program and the results
of predicate statements. Backtracking!” can
reduce the execution history by maintaining only
the result of the last execution of each statement
regardless of how many times it may be execut-
ed.

Anomaly Detection. This method discloses
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some errors by statically or dynamically analyz-
ing a program. AIDA® executes a program and
automatically detects data-flow errors like “refer-
ence before setting.” Dynamic analysis also
allows analysis of the data flow for array ele-
ments. By static analysis of a program, Cecil'?
can detect anomalies the kinds of which are
specified in advance.

(2) Problems with Current

Techniques

Program dependency analysis tells us which
part of a program should be examined. In
algorithmic debugging, it is only necessary to
tell the system whether or not the execution of a
given function was correct for bugs to be detect-
ed. Symbolic debuggers like VIPS can help us
find any difficult bug. However, as programs
become bigger and bigger, they impose a heavier
load on programmers. With program depen-
dency analysis, if a program is very large, the
part of the program that should be examined
will still be large. Algorithmic debugging can-
not be applied to large programs because they
usually have side effects. If a function refers to
some data other than its parameters, it is impos-
sible to judge the correctness of the function
only from is parameter values. With symbolic
debuggers, programmers have to set breakpoints
at the locations that they think are related to
errors, but it becomes very difficult to find these
locations if the program is large. Although
anomaly detection can reveal various kinds of
internal contradictions, it never helps us find
bugs, that is, the fundamental causes of such
errors.  Execution replay can automatically
restore previous program states. However, exist-
ing systems using this method do not have a
strategy for locating bugs.

When programmers find a failure in the execu-
tion of a program, they hypothesize the causes of
the failure and verify these hypotheses??. By
repeating this process, they trace error causes
one by one and eventually find the bug that is
the basic cause. Experienced programmers may
be able to notice error causes close to the bug
merely by glacing at an error state (See Fig. 3).
However, the bigger programs become, the lon-
ger the procedure to trace error causes to locate
a bug will be. To reduce this procedure, this
paper presents error-cause-chasing methods that
help programmers to trace error causes by auto-

Debugging
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matically identifying the locations at which
errors are caused and restoring the program state
there. Errors commonly found during program
execution can be classified into five types:
variable-value errors, allocation errors, control-
flow errors, omission errors and functional
errors. The error-cause-chasing methods
presented here can chase the causes of each type
of error, and can further localize the error causes
by analyzing the common cause of multiple
variable-value errors, and for omission errors,
by chasing the conditional statements that might
have caused the errors through the use of path
analysis. This paper also describes a bug-
locating assistant system CHASE that has been
developed based on these error-cause-chasing
methods.

2. Error-Cause-Chasing Methods

(1) Classification of Errors

Let us first consider what kinds of errors are
found during program debugging. Many com-
mon errors concerning program states can be
roughly classified as data errors or control errors
(See Table 1). Variable-value errors are those
in which a variable has an erroneous value.
There are also allocation errors concerning
dynamically allocated data. These errors
include cases in which data that should not have
been created is created, and cases in which data
of the same type is duplicated and consequently
the amount of data is greater than expected. We
often notice such allocation errors when we use
the visual debugger VIPS™®, which can display
linked lists as figures. In Fig. 4, the linked list
displayed in the upper list window is correct, but
the linked list actually created is the one dis-
played in the lower list window, which contains
two superfluous nodes.

Control-flow errors refer to cases in which the
flow of control is erroneous. One specific case of
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Table 1 Common errors.

Errors Types

Variable-value Errors
Allocation Errors
Control-flow Errors

[oNoNvAv]

Omission Errors
Functional Errors

D, C

D : Data errors, C : Control errors.

such control errors is omission errors, in which
a certain input or output process that should
have been executed was not executed. Examples
are when a message has not been displayed, or a
result has not been output. In addition to data
and control errors, functional errors are often
found during program bebugging. Functional
errors refer to cases in which a certain process
was executed incorrectly. These errors are
caused by a combination of data errors and
control errors. Examples are when a correct
message is not displayed or the location of a
displayed item is erroneous.

Data errors and control errors cause failures
during program execution. These errors are
caused by other data errors and control errors,
which are ultimately caused by a bug, e. g., an
erroneously written statement. The kinds of
errors that can be found during program execu-
tion depend on the techniques that display pro-
gram execution. For example, allocation errors
can be found easily by VIPS because it has a
facility that displays linked lists. For another
example, when a value is assigned to a variable,
VIPS shows an arrow from referenced variables
to updated variables. This makes it easier to
notice when some variables are referenced or
updated erroneously. Although these kinds of
errors do not cover everything, when we debug a
program, we find that they occur very often. The
bug-locating assistant system CHASE provides a
facility to identify the locations at which these
kinds of errors are caused and automatically
restore the program state there.

(2) Bug-Locating Assistant Facilities

There are three separate bug-locating assistant
facilities. The error-cause-chasing facility
identifies the location at which an error is
caused; the program-state-display facility dis-
plays the program state there, i. e., variable
values at that point and function call/return
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Fig.4 Example of allocation error.

sequences or changes in variable values in its
neighborhood; and the execution-point-move
facility moves the current execution point for-
ward or backward by statements or functions.
This paper mainly describes the error-cause-
chasing facility; the details of the other facilities
have previously been described in a separate
paper??. The error-cause-chasing facility consists
of:

* Variable-Value-Error Chasing—When a
variable has an erroneous value, this facility
locates the statement that created the erroneous
value. As a part of this facility, if multiple
variables have erroneous values, it locates the
common cause of the multiple variable-value
errors. We call this the variable-value common-
error-chasing facility.

First, let us consider the data flow related to
the creation of an erroneous value. In Fig. 5,
when the value of variable V1 is incorrect, part
P1 is the data flow that created this erroneous
value. Any statement in this data flow might
include a bug. In actual debugging, when we
examine a program state at a certain execution

D1

Pl

D2 p3

P2

V1
NG NG OK NG NG OK

Fig.5 Variable-value-error chasing.

point, we often notice some variables have incor-
rect values but some others have correct values.
In such a case, we can further localize the part of
the data flow that might have affected the errone-
ous value. Sub-data flow D1 that created correct
values can be considered to have a low probabil-
ity of having affected the erroneous value. If we
remove that part, the part of the data flow that
should be examined will be reduced to part P2.
Sub-data flow D2 that created multiple incorrect
values can be considered to have a high proba-
bility of including an error. If we extract such a
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part, the part of the data flow that should be
examined will finally be reduced only to part P3.

« Allocation-Error Chasing—This facility
identifies the location at which data was allocat-
ed erroneously and restores the program state
there. In the example of Fig. 4, the system
identifies the location at which the superfluous
nodes were allocated and automatically restores
the program state there.

« Control-Flow-Error Chasing—When the
control flow of a program is erroneous, this
facility lets programmers trace backward, in
turn, the locations of the conditional statements
or function invocation statements that caused the
current statement to be executed. In Fig. 6, we
can examine one by one the shaded conditional
and function-invocation statements that caused
the current statement to be executed.

» Omission-Error Chasing—We assume that
programmers find an omission error by identify-
ing a normal input or output immediately before
the omitted input or output. When they specify
the input or output statement (or the function-
invocation statement that executes input or out-
put) that control was not transferred to, this
facility finds the locations at which conditional
statements were executed such that those condi-
tional statements might have prevented control
from transferring to the omitted statement.
Exactly speaking, it shows the last execution
point at which a conditional statement was
executed such that there exists an unexecuted
path not including any input or output from that
conditional statement to the omitted statement.

For example, in Fig.7, there are two state-
ments, Cl and C2, that invoke the omitted part.
We can see that the two conditional statements
S1 and S2 prevented control from transferring to
these two function invocation statements. In this
example, we can further reduce the two condi-
tional statements that should be examined to
one. That is, we need only consider the condi-
tional statement whose path to the omitted part
does not include any inputs or outputs. This is
because if the path to the omitted part included
inputs or outputs, these inputs or outputs would
also be omitted. In this case, therefore, the
conditional statement S2 could never have
caused the omission errors in question. Finally,
we can see that conditional statement S1 has a
high probability of including an error.
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Fig. 6 Control-flow-error chasing.

Omitted
Process

Fig.7 Omission-error chasing.

» Functional-Error Chasing—When a certain
process was executed incorrectly, this facility
identifies the location at which that process was
executed and restores the program state there.
The process to be examined is specified in one of
three ways: by function names, line numbers, or
event numbers. Event numbers identify the
events, such as function invocations or changes
in variable values, displayed by the program-
state-display facility.

(3) Cooperation between CHASE and pro-

grammers

During a debugging process, it is program-
mers who recognize what type of error occurs at
the current execution point and determine which
error-cause-chasing facility to be used to exam-
ine its cause based on the error state. CHASE
executes the error-cause-chasing facility that the
programmers selected, finds the location at
which that errors is caused, and shows the
program state (the executed statement, variable
values, function-invocation sequence, and so on)
there.

For example, consider a case in which two
variables A and B have incorrect values and an
output X is omitted. First, a programmer
notices that these errors occurred. Then, based
on this error state, he or she 1) assumes that it is
due to the erroneous value of variable A that
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this error state was caused and decides first of all
to examine the cause of the variable-value error
concerning A; or 2) tries to examine the com-
mon cause of the variable-value errors concern-
ing A and B; or 3) first examines the cause of
the omitted output X. A fourth possibility is
that, 4) if the programmer is very familiar with
how the program works, he or she might intui-
tively think this error state is due to a function P
and might try to directly examine the process of
function P using the functional-error-chasing
facility.

3. Implementation

(1) System Configuration

Figure 8 shows the system configuration. The

bug-locating assistant system consists of two
subsystems: VIPS” and CHASE. VIPS records

execution history while executing an Ada pro- .

gram. CHASE localizes error causes by analyz-
ing the execution history.

Figure 9 shows an example of a CHASE
screen. The CHASE system has a program-text
window, a panel window, and a monitor win-
dow. The program-text window displays the
current execution point, the panel window
allows programmers to enter commands through
menus or buttons, and the monitor window
displays variable values and various events.

(2) Execution History

The execution history this system requires
consists of the following items concerning the
execution of each statement.

« Executed statements—line number and
statement type,

- Function invocations—function identifiers,

+ Assignments — variable identifiers and
defined values, and

» Dynamic allocations—allocation addresses
and type identifiers of the allocated data.

VIPS CHASE
— — —
Source Execution
Program History
Visual Error-Cause
Representation Chasing

Fig. 8 System configuration.
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4. Error-Cause-Chasing Algorithms

Algorithms for implementing some of the
main error-cause-chasing facilities are described
below.

(1) Program-State Restoring

Because the purpose of this system is to chase
error causes, unlike Backtracking??, it does not
need to restore the whole program state by
backtracking the execution step by step. By
analyzing only the necessary part of the execu-
tion history, it obtains execution points that
caused an error and variable values at those
points.

The execution point where the value of a
variable was last updated can be acquired in the
following way.

Step 1. Acquire the 1Ds of the variable and the
block in which the variablé is declared.

Step 1.1 Acquire the active block ID from
the execution history based on the current
execution point.

Step 1.2 Acquire the IDs of the variable, its

File Name: syntax .ada. SubProg Name: pop_operation Line No: 49
) == push a constant 'c' down L0 'stack node’
48 begin
41 sp_noide:= sp_node + 1;

42 stack_node(sp_node):= create_node(c, null, null);
43 end push_node;

44

45 procedure pop_operation is

46 -~ pop up one operator from 'stack_operation’
47 -~ and push it down to 'stack_node’

48 begi

48 é}tackmode(spﬂnde*l} o

58 create_node( stack operation(sp_operation),

51 stack_node(sp_node-1), stack_node(sp_node) );
52 sp_oparationi= sp_operation - 1;

53 end pop_operation;

54 mmeme-

55 procedure push_operation{c: character)is

56 == push an operator 'c' down to 'stack_operation’
57 begin

58 sp_operation:= sp_operation + 1;

58 stack_operation(sp_operation):= c;

68 end push_operation;

Direction O Backuard

MOVE EXECUTION POINT

@cve by §tatement ) Steps: 1 E H
Move by Line (Farking) e

CHASE ERROR CAUSE .
Execution Flow

COND CHASE

Message :

(Quit)
DISPLAY PROGRAM STATE
Var Value (var Name)
A1l Var Values
N\

Level < Last Chase Point

on history ... Accepted.
<CHASE)> ts stack_node(2).left
<CHASE> ts left
f§ <CHASE> dv
i sp_node = 3
sp_operation = 1
stack_node(2) = 8@2D7EF4

stack_operation{1) = '+'
stack_node(3) = 8B2D82E4
(CHASE>’

Fig. 9 CHASE screen; Error-cause chasing (4).
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type, and the block in which it is declared
using the active block ID and variable
name. If the specified variable is pointer
qualified, the value of the pointer will be
acquired as the variable ID.

Step 1.3 If the variable is an element of
either a record or an array, acquire its
element ID from its type definition.

Step 2. Acquire the execution point at which
the variable was last updated (that is, at
which the variable was included in the
updated variable) by examining backward
the updated data sequence in the execution
history as long as the block is active. If
such an execution point is not found, the
value of the variable will be undefined.

The value of a variable at the current execu-
tion point can be acquired in the following way.
Step 1. Acquire the IDs of the variable, its

type, and the block in which it is declared.

Step 2. Acquire the execution point at which
the variable was updated (that is, at which
the variable was included by the updated
variable).

Step 3. By comparing the variable ID with the
updated variable ID, acquire the offset of
the variable value from the top of the updat-
ed variable value.

Step 4. Using the offset, acquire the variable
value from the updated variable value and
then convert this to a literal expression
using its type definition.

In the example shown in Fig. 10, we will
obtain the value of the element “Q.a”, that is,
element “a” pointed to by pointer “Q” at line
100.  The system first obtains the currently

executed function from the current execution
point and determines which variable name Q
refers to. It then obtains the value of pointer
“Q”. 1t will find the location at which pointer
Q” was defined by analyzing the execution
history backward and then obtain the value of
“Q”, “addressl”. Next it obtains the value of
element “a” of the data allocated at addressl.
Similarly, it will find the location at which the
data at addressl was defined and finally obtain
the value of “Q.a”.

(2)  Common-Error Chasing

Consider the case in which at an execution
point t, variables X and Y have incorrect values
and a variable Z has a correct value. Appendix
I shows the algorithm for acquiring the last
point among the execution points that might be
the common cause of these errors.

Depend(j, v) denotes a set of the execution
points on which execution point j is control- or
data-dependent with respect to variable v.
Execution point j is control-dependent on an
execution point / if the statement executed at i is
a conditional statement and the execution of that
statement caused control to transfer to execution
point j. Execution point j is data-dependent on
an execution point / with respect to variable v if
variable v was used at j and that used value was
defined at i. Depend (;j) denotes Depend (j, Use
(7)), where Use(j) is a set of variables used at
Jj. Last(P) denotes the last executed point
among a set of execution points P. Execution
points are numbered 1, 2, 3, -+- in the order they
were executed. If P is empty, last (P) denotes 0.
Get-last (P) takes the last executed point out of
a set of execution points P and returns it.

Chasing Process

Program Execution History

10 Pa:=x; { addressl.a } =x
20 R:=Q; R = { address2 }
30 Qa:=y; { address2.a} =y
40 Q=P Q = { address1 }
50 Ra:i=z { address2.a } =z

. .

. .

. .
100 put (Q.a); .

®
,é" --II'he value of Q.a has been updated her;|

- L The value of Q is { address! |. —[

. T -L The value of Q.a is erroneous.

Fig. 10 Algorithm for obtaining variable values.
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(3) Omission-Error Chasing

Appendix 2 shows the algorithm for examin-
ing whether or not there exists a path not includ-
ing any input or output from a given conditional
statement to an omitted statement s in a function
Q. For a given block B (which means a func-
tion, each branch of a conditional statement, or
statements inside a loop statement), ProcessBlk
(B) returns false if there exists a path not includ-
ing any input or output from the entry of B to
the exit of B. StartStm(B) returns the first
statement in block B. NextStm(c) returns the
statement next to statement c.

For each function P, the value of ProcessBlk
(P) can be obtained in advance. In addition,
for each branch B of a conditional statement, a
set of the functions that can be invoked inside B
before executing input or output can also be
obtained in advance. Therefore, we have only to
examine whether or not there exists a path not
including any input or output from the entry of
function Q (or from a conditional statement of
interest if it is included in Q) to statement s.

5. Examples

Figures 11 to 15 show an example of tracing
a data flow to locate a bug. We use the program
interpreter as an example program. Interpreter
accepts a numerical expression, and then creates
a syntax tree representing the expression. It
finally calculates the expression’s value based on
the syntax tree.
1) An expression “1+2%3—4/5” is entered and
its syntax tree is created. VIPS shows the linked
list of the syntax tree, but it is incorrect because
the left pointer of the addition operator is con-
nected with the multiplication operator instead
of the number “1” (Fig. 11).
2) We run the CHASE system, and from its
program-text window, we can see that the sub-
program “parser” has just been executed (Fig.
12).
3) We first chase the execution point where the
left pointer of the addition operator was updat-
ed. The left pointer is found to have been
updated at line 33 in the subprogram “create
node” (Fig. 13). We further chase the variable
“left”.
4) The variable “left” is found to have been set
at line 49 in the subprogram “pop operation”.
We display the values of all variables referred to
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Fig. 11 Error-cause chasing (1).

File Name: interpreter.ada. SubProg Nams: interpreter Line No: 12

1 with text_io; use text_io;

2 with syntax; use syntax;
3 procedure interpreter is
4 package int_io is new integer_io(integer);
5  use int_io;
8 begin

7 root:= null;

8 sp_operation:= @;
9 sp_node:= 8;

11 parser;

12 [But("ANSKER= ");

13 put( executor(root) );
14 new_line;

15 end interpreter;

-~ parse a numerical expression

== put the value of the expression

Direction O Backward

MOVE EXECUTION POINT DISPLAY PRUéﬁM STATE
Steps: 1
I JUMP “

Y Var vajue (Yar Name
Marking)

A ar Values

CHASE ERROR CAUSE

Level ClLast Chase Point

Execution Flow
COND CHASE
———
Mes:

Fig. 12 Error-cause chasing (2).
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Fils Name: syntax.adg SubProg Name: create_nade Line No: 33
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Frogram et

-= stack of pointers (pnoge) for creating a syntax

tree
26
27 function create_node(symbol: character; left, right: pnode) retur|
In pnode is
28 -- create one tnode for 'symhol'
29 ptr: pnode;
38 begin
31 ptri= new tnode;
32 ptr.symbol:= symbal;
33 Fer.1eftis H
34 ptr.righti= right;
35 return ptr;
36 end create_node;
a7
38 procedure push_node(c: character)is
39 -- push a constant 'c' down to ’'stack_node'
a8 begin
41 sp_node:= sp_node + 1;
42 stack_node(sp_node):= create_node(c, null, null);
43 end push_node;
44

Direction & Backward
MOVE EXECUTION POINT ___

DISPLAY PROGRAM STATE

Var Value (Var Name)
All Var Values

Steps: 1

(F=rking) H J”’ﬂl

File Name: syntax‘ada. SubProg Name: pop_operation Line No: 48
41 sp_node:= sp_node + 1;
42 stack_node(sp_node):= create_node(c, null, null);
43 end push_node;
44
45 procedure pop_operation is
46 -= pop up one operator from 'stack_operation’
47 -~ and push it down to 'stack_node'
48 be:
49 éﬁack_nuds(sp_nnda‘l) =
58 create_node( stack_operation(sp_operation),
51 stack_node(sp_node-1), stack_node(sp_node) );
52 sp_operation:= sp_operation - 1;
53 end pop_operation;
54
55 procedure push_operation(c: character)is
56 -~ push an operator 'c' down to 'stack_operation'
57 begin
58 sp_operationi~ sp_operation + 1;
59 stack_operation(sp_operation):= c;

Panel

Direction < Backward
MOVE EXECUTION POINT

ove by Statement

DISPLAY PROGRAM STATE
Var value (var Name)

Level Clast Chase Point

Steps: 1
—4 i JuMp "
|Mark|ng
CHASE ERROR CAUSE

I l E: tion F1
H COND n CHASE wﬂ‘k

Level Clast Chase Point
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Message:

)

{Where Set (Var Name)

Where Branched
o Where Called (SubProg Name) -
Where Returned (SubProg Name)

mlne execution OFy A
<CHASE> ts stack_node(2).left
(CHASE).

tar
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Level= 8 Dynamic Steps = 151
FN : Control Flow : Data Flow
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Fig. 13 Error-cause chasing (3).

in this statement (Fig.9). As a result, a pro-
grammer will notice that the value of a stack
pointer is erroneous and that this might have
caused the error.

5) We will then examine the values of the stack
pointer in the neighborhood of the current exe-
cution point. As expected, we find that the value
of the stack pointer has never been decreased
(Fig. 14).

6. Observation

To test the effectiveness of the error-cause-
chasing method, we performed a debugging
experiment. We used CHASE and a.db®®,
which is a screen-based symbolic debugger for
Ada programs with a source-text-display facility
like dbxtool® for C programs. Two kinds of
programs were prepared. Both programs are
written in Ada and include about 200 lines of
code. One analyzes numerical expressions by
creating a syntax tree. The other handles a
binary tree to manage a stock of goods. Several
bugs were buried, one by one, in each program.

Fig. 14 Error-cause chasing (5).

CHASE (] 6.5
Other [ 727
(a) Debugging commands.

CHASEL.: — =77] 2.0
Other [~ 128

(b) Debugging steps.

Fig. 15 Result of experiment.

Figure 15 shows the result of this debugging
experiment. To detect a bug with CHASE
required only about one-fourth as many debug-
ging commands. In debugging, programmers
repeatedly hypothesize error causes and then
verify them by examining program states. If we
regard this hypothesize-verify process as one
debugging step, the CHASE system also reduced
the number of such debugging steps, though not
as dramatically. The author thinks that these
improvements are due to the CHASE system
saving the procedure of finding the location at
which an error is caused and then executing the
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program to that location.
7. Conclusion

A bug-locating assistant system CHASE and
its error-cause-chasing methods have been de-
scribed. CHASE facilitates program debugging
by automatically chasing the program part that
caused an error found during execution, and by
displaying the program state there for investiga-
tion. A preliminary experiment shows that this
system reduces the number of debugging com-
mands by about three-fourths and the number of
debugging steps by about one-third.

Because the current version of CHASE is a
prototype and records almost all execution his-
tory, it takes rather much time to record and
analyze this history. As a consequence, this
system can presently be applied only to small
programs. The author, however, feels that it is
still an effective way to automate the process of
chasing error causes. The next version of
CHASE will implement controlled recording,
whereby the recording of both variables and
sampling points will be controlled.
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Appendix 1 Common-Error Chasing

OldX:= Depend (¢, X);0ld Y:= Depend (¢, ¥):
OldZ;=Depend (¢, Z);
OldX:=0ldX —~0IldZ;0ldZ:=0ld Y —0l1d Z;
NewX:= OldX;NewY:=OldY;NewZ:=
01dzZ;
while (Old X = ¢ and OId Y % ¢) loop
Com:=0ldXOIdY; —the common cause
of the variable-
value errors con-
cerning X and Y
if Com= ¢ then
RemoveXY:=Com;
NewZ:= Depend (NewZ);0ldZ:= OldZ
UNewZ;
while Com=+=¢ loop
s:=get last(Com);
Correct: =false;
NextZ:=0ldZ;
while s <last(NextZ)loop
if s&NextZthen -—s is included in
the correct data-

and/or control-
flow
Correct:=true;
exit;
end if;
NewZ:= Depend{(NewZ);0ldZ:=
OldZ\UNew Z;
NextZ:=NewZ;
end loop;
if not Correct then
return s; — Found
end if}
end loop;

OldX:= OldX —RemoveXY:;0ld Y:=
OldY —Remove XY
New X:= NewX —RemoveXY;NewY:=
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NewY —RemoveXY;

end if;
New X :=Depend (New X ) ;New Y:=
Depend (New Y');

RemoveX:={r& OldX |r > last(NewY)};
Remove Y:={r&O0ld Y |7 >last (New.X)};
OldX:= (OldX —RemoveX) [UNewX;
OldY:= (OldY —Remove Y)  JNew Y;
RemoveZ:={r<0ld Z|r >
max (last (New X ), last(New Y)) };
OldZ:=0ldZ —RemoveZ;
OldX:=0ldX —0I1dZ;0ldY;=0ldY
—0ldZ;
end loop;
return O;
-~ Not found

Appendix 2 Omission-Error Chasing

function ProcessBlk (B: block) return boolean is
[Oexist : boolean;
c: statement;
begin
if block B has been recursively invoked then
return true;
end if;
10exist: =false;
c:=StartStm (B) ;
while c#null and IOexist=false loop
if c=s then
There exists a path not including any
input or output fom entry of B to s.
elsif c=assignment statement then
null;
elsif c=input or output statement then
IOexist: =true;
elsif c= conditional statement then
10exist: =ProcessBlk (then branch) and
ProcessBlk (else branch);
elsif c= while-loop siatement then
ProcessBlk (while-loop block);
elsif c= function-invocation statement then
10exist:=ProcessBlk (invoked function);
end if;
c:=NextStm(c);
end loop;
return IOexist;
end;
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