
Journal of Information Processing Vol.23 No.5 730–743 (Sep. 2015)

[DOI: 10.2197/ipsjjip.23.730]

Regular Paper

Relaxing Heavy Congestion by State Propagation

Takashi Yokota1,a) Kanemitsu Ootsu1 Takeshi Ohkawa1

Received: January 5, 2015, Accepted: April 25, 2015

Abstract: Interconnection network is still one of the most important key issues for building massively parallel com-
puting systems. As a general characteristic, communication performance does not always increase as the size of
network grows. Furthermore, large-scale networks suffer catastrophic performance degradation since speed of spread
of congestion surpasses by far suppression speed. This paper focuses discussions on relaxation of congestion so that we
can expect performance enhancement even in congested situations. This paper discusses dynamical behaviors, specifi-
cally in propagation of congestion states. When a receiver buffer becomes fully occupied, it inhibits the corresponding
buffer from sending any packet to avoid loss of packet. Thus, a congested area propagates against packets’ traveling
direction. Based on the observation results, as the second issue of this paper, we propose a new throttling method,
called State-Propagation Throttling (SPTh). The method can boost communication performance in many of typical
traffic patterns in both steady and unsteady communication situations. Furthermore, this paper discusses extending
the throttling method to prevent congestion from a proactive point of view. In steady communications, the proposed
method improves throughput two times and latency four times. The method also improves performance of collective
communication at most 1.8 times.

Keywords: parallel architectures, interconnection networks, quasi-global information, congestion control, throttling

1. Introduction

Interconnection networks in massively parallel computing sys-
tems still require performance enhancement. This paper intro-
duces a novel viewpoint of propagation of congestion and pro-
poses an effective throttling method.

Deterministic routing algorithms strictly determine any routes
of packets. Thus, they offer simplified organizations and mech-
anisms in router, and they have unique advantage in keeping in-
order arrival of packets. However, from the opposite viewpoint,
no packet can escape from congested situations since the routing
policy disallows any of alternative routes.

The alternative solution to deterministic routing is adaptive
routing that allows alternative routes not to fall into congested
state. Although the adaptive routing algorithms generally offer
higher communication performance than deterministic ones, they
also suffer performance degradation in congested situations.

From an application point of view, we can hardly control in-
terconnection networks in their maximal performance situations.
Some parallel applications involve sparse communications, so the
interconnection networks are not congested. On the other hand,
other (and many of) applications require frequent communica-
tions that arise dense packet flows to heavy congestion. What we
should discuss for further improvement of interconnection net-
works is effective control method in congested situations. We
focus our discussions on this problem.

Congestion appears in a group of neighboring routers whose
filled buffers block packet transfers. In most cases, temporal con-

1 Department of Information Systems Science, Graduate School of Engi-
neering, Utsunomiya University, Utsunomiya, Tochigi 321–8585, Japan

a) yokota@is.utsunomiya-u.ac.jp

gestion that disappears in a short period of time is not a prob-
lem. However, we have empirical knowledge that a congested
area grows very rapidly, and once the area becomes large, it per-
sists. Other empirical knowledge suggests that we can exploit the
maximum communication performance at the edge of congestion,
where the network is at the border state to congestion. This in-
dicates that we should control the network state at the edge of
congestion, preventing the network from falling into a congested
situation. In this paper, our approach is to prevent congested areas
from spreading so that we can exploit the maximal performance
of network.

The first key idea in this paper is propagation of congested sit-
uations. In a macroscopic view, spread of congestion is observ-
able as propagation of busy state of fully filled buffers in routers.
The filled buffers block incoming packets from their preceding
routers, and the preceding buffers also become full afterward.

Early research on parallel computing systems and interconnec-
tion networks states congestion problems. Tree saturation [1] is
discussed when traffic load is unbalanced. Another representation
is head-of-line blocking [2] that explains propagation of conges-
tion. The old knowledge only suggests that congestion appears as
local interactions of neighboring routers. However, few studies
discuss actual congestion behaviors from a propagation point of
view. This paper tries visual recognition of propagation of con-
gestion. For that purpose, this paper introduces the space-time
chart after overviewing the accomplishments of self-driven parti-
cle and general network researches in physics.

The second key idea is to apply a throttling method of packet
injection. When a router detects a new congestion situation firing,
it suppresses new packet injection until the congested situation is
extinguished. Understanding the propagating behaviors of con-

c© 2015 Information Processing Society of Japan 730



Journal of Information Processing Vol.23 No.5 730–743 (Sep. 2015)

gested situations drives us to an effective throttling method.
In this paper, we will discuss efficient control methods under

the following assumptions: highly regular network whose topol-
ogy is two-dimensional torus, deterministic routing (dimension-
order routing, DOR), and virtual cut-through flow control. This
paper does not assume adaptive routing, as the opposite idea of
deterministic routing, since the routing principle can avoid con-
gested area thus it might veil the net effect of our method.

The rest of this paper is organized as follows. Section 2
overviews existing researches and discusses the novel points of
this paper. Section 3 shows our observation results of spatio-
temporal behaviors of routers. The results conduct us to the new
throttling method that Section 4 explains. Section 5 shows the
effectiveness of our proposed method via simulation evaluation.
Finally, Section 6 concludes this paper.

2. Related Work

This paper addresses improving communication performance
in heavily congested situations. This section overviews past solu-
tions for heavily congested situations.

2.1 Adaptive Routing
Adaptive routing principles are actively discussed so that they

can improve communication performance of interconnection net-
works [2], [3]. Their typical feature is to select an alternative
route to avoid congested situations. Many of them are success-
ful in tolerating heavier traffic loads than those of deterministic
routing policies.

Some of adaptive routing methods employ (quash-)global in-
formation for effectively control the alternative routes. One of
the major ideas of this paper is propagation of congestion, and
the idea implies (quasi-)global information. Thus, we state adap-
tive routing methods with (quash-)global information.

So et al. [4] collect information of routers within a short Man-
hattan distance for selecting effective routes of packets. Although
the basic principle works effectively, implementation costs disal-
lows wide range of information since computational complexity
and hardware costs in collecting and evaluating the global infor-
mation are considerably large.

Cross-Line [5] introduces an effective collection method of
buffer status in the line of routers in packets’ traveling direction.
Cross-Line simply discusses the current situations in the possi-
ble directions of each packet. It does not stand on the propaga-
tion idea of congested area. However, the collection method that
is employed in Cross-Line is sufficiently usable for other pur-
poses than adaptive routing. This paper introduces the mecha-
nism called VCinfo as described in Section 4.1.

Although adaptive methods can benefit in performance im-
provement, this paper deals only with deterministic routing to
distinguish effectiveness of our proposed method, which is or-
thogonal to routing algorithms.

2.2 Throttling
As long as we disallow any packet drop in interconnection net-

works, routing algorithms hardly resolve heavy congestion prob-
lems, even if adaptive algorithms are applicable. Adaptive rout-

ing algorithms can tolerate higher traffic loads than those of de-
terministic ones. However, both of adaptive and deterministic
algorithms cause congested situations in overloaded conditions
anyway.

One of practical solutions, other than packet-drop, is admis-
sion control. Literature shows some representative researches of
throttling [6], [7], [8], [9], [10]. All of the throttling methods pro-
posed in these studies introduce additional information to start
and to stop throttling.

Baydal et al. have proposed a set of throttling methods, called
U-Channels, ALO, and INC [10]. All of these methods employ
local information within a router. U-Channel and ALO use the
number of unblocked buffers. INC measures packet flows in a
certain period of time to predict congested situations. Throttling
in these methods is based on prediction results of current and fu-
ture congestion in the network, while this paper tries to use actual

congestion information. As the authors state in Ref. [10], confi-
dence level of the prediction results is a problem. It is clear that
the presented method in this paper has high levels confidence in
detecting congestion. Furthermore, Baydal et al.’s methods re-
quire appropriate tuning of control parameter(s), while this paper
does not assume tuning. They evaluate the methods in the simi-
lar way with this paper, but, unsteady (collective) communication
is not discussed [10]. These methods underlie adaptive routing
methods, while this paper assumes deterministic routing. These
methods are difficult to apply to deterministic routing environ-
ments. The differences come from the fundamental concept.

DRIL [6] and CLIC [7] methods also employ local information
within each router. Thottethodi et al. [8], [9] use population of
packets under being transferred to their destinations. Their ma-
jor idea is to determine the optimal number of in-flight packets
for the practical traffic situations. They introduced meta-packet

to collect and distribute the number of in-flight packets which is
global information. The meta-packet mechanism performs reduc-
tion and broadcast functions. They adopt the acquired informa-
tion to throttle injection according to a certain threshold that is
determined by their hill-climbing method. The basic idea of the
meta-packet is close to that of VCinfo that is introduced in this
paper. VCinfo collects buffer status in a packets’ traveling direc-
tion. The global operation of the meta-packet requires higher cost
than that of VCinfo.

Yokota et al. have introduced a new idea of entropy that quan-
titatively represents the degree of mobility [11], [12]. They have
proposed a throttling method, called Entropy Throttling. Since
the method requires global information to calculate entropy val-
ues, it constructs an efficient reduction network that collects the
total sums of the number of buffers that contain at least one packet
and the number of blocked buffers. The reduction network over-
lays virtual control channels that share physical communication
links with ordinary channels, and the network continuously col-
lects the information. Entropy Throttling uses average status of
the network, and it does not reflect local situations.

With respect to the admission control, packet pacing [13] is a
close idea to throttling. Obviously, the method does not essen-
tially employ feedback properties.

This paper is unique in discussing throttling methods from a

c© 2015 Information Processing Society of Japan 731



Journal of Information Processing Vol.23 No.5 730–743 (Sep. 2015)

novel viewpoint of congestion propagation. Its fundamental idea
is rather simple. Each router suppresses a new packet injection
when the injecting packet is heading to a (likely) congested area.
For effective implementation of the throttling method, we should
discuss how to acquire global information in the following sec-
tion.

3. Spatio-Temporal Behaviors of Routers

As Section 1 stated, the first key idea of this paper is to acquire
the precise behavior of congestion. For that purpose, we firstly in-
troduce outcomes of physics research in self-driven particles and
general networks. Then, we discuss possible behaviors of con-
gested areas by introducing a simplified one-dimensional model.
We clarify that our initial discussion is appropriate by observing
states of routers via our simulator.

3.1 Outcomes of Physics Research
3.1.1 Knowledge from Self-Driven Particle Research

Physics research is offering attractive knowledge on general
characteristics of networks and particles. Typical physics discus-
sions show their own practical, but simplified models for repre-
senting their objective systems. Some of them offer mathematical
equations for theoretical discussions and others extend the mod-
els to simulate. The idea of cellular automaton is helpful to the
simplified but powerful tools, which is frequently used in many
researches. Furthermore, rapid improvement of computer perfor-
mance accelerates simulation studies.

One of the noticeable harvests is the idea of phase transition.
In a system that has non-linear characteristics, features of the
system drastically changes at certain conditions without grad-
ual states. In interconnection networks, packet buffering and
flow control offer non-linear characteristics. Thus, the networks
show phase transition between uncongested and congested situa-
tions [14], [15], [16], [17], [18].

Other harvests come from car-traffic research. They also con-
duct to various modeling, e.g., cellular automata. They, further-
more, offer the fundamental diagram and space-time chart [19],
[20]. The former models traffic situations of a road. It illustrates
the relationship between density (the number of running cars per
kilometer) and flux (the number of passing cars per hour). When
the density is small, the road is not congested, and the traffic flux
is proportional to the density. When the density exceeds a certain
threshold, the traffic is jammed and the flux rapidly decreases.

Furthermore, the traffic research introduces the idea of repre-
senting spatio-temporal behaviors in a two-dimensional graph,
i.e., a space-time chart. The visual representation helps us un-
derstand behaviors clearly.
3.1.2 Percolation

When general network researches deal with local interactions
between neighboring items in a network, the idea of percolation

is used frequently [21], [22]. For example, in social activities, a
healthy person might get affected by virus at a certain possibil-
ity when he interacts with diseased persons. At the same time,
the diseased persons might get healed up. Prior researches in
percolation state that there exists a certain threshold whether the
infection will disappear or lead to pandemic.

Qualitative behaviors of percolation are close to those of con-
gestion in information network [23]. A congested router might
infect its adjacent routers into congested situations. Intermittent
congestion might be resolved soon when the packet density is un-
der a certain threshold. However, if the packet density exceeds
the threshold, chaining infection causes heavy congestion. This
situation is just like pandemic of a new type of influenza.

3.2 Desktop Experiment
We discuss dynamical behaviors of congested area by means

of a one-dimensional model that intends a uni-directional line of
routers out of a two-dimensional torus network. Figure 1 shows
the simplified model. This figure focuses on a rightward flow of
packets. At each router, the rightward flow of ri is transferred
from its left-hand side router, new packets of si are merged into
the rightward flow, and ki of the flow ri (i.e., kiri) goes outside the
rightward flow*1.

As a simple discussion, we can consider a dependency graph
of packet buffers. As Fig. 1 also offers the dependency graph, i-
th buffer is dependent on (i − 1)-th buffer. The simple discussion
draws a result that congested state is propagated backward in the
dependency graph. However, buffer behaviors are not simple, and
they sometimes show nonlinear phenomena. Sudden drastic per-
formance drop is a typical example. Thus, before discussing a
new method for eliminating congested areas, we should discuss
and clarify actual dynamic behaviors of congested areas.

Figure 2 assumes some typical situations in which some of
buffers are filled and other ones are not. In this figure, blue-
colored packets move to horizontal direction (rightward), and red-
colored packets are to escape from the rightward flow at any of
the routers. In Fig. 2 (a), only one buffer (B1) is full. This situ-
ation represents the smallest congestion. In this case, the buffer
can release its packets to the next router at the moment. If the
incoming flow is sufficiently small, the partial congestion quickly

Fig. 1 Desktop experiment model.

Fig. 2 Temporal behaviors in desktop experiment model.

*1 ri and si represent flow rates, say [flits/cycle], and ki represents the ratio.

c© 2015 Information Processing Society of Japan 732



Journal of Information Processing Vol.23 No.5 730–743 (Sep. 2015)

disappears. However, when consecutive buffers are full, things
are not so simplified.

Figure 2 (b) shows an example in which two consecutive
buffers are full. The head packet in B2 is blocked by B1. The
succeeding packets are also blocked since they cannot bypass the
head packet. Thus, the congested state propagates against the
packets’ traveling direction.

We show an alternative case in Fig. 2 (c), where the succeeding
buffer (B2) contains escape packets. In this case, once the head
packet of B2, which is currently blocked by B1, is transferred,
congested state of B2 will be extinguished soon. This affects the
state of B1 directly. While B2 releases the escape packets, the in-
put flow rate to B1 becomes zero. Thus, the congested situation of
the buffer is also extinguished. We might observe the alternative
example as forward movement of congested area.

Although the results of the desktop experiment show two con-
flicting behaviors, their possibilities are different. Both Fig. 2 (b)
and (c) assumes that consecutive buffers are full. This assump-
tion implies that rightward traffic is sufficiently heavy so that the
buffers are fully filled. Thus, frequency of Fig. 2 (b) is much
larger than that of (c). This analysis is proven in the following
subsection.

3.3 Observation of Behaviors
Once a network is heavily congested, communication perfor-

mance is drastically degraded, since packets block each other.
However, unless the network is under a deadlock situation, the
performance does not fall to zero. Even in congested situations,
we can guess that packets occasionally flow between adjacent
routers. However, we have little knowledge on actual behaviors
of routers. None of research literature on interconnection net-
works reports dynamical behaviors of routers in congested situa-
tions.

Physics researches often use space-time charts for ease of un-
derstanding time-series behaviors of self-driven particles. In a
space-time chart, status of one dimensional space at a certain time
is represented in a horizontal row, and the following horizontal
rows represent the consecutive status of the corresponding space
on a step by step basis. Even though a space-time chart has a limi-
tation that it can only represent one-dimensional space, visualiza-
tion offers large benefit for understanding complicated phenom-
ena. For example, some early researches such as Refs. [19], [20]
show moving behaviors of car congestion (traffic jam). Some
of car drivers unconsciously slow down before entering tunnels.
Thus, car density sometimes arises to the onset of congestion.
The references state that a congested area does not stay still and
it moves against the traveling direction of cars.

Inspired by the visualization tool, we have extended our ICN
simulator to monitor time-series behaviors of routers. This ex-
tension generates a space-time chart of ready/busy status in a line
of input buffers at every arbitrary interval of simulation cycles.
An interconnection network with two-dimensional torus topol-
ogy allows four-direction traffics. Thus, we record four space-
time charts that correspond to the four traveling directions, i.e.,
N(orth), E(ast), S(outh), and W(est), respectively.

Fig. 3 Sampling space-time chart in 2D network.

Fig. 4 Representing space-time charts of four directions.

We have tentatively use one-third positions*2 in the horizon-
tal and vertical axes for recording the time-series behaviors. In
an N × N network, E- and W-directions in a line of routers at
(�N/3�, j), j = 0, . . . ,N − 1 are recorded to capture E- and W-
direction behaviors, respectively. Similarly, N- and S-directions
are recorded at routers (i, �N/3�), i = 0, . . . ,N − 1. Figure 3
overviews the sampling scheme of the space-time charts in four
directions, and Fig. 4 depicts the assembled space-time chart that
represents ready/busy status of buffers in N-, E-, S-, and W-
directions in a row.

By filling cells in Fig. 4 that correspond to busy buffers, the
space-time chart clearly illustrates dynamical behaviors of con-
gested area. Figure 5 shows artificial examples where congested
area grows against packets’ traveling direction.

Figure 6 shows practical examples of space-time chars that are
obtained by our simulator. This figure is in a bitmap fashion as
described in Fig. 5. In this figure, two-dimensional torus network
with size 32 × 32 is used, traffic pattern is bit-complement, and
packets are generated at a given rate. Different colors show dif-
ferent virtual channels; red, green, and blue dots represent busy
status in the corresponding 0th, 1st, and 2nd virtual channels,
respectively*3. Tics are marked at every five simulation cycles,

*2 Our intention of the one-third position is to avoid special-case sampling.
This paper assumes the deterministic routing method (DOR) and every
path is statically determined (except random traffic). When we draw all
of the paths in a sheet of paper, we can recognize the geometrical distri-
bution of the paths [24]. Each specific traffic pattern, such as transpose,
shows unbalanced traffic loads on the inter-router links. If the sampling
position is inproperly selected, the resulting space-time chart represents
inappropriate communication situations. Based on the survey of the ge-
ometrical view of communication paths, this paper tentatively uses the
one-third position. Other positions shows slightly different drawings of
space-time charts in positions of frequently-congested areas and usage of
virtual channels, although, quaitative tendencies are similar to the one-
third position. Only excenption is 1/2 position, where some of necessary
congestion situations are not drawn in some specific directions of sub-
charts.

*3 As described in Section 5.1, we use twice datelines at x = 0,N/2 and
y = 0,N/2 in controlling virtual channel. Thus, when a channel-0 packet
(in the red color) goes across the halfway dateline, its virtual channel is
changed to 1 (in the green color).

c© 2015 Information Processing Society of Japan 733



Journal of Information Processing Vol.23 No.5 730–743 (Sep. 2015)

Fig. 5 Space-time chart example that represents congestion propagation.

Fig. 6 Space-time chart examples (32 × 32 two-dimensional torus, bit-
complement traffic): (a) uncongested, (b) critical, and (c) satu-
rated situations. Different colors represent different virtual chan-
nels; red: channel-0, green: channel-1, and blue:channel-2. ti in-
dicates the starting time of the space-time chart. In (a), (b), and (c),
ti = 998,500, 1,109,500, 1,220,400 [cycles], respectively.

which are attached at the both sides of a chart. Difference in
Fig. 6 (a) to (c) is packet generation rate (load ratio). Figure 6 (b)
shows critical load, (a) and (c) show 90% and 110% of the critical
load, respectively*4.

Even in uncongested situations, packet buffers become fully
occupied occasionally. Figure 6 (a) shows some intermittent busy
status. As the figure shows, in the uncongested situations, a par-
tial congestion, which consists of busy status of routers, arises
sparsely and disappears after a short duration time. The intermit-
tent congestion scarcely spreads or moves to other routers. Such
partial and intermittent congestion affects the latency issue, not
throughput, in the performance point of view. Thus, this paper
claims that intermittent partial congestion does not cause fatal
problems in performance.

One of our expectations was that some distinct seeds exist at
the onset of congestion. However, we failed to find out the ex-
pected seeds in many cases. What we should focus on is the edge
of congestion, i.e., almost congested situation but not fully con-
gested one. At the critical level of traffic load, congested situa-
tions arise one after another (Fig. 6 (b)). Some of partially con-
gested areas sometimes spread to neighboring routers, and the
congested areas move against the packet-flow direction. How-
ever, most of congested areas do not sustain.

In overloaded situations, we can see successive congestion as
shown in Fig. 6 (c). Figure 6 (a)–(c) illustrate that congested ar-
eas, i.e., consecutive busy status of routers, move against the

*4 The critical load ratio is 0.11095 [flits/cycle] in this condition. Initial
times ti correspond to traffic load values of 0.0985, 0.11095, and 0.12204
[flits/cycle], respectively.

packet-flow direction. Thus, to diminish performance degrada-
tion, we discuss efficient control methods by using busy-status
information.

4. State-Propagation Throttling

Results in Section 3 reveal that congested areas propagate
against packets’ traveling direction. In other words, each router
can predict future congestion if any of other routers in the pack-
ets’ traveling direction are in a congested situation, since the con-
gestion state will be propagated to the router.

This observation leads us to the new idea. Here, we assume
that a congested area at a certain level just arises. We can eas-
ily guess that the congested area will be enlarged and will not be
extinguished, if a sufficient number of packets flow into the area.
Thus, we should limit the packets’ flow so that the emerging con-
gestion is extinguished.

Our basic idea of packet limitation is simple. Complete sup-
pression of packet transmission into the congested direction is not
a smart solution. If the traffic is overly controlled, communica-
tion performance is degraded at a low level. Thus, what we should
discuss next is what and how each router controls the packet flow
to the detected congestion.

We categorize packets in each router into three classes of flows.
Assume that a packet is stored in a channel buffer and is destined
to an appropriate output port to the next neighboring router. The
packet follows one the follwing three cases; (a) the packet is just
injected, (b) the packet was transferred via the opposite-side input
port and it is destined to the same dimension (straight packet),
and (c) the packet was input from different dimension from the
currently destined output port (turn packet).

Then, we discuss which packet class is appropriate for sup-
pression to resolve congested situations. All of the three classes
of packet flows (a) to (c) consume packet buffers and they are des-
tined to the congested area. Two of them (b) and (c) are different
from (a) from a viewpoint of chaining congestion. For exam-
ple, when a channel buffer is fully occupied by (b)-class packets,
any packet-transfer for the said buffer is blocked in the preced-
ing router. This behavior is not desirable since further congestion
may be caused. Blocking of turn packets may also cause similar
negative effects. On the other hand, suppression of (a)-class pack-
ets does not affect other neighboring routers. Thus, we reached
our result of supression of (a) flows.

This paper proposes that each router suppresses injection of
new packets that will run into a congested area, even if the con-
gested area is distant (non-adjacent) from the router. We call the
new idea of throttling method as State-Propagation Throttling,
SPTh for short.

This paper should discuss how each router can detect congested
areas that locate distantly. We should discuss how to detect the
onset of congestion in the packets’ traveling direction that may
be sufficiently distant from the current router to control the con-
gestion. We have a powerful tool named VCinfo that is one of the
center mechanisms in our Cross-Line routing algorithm proposed
in Ref. [5].

c© 2015 Information Processing Society of Japan 734



Journal of Information Processing Vol.23 No.5 730–743 (Sep. 2015)

Fig. 7 VCinfo mechanism.

4.1 VCinfo Mechanism
Cross-Line is proposed as an adaptive routing algorithm. It

aims at quasi-globally optimal routing to enhance communication
performance in interconnection networks. The algorithm makes
use of ready/busy information in each row of packets’ traveling
direction so that it appropriately selects the transfer direction of
packets.

The distinguishing feature of the algorithm is VCinfo, which
stands for virtual channel information. Every router has a VCinfo
register for each of virtual channel in each output port. The
VCinfo register consists of bit-mapped binary representation of
states of buffers in the packets’ traveling direction. Figure 7
shows the basic mechanism of VCinfo. The 0-th bit (i.e., LSB)
of the register corresponds to the ready(0)/busy(1) status of the
adjacent buffer. The values of the VCinfo register are transferred
to the neighboring router in the opposite direction, after the con-
tents of the register are shifted left one bit. Thus, as Fig. 7 shows,
n-th bit of the VCinfo register corresponds to the n + 1-th router
in that direction.

Contents of the VCinfo registers are transferred against the
packets’ traveling direction. This paper assumes dedicated links
for the VCinfo propagation, while the original Cross-Line prop-
agates in a cycle-stealing fashion. This paper assumes ideal con-
ditions for discussing possible impacts of the proposed method.
Thus, as soon as a buffer state is changed, the corresponding
VCinfo contents are transferred to the next neighboring router
at the next simulation cycle. Furthermore, after the VCinfo con-
tents are transferred, the corresponding VCinfo at the neighbor-
ing router is updated at the next simulation cycle. Thus, when-
ever any content in VCinfo register is changed, the updated infor-
mation instantly propagates along the line of routers against the
packets’ traveling direction at every cycle.

4.2 Throttling by Means of VCinfo
The VCinfo register summarizes binary situations in the line of

buffers in the traveling direction. The contents of the register are
updated within short delays. Thus, each router can easily know
whether any congestion arises in the traveling direction or not.
Furthermore, our observation results from Section 3.3 forecast
that even a distant (non-adjacent) congested area will be enlarged
to the router if packets are supplied for the congested area.

Then, we reach a new throttling principle. When a router finds
one or more busy situations in a VCinfo register, the router sup-
presses injection of new packets that is destined to the said di-
rection. The router keeps throttling as long as the correspond-
ing VCinfo register contains busy situations. This paper simply
defines the SPTh methods as any of the VCinfo bits shows con-
gested situation. Note that throttling of packet injection is depen-
dent on the traveling direction of the new (injecting) packet. For

example, when only the VCinfo register in E-direction has busy-
bits and other VCinfo registers has no busy bits, the router only
blocks specific packets that will traverse in E-direction while it
accepts other packets in other directions.

4.3 Introducing Proactive Mechanism
Here, we discuss enhancement of the SPTh method, assum-

ing that each buffer in a router has sufficient capacity and that
each router follows virtual cut-through flow control [25]. Until
now, we assume that VCinfo registers contain ready/busy infor-
mation. ‘Busy’ state means that the corresponding buffer is full
and the buffer cannot receive any other flits of packets. On the
other hand, ‘ready’ state shows that the corresponding buffer can
receive at least one flit of a packet, and we cannot know whether
the buffer is almost full or it is empty. Thus, the ‘ready’ state
cannot represent how the capacity of the buffer is occupied.

We reached further a new idea of occupation level. The es-
sential purpose of the VCinfo is to represent buffer status of the
routers in the forwarding row. The VCinfo mechanism does not
necessarily limit only to ready/busy information constitutionally.

Suppose that a router has a buffer whose capacity is half occu-
pied by packets. We can never expect that the half-occupied situ-
ation persists. When the traffic is sparse, the occupation will soon
be dissolved since the buffer releases packets rapidly. In the oppo-
site case, i.e., overloaded traffic, the buffer should hold incoming
packets with existing packets blocked to move. Furthermore, we
should recall that, once a congested area emerges, it sustains for
a long time. This means that we can regard a nearly-full buffer
as a foretaste of congestion from a preventive point of view. We
have an important option of occupation level of buffers.

We extended the VCinfo registers to represent whether the oc-
cupancy of corresponding buffer exceeds a certain level or not.
We call the level as occupation level. We can regard the binary
state of ready/busy in the VCinfo register in the previous section
(Section 4.2) as an extreme condition of the occupation level. A
busy state is regarded as the buffer is fully occupied.

By using the occupation level, the VCinfo register represents
foretaste of future congestion even when no packet is blocked
transferring in the current situation. We can expect proactive ef-
fects in controlling congestion if packet injection is throttled by
means of the foretaste in the VCinfo register.

5. Evaluation

5.1 Evaluation Environment
We have modified our interconnection network simulator to

match the proposed SPTh throttling method. The simulator mod-
els a simple non-pipeline router and offers cycle-accurate simu-
lations where all of the components operate synchronously under
a global simulation clock. A packet consists of one or more flits
and the simulator simulates packet transfer on the flit-by-flit ba-
sis. When a flit is not interferred by other flits, the flit is trans-
ferred to the next neighboring router at every cycle. Furthermore,
alike the message packets, contents of VCinfo registers are also
transferred at every cycle. We use 32 × 32 two-dimensional torus
network with three virtual channels. Packet length is eight flits.
Virtual cut-through is employed as flow control, and capacity of

c© 2015 Information Processing Society of Japan 735



Journal of Information Processing Vol.23 No.5 730–743 (Sep. 2015)

Table 1 Traffic patterns used.

abbrevi- description
ation

trns transpose. (X, Y) −→ (Y, X)
shfl perfect shuffle.

w2n−1w2n−2 · · ·w1w0 −→ w2n−2 · · ·w1w0w2n−1

bcmp bit-complement.
w2n−1w2n−2 · · ·w1w0 −→ w2n−1 w2n−2 · · ·w1 w0

brev bit-reverse.
w2n−1w2n−2 · · ·w1w0 −→ w0w1 · · ·w2n−2w2n−1

brot bit-rotation.
w2n−1w2n−2 · · ·w1w0 −→ w0w2n−1w2n−2 · · ·w1

torn tornado. W −→ mod(W + N/2,N2)
rand random. Destination node is randomly selected.
rpar random pair.

each buffer is sixteen flits. The evaluation uses dimension order
routing (DOR) algorithm, where a packet goes along x-axis then
it follows y-axis. Deadlock prevention scheme is based on date-

line [2] where a packet changes its virtual channel to the next one
in order. We use twice datelines at x = 0,N/2 and y = 0,N/2 in
x and y axis, respectively, in an N × N network.

We use two major principles of communication; steady and
unsteady communications. The former one controls each node
to stochastically inject packets that destine the predefined node
by traffic pattern. The latter one is collective communication
in which each router starts sending certain number of packets.
We use eight traffic patterns as shown in Table 1. In this ta-
ble, assuming N × N two-dimensional torus network (N = 2n),
address of a node is represented as (X,Y) where 0 ≤ X,Y ≤
N − 1, and X and Y are represented as X = xn−1xn−2 · · · x1x0,
and Y = yn−1yn−2 · · · y1y0, respectively. Furthermore, the ta-
ble uses unified 2n-bit address W = w2n−1w2n−2 · · ·w1w0 =

yn−1yn−2 · · · y1y0xn−1xn−2 · · · x1x0.

5.2 Steady Communication Performance
To discuss steady communication performance, we measure

throughput and average latency at a certain traffic load. This eval-
uation intends to compare the proposed throttling methods from
the following two viewpoints. One is critical traffic load to satu-
rate the throughput, which represents how the network can toler-
ate congested situations. The other one is behavior in overloaded
situations where traffic load is beyond the critical level.

We use ramp load method [26] for precise discussions. In this
evaluation method, traffic load ratio (order of [flits/cycle]) starts
with zero, and it gradually increases to 0.275 during the total of
2,750,000 simulation cycles. This means that traffic load ratio
is represented as a function of time (simulation cycle). In this
paper’s case, g(t) = 0.1×10−6 · t [flits/cycle]. Throughput is mea-
sured as the number of received packets in every 100-cycle time
window. Average latency is also measured as the average of ages
of received packets in the 100-cycle window.

When traffic load is low, throughput is proportional to the load
ratio. Throughput suddenly saturates when the load ratio exceeds
a certain threshold. Critical load ratio is measured by detecting
10-percent decrements of gradient of the throughput curve [26].
To measure the critical load ratio precisely, differentiation of the
throughput curve with respect to the traffic load is required. Since
the ramp load method continuously changes the traffic load, it

well matches to apply the differentiation. Other researches se-
lect some sparse values of traffic load as a simulation parameter,
and they are hard to determine critical load ratio precisely with
discrete parameters.

Figure 8 shows the results. In the figure, left vertical axis
shows throughput, right axis shows average latency, and x-axis
shows traffic rate in common. In each figure, red curves illustrate
the conventional (no-th, non-throttling) algorithm, green (th(0))
and blue (th(0)) curves show the results of the proposed method.
th(0) and th(8) indicate occupancy level that is introduced in Sec-
tion 4.3. th(0) illustrates fully occupied buffers whose free space
is zero. th(8) shows half-occupied buffers whose free space is less
than eight flits out of sixteen flit capacity.

In ordinary performance evaluations, performance values are
measured in a certain period of time after simulation situation
becomes stable [2]. In this evaluation method, simulation pa-
rameters are fixed while the performance values are measured.
This evaluation method requires repetitive simulation processes
that slightly differ in a simulation parameter, i.e., traffic load, al-
though, the measured performance values are sufficiently stable.

The ramp load method that is used in this paper continuously
changes a simulation parameter (i.e., traffic load ratio). The
method basically uses raw measured data that are not stabilized
and large variability. The variability issue prevents appropriate
discussions in comparing the new method. We use moving av-
erage to stabilize the measured data. Each curve in Figs. 8 and
9 is smoothed by moving average with 200-points. Performance
values are measured in every 100-cycle window time in this pa-
per. Therefore, 200 points of measured data correspond to 20,000
clock cycles. Since the traffic load varies linearly from zero to
0.275 [flits/cycle] during 2,750,000 cycles, accuracy in x-axis re-
mains sufficiently low; only 0.09 percent in x-scale.

Figure 9 shows ratio representations of the two performance
indices, i.e., throughput and average latency, for ease of compar-
ison purpose. Performance values of the non-throttling algorithm
are used as the baseline. Note that the average latency index (or-
der of time) shows inverse of performance (order of 1/time) and
that the throughput index (order of 1/time) directly shows perfor-
mance. Thus, each curve in Fig. 9 directly shows performance
enhancement in both throughput and average latency issues.

5.3 Unsteady Communication Performance
Steady communication evaluation assumes statistically stable

conditions in communication situations. This evaluation method
is useful in discussing the tolerance of the network method to a
particular traffic pattern and load. However, in practical situa-
tions, i.e., parallel programs, many of communication situations
employ collective methods where all computing nodes sends
packets in unison and synchronize until all packets are received.
To discuss net performance of network methods, we should evalu-
ate the methods in the unsteady situations, i.e., collective commu-
nication. In this evaluation, every node starts generating a certain
number of packets that destine a certain node defined by a given
traffic pattern.

Our simulator is modified in order to detect completion of col-
lective communication. Until the completion of a collective com-

c© 2015 Information Processing Society of Japan 736



Journal of Information Processing Vol.23 No.5 730–743 (Sep. 2015)

Fig. 8 Performance curves in steady communication evaluation. Fig. 9 Performance ratios of throughput and average latency.

c© 2015 Information Processing Society of Japan 737



Journal of Information Processing Vol.23 No.5 730–743 (Sep. 2015)

Fig. 10 Time series chart of the number of in-flight packets in various col-
lective communication situations.

Table 2 Duration time of collective communication.

traffic
pattern no-th th(0) th(8)

trns 1301 1301 (1.00) 1307 (.995)
shfl 2295 2108 (1.09) 2108 (1.09)
bcmp 1271 920 (1.38) 950 (1.34)
brev 1820 1714 (1.06) 1656 (1.10)
brot 1842 1547 (1.19) 1446 (1.27)
torn 1056 869 (1.22) 578 (1.83)
rand 671.5 653.3 (1.03) 633.1 (1.06)
rpar 1013.3 991.8 (1.02) 949.5 (1.07)

[cycles] [cycles] [cycles]

munication, the simulator measures the number of in-flight pack-
ets as well as throughput and average latency. This paper assumes
that ten packets are transferred in each collective communication
with eight-flit packet size. The simulator reports the measured
values in every ten-cycle window time.

Figure 10 shows time series of the number of in-flight pack-
ets in the ordinary method (no-th), SPTh with busy information
without margin (th(0)), and proactive method with eight-flit mar-
gin (th(8)). In this evaluation, a margin specifies the threshold
level of busy buffer in the VCinfo registers. In the zero-margin
(th(0)) case, only full buffers are marked busy. In the eight-flit
margin (th(8)) case, buffers whose free-space is less than or equal
to eight flits are marked busy.

Completion time (i.e., duration) is not clearly illustrated in the
figure, we show the completion times as small vertical lines in
Fig. 10. Furthermore, we summarize the measured duration times
in Table 2. Integer values represent duration time in the number
of simulation cycles, and fraction values in parentheses show the
ratio to the performance of no-th. In rand and rpar cases, dura-
tion times in Table 2 are average values of ten experiments. Other
traffic patterns are reproducible in duration time.

5.4 Discussion
5.4.1 Steady Communication Issues

We discuss steady communication results. As shown in Fig. 8,
SPTh does not always improve critical load ratio. Its major reason
is that the proposed method throttles packet injection only when
congested area is detected. As Fig. 6 shows, many of congested
areas disappear soon and do not persist even when the traffic load
is critical to saturation (Fig. 6 (b)).

Assume that we extend the throttling method to sustain for a
certain period of time even after no congestion is detected. We
will leave this discussion as our future work.

Then, we discuss the extended proactive method (th(8)) that
is proposed in Section 4.3. We should discuss the reason why
the proactive method does not also enhance the critical load ra-
tio. We expected the proactive method to suppress emergence
of congestion, and our evaluation results proved the effectiveness
in terms of observation of busy buffers as shown in Fig. 11 (c)
and Fig. 12 (c)*5. However, with respect to the critical load ra-
tio, the proactive method does not show meaningful difference.
This implicitly means that phase transition between congested–
uncongested state is so steep that the proposed method cannot
achieve considerable improvement.

*5 Space-time charts are discussed later in this section.

c© 2015 Information Processing Society of Japan 738



Journal of Information Processing Vol.23 No.5 730–743 (Sep. 2015)

Fig. 11 Space-time charts in congested situations (32×32 two-dimensional
torus, bit-complement traffic): (a) without throttling (no-th), (b)
proposed method (th(0)), (c) proposed method (th(8)). ti indi-
cates the starting time of the space-time chart. In (a), (b), and (c),
ti = 1,220,400 [cycles].

Although the proposed method does not improve the critical
load ratio, the method improves both throughput and average la-
tency at a considerable level. We discuss the evaluation results
depicted in Fig. 9. Some traffic patterns, i.e., trns and torn, show
no specific improvements in throughput, and some other patterns,
i.e., brev and rand, show degraded performance. Many other traf-
fic patterns show up to 2.0 times improvement in throughput and
about four times improvement in average latency. These evalu-
ation results reveal that the proposed method resolves the initial
objective of this paper, i.e., improvement of performance in over-
loaded situations by relaxing congestion. Performance curves in
Fig. 8 clearly reveal that the method prevents severe performance
drop in over-saturated situation.

Effects of the proposed throttling method, SPTh, depend on
traffic patterns. The method is based on the observation results
that congested areas propagate in high-load situations. This im-
plicitly assumes that the congestion will be extinguished if routers
suppress supplying packets to the congested area. As far as a net-
work employs deterministic routing algorithm, packets have no
alternative route to reach their destinations. If a traffic pattern in-
dicates that a packet injection affects congested area at a certain
distance, the proposed throttling method works effectively. This
discussion explains the performance degradation in the rand (ran-
dom) pattern shown in Fig. 9 (g). We can explain that degradation
alternatively. We can regard the proposed throttling method as a
predictive method based on congestion detection. Many of traffic
patterns are suitable for prediction for throttling, and other ones,
i.e., rand, fail prediction.
5.4.2 Unsteady Communication Issues

Although steady-communication has two major issues,
throughput and (average) latency, collective (unsteady) commu-
nication is discussed only with duration time.

As Fig. 10 shows, the number of packets explosively increases
at the initial steps. All nodes simultaneously start injecting their
packets at the initial stage of simulation. Since each buffer is
empty at the beginning and is gradually filled by blocked pack-
ets, the throttling mechanism works after a certain delay, and thus,
the explosive increase of packets is hardly suppressed.

The proposed throttling method absorbs the initial steep in-
crease of packets and it succeeds in controlling the number of

in-flight packets to avoid unnecessary conflict of packets that re-
sults in unnecessary performance loss. Figure 10 and Table 2
reveal performance impacts of the proposed method. The pro-
posed method enhances collective communication performance,
i.e., duration time, in most traffic patterns except trns (trans-
pose). In unsteady communication cases, reduction of the in-
flight packets does not necessarily contribute to performance en-
hancement. In the trns pattern, routes of packets are heavily over-
lapped. Since the deterministic routing algorithm offers no alter-
native routes for packets and the overlapped paths share a (physi-
cal) link, transmission of these packets are serialized. In terms of
performance, the heaviest serialization determines the longest du-
ration time, even if the network is optimized and well controlled.

This paper evaluates collective communication performance
in which every router starts sending packets at the same time.
Since the rush flows of packets soon exhaust buffer capacities,
congested situation spreads before a throttling mechanism works.
The rush flows encumber throttling methods, although the evalu-
ation intends practical communication situations in parallel pro-
grams. Measuring collective communication performance is the
worst-case evaluation for throttling methods.

Other existing throttling methods do not assume collective
communication. However, they select other situations. Baydal
et al. [10] assume a dynamic load situation in which every node
starts sending a certain number of random packets in a high load
rate. Thottethodi et al. [8], [9] assume a different situation of
bursty load in which packet injection intervals are reduced to
1/100 in a short period of time (2,000 cycles). Although the dy-
namic and bursty load situations are close to the collective com-
munication that is employed in this paper, they only assume uni-
form random traffic and they do not assume successive injection
of packets.
5.4.3 Space-Time Chart Issues

Figures 11 and 12 show space-time charts of steady- and
unsteady-communication situations, respectively. In the both
figures, (a) shows the ordinary method without throttling (no-

th), (b) shows the proposed method without margin (th(0)), and
(c) shows the proposed proactive method with eight-flit margin
(th(8)). Note that each buffer has sixteen flit capacity and the
simulation uses eight-flit (fixed length) packets. And note that all
space-time charts illustrated in Figs. 11 and 12 show busy buffers,
not contents of VCinfo registers. Different colors show different
virtual channels as described in Section 3.3; red, green, and blue
dots represent busy status in the corresponding 0th, 1st, and 2nd
virtual channels, respectively.

Figure 12 shows the space-time charts of unsteady communi-
cation cases. Every node starts packet generation at t = 0, and
routers begin packet transfer at the same time. Since every buffer
is vacant at t = 0, generated packets rush into the buffer for the
initial period of time. However, blocked packets are accumu-
lated in their corresponding buffers. Until the buffers become
full, packet buffers are not recognized as busy. In Fig. 12 (a) and
(b) cases, after passing the initial 26 cycles, many of buffers in E-
and W-direction become busy. Vertical lengths of Fig. 12 (a), (b),
and (c) illustrate duration times to complete the communication.

Figure 11 shows ready/busy behavior at 1.1 times of the critical

c© 2015 Information Processing Society of Japan 739



Journal of Information Processing Vol.23 No.5 730–743 (Sep. 2015)

Fig. 12 Space-time charts of unsteady communication: (a) without throt-
tling (no-th), (b) proposed method (th(0)), (c) proposed method
(th(8)).

load ratio (1.1Cr = 1.1 ∗ 0.111 = 0.122 [flits/cycle]). Figure 11
conforms with Fig. 6 with respect to the simulation conditions.
Since the both figures represent the same traffic pattern at the

same traffic load, Fig. 6 (c) is identical to Fig. 11 (a).
Figure 11 (a), (b) and (c) show the effects of the proposed throt-

tling method. The ordinary method without throttling (Fig. 11 (a))
continuously causes heavy congestion. The proposed method
with zero-margin (Fig. 11 (b)) relaxes congested situation at a cer-
tain level. However, congestion still remains whereas the proac-
tive method with eight-flit margin sufficiently suppresses conges-
tion.

Also in the unsteady communication cases, the proposed
method sufficiently suppresses congestion as Fig. 12 shows. Each
of Fig. 12 (a) to (c) shows busy buffers, conforming with Fig. 11.
Vertical length of each chart represents the corresponding dura-
tion time. The proposed throttling method clearly reduces busy
status of buffers as this paper aims at. Figure 12 (c), which shows
the behavior in the th(8) case, shows drastic reduction of busy
buffers.
5.4.4 Scale Issues

Although the previous sections reveal the effectiveness of the
SPTh method, we should further discuss applicabilities to other
configurations of interconnection networks. As the SPTh method
is originally based on torus networks, we focus our discussions
on network sizes in N × N two-dimensional torus topology and
high-radix k-ary n-cube topologies.

At the first step of the discussion, we will clarify our assump-
tions to lead two types of packet conflicts. At the second step,
we will discuss the conflict types. One of the two conflict types
corresponds to the effects of the throttling method, but the other
one does not directly affects the throttling method. This asym-
metric nature of packet conflict presents the benefit and loss of
the proposed throttling method.

This paper assumes two-dimensional torus topology, determin-
istic routing (dimension-order routing (DOR) algorithm), and
date-line virtual channel control. We assume that every packet
is transferred in the x-axis direction until the x-address of the
intermittent router matches the packet’s destination node, and
then the packet is transferred in the y-axis direction. Therefore,
most of the packets firstly move in the x-direction and turn to
the y-direction. This paper also assumes an ordinary organiza-
tion of router. Each router employs five input and output ports
and a crossbar switch. Each input/output port corresponds to one
of north-, east-, south-, and west-direction communication and
CPU. Each input port employs channel buffers that support vir-
tual channels, and every incoming packet is stored in the cor-
responding channel buffer. Each channel buffer is connected to a
crossbar switch that connects input channel buffer and output port
appropriately according to the head packet of the buffer. A packet
conflict occurs when at least two of head packets simultaneously
require the same output port.

As the DOR algorithm disallows any turn from y to x direc-
tions, a straight packet in the x-direction (which we call x-straight
packet) is interfered only by a newly-injected packet that is des-
tined to the same direction. On the other hand, a straight packet
in the y-direction (y-straight packet) is interfered by turn packets
from x-direction and a newly injected packet.

Here we assume a congested situation caused by successive
conflicts of x-straight packets. The proposed SPTh method prop-

c© 2015 Information Processing Society of Japan 740



Journal of Information Processing Vol.23 No.5 730–743 (Sep. 2015)

Table 3 SPTh effects on network sizes.

traffic N = 8 N = 16 N = 32 N = 64 N = 128
patt. th(0) th(8) th(0) th(8) th(0) th(8) th(0) th(8) th(0) th(8)

trns 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
shfl 1.07 0.85 0.88 0.88 1.09 1.09 1.22 1.21 1.13 1.27
bcmp 1.00 1.00 1.10 1.08 1.36 1.34 1.31 1.40 1.30 1.38
brev 1.00 0.96 1.02 1.06 1.07 1.10 1.08 1.13 1.07 1.07
brot 1.00 0.95 1.02 1.06 1.20 1.27 1.14 1.39 1.11 1.03
torn 1.00 1.00 1.10 1.26 1.21 1.83 1.24 3.05 1.81 4.42
rand 0.99 0.93 1.00 1.01 1.03 1.06 1.06 1.07 1.05 1.14
rpar 0.99 0.89 1.03 1.04 1.05 1.08 1.07 1.12 1.08 1.16

agates the congestion information through the VCinfo mecha-
nism in the reverse direction of the x-straight packets. Each router
that receives the congestion information immediately suspends
injection of new packets. Since the contents of VCinfo only
move at most one step in every cycle, throttled areas spread on
the cycle-by-cycle basis.

As the throttled area is widen, the number of x-straight packets
decreases to release the congested situation. When the conges-
tion disappears, the VCinfo mechanism carries the information
to release the throttled situation of each node. Similarly to the
spread of throttled area, the release spreads on the cycle-by-cycle
basis. Note that nodes distant from the resolved congestion still
continue to suspend packet injection until the release information
arrives.

Conflicts of the x-straight packets are directly controllable
by means of throttling. However, conflicts on the y-straight
are not directly controllable. Throttling poorly affects the y-
straight packets since most of injected packets are destined for
x-direction. As the y-straight packets interfere with the turn pack-
ets, congested y-straight packets cause x-straight congestion that
is connected by the turn packets. The newly caused x-straight
congestion will be released by means of the SPTh mechanism,
but the effect will be limited.

In a high-radix topology of network, throttling is effective only
in the first dimension in the DOR routing, and congestions in
other dimensions are indirectly controlled. We can estimate that
the proposed SPTh method performs well in low-dimension net-
works and offers only limited effects in high-radix networks. This
paper presents the qualitative discussions. Further evaluations are
future work.

Next, we will discuss the effect of the SPTh method on various
sizes of N × N torus networks. As we described above, conges-
tion of the x-straight packets is caused by frequent conflicts of the
straight and injected packets. If each packet moves only a short
distance in the x-direction, packet conflict of the x-straight packet
scarcely occurs. In general, small size of networks are relatively
tolerable in congestion. As the network size increases, mov-
ing distance in the x-direction increases and congestion-tolerance
also decreases. Large size networks are intolerable in congestion.

From the reverse point-of-view, we can estimate that the SPTh
method is effective in large-size networks. To clarify the quali-
tative estimation, we further evaluated unsteady communication
performance in various size of N × N torus networks. The length
of VCinfo register is set to N/2, since any packet traverses at most
N/2 hops in each of x- and y-directions and unnecessarily long
VCinfo register negatively affects performance. Table 3 summa-

rizes the effects in N = 8, 16, 32, 64, 128 torus networks*6. This
table shows the ratios of duration times. Each value is calculated
as no-th duration time is divided by th(0) (th(8) duration time.
Thus, values that exceed 1.0 mean performance benefit. Table 3
shows that the SPTh method performs well in large-size networks
as the qualitative discussion estimated.
5.4.5 Optimal length of VCinfo register

Discussions and evaluation results in the previous section lead
us other discussion on the length of VCinfo register. As we de-
scribed above, contents of the VCinfo register are transferred on
a cycle-by-cycle basis. This implies that distant routers from the
congested area receive the congestion information after a certain
number of simulation cycles. Furthermore, distant nodes suspend
packet injection (i.e., start throttling) behind the near-nodes and
in-flight packets from the distant nodes will affect the congested
situation worse.

In the prior evaluations, we have assumed N/2 as the length
of VCinfo register. But, we should evaluate the practical effect
of the length of VCinfo register. We further evaluated unsteady
communication performance in various lengths of VCinfo regis-
ter.

Figure 13 shows the results in 32x32 torus network. Horizon-
tal axis shows the length of VCinfo register, but zero (0) means
no-throttling case (no-th). Vertical axis shows duration time. As
shown in the figure, in many traffic patterns, duration time varies
according to the length of VCinfo register and the optimal lengths
depend on traffic patterns. The results still reveal the effectiveness
of SPTh. Further discussions in determining the optimal length
are our future work.

Discussion of the optimal VCinfo length leads us to further
discussions on the delay issues of VCinfo propagation, since
small/large propgation delays directly affect efficiencies of the
proposed SPTh method. As Section 4.1 describes, this paper
assumes an ideal condition for VCinfo propagation. This paper
intends physical inter-router links dedicated for VCinfo propaga-
tion. Each VCinfo register is attached to the corresponging virtual
channel, and we use three virtual channels in this paper. Thus,
each of the dedicated physical links is shared by its correponding
three VCinfo registers.

From the VCinfo mechanism given in Fig. 7 (presented in Sec-
tion 4.1), a VCinfo register is updated when (1) the correspond-
ing router detects the change of ready/busy status of the next
neighboring buffer via the handshaking mechanism, and (2) new
VCinfo contents are propagated from distant router(s). Since

*6 Due to the implementation reason of the simulator, the maximum length
of VCinfo register is limited to 32.

c© 2015 Information Processing Society of Japan 741



Journal of Information Processing Vol.23 No.5 730–743 (Sep. 2015)

Fig. 13 Duration times of collective communication for various VCinfo
length. (32x32 torus network)

each input buffer independently works, it is possible that mul-
tiple input buffers change their ready/busy status simultaneously.
Thus, at most three VCinfo registers can be updated simultane-
ously. Since the physical link is shared by the VCinfo registers,
updated information should be propagated serially.

Since contents in different VCinfo registers are serially propa-
gated, VCinfo update caused by (2) propagation is strictly serial-
ized (not in parallel). When both of (1) and (2) situations occur
on the same VCinfo register, the update operations are merged in
one cycle.

Thus, the discussions on VCinfo propgation delays are sum-
marized as follows. The worst-case delay of VCinfo propagation
is three cycles per hop. Not that this value is in the worst-case
situation and practical delay strongly depends on the traffic pat-
tern. Further detailed discussions on VCinfo delays are our future
work.
5.4.6 Future Directions

As we discussed in Section 5.4.1, the proposed throttling
method can be regarded as a simple prediction derived by obser-
vation of congested areas. Since practical effects of the throttling
method depend on traffic pattern, the throttling method is tunable
for the actual traffic patterns. The tuning issue is open for future
discussions.

The next major issue is routing algorithm. This paper as-
sumes the fundamental principle of FIFO-ness of packet arrivals,
i.e., every packet from a certain node arrives in order. This pa-
per assumes an old-styled deterministic routing algorithm (i.e.,
dimension-order routing, DOR). On the other hand, throttling
methods are essentially orthogonal to routing algorithms. Effec-
tive combinations with various routing algorithms are expected
as future work.

6. Conclusions

Interconnection network is one of the key components in mas-

sively parallel computers. The component is responsible to com-
munication performance that directly affects parallel computing
performance. Thus, exploiting maximal performance of intercon-
nection network is a crucial issue.

Large-scale interconnection networks hardly implement cen-
tralized mechanisms due to the large number of components.
Each component should work independently with others. Such
decentralized manner takes us to the difficult problem, i.e., ef-
fective congestion control. We know that an interconnection net-
work performs in proportion to the traffic load when the network
is in an uncongested situation. Network performance drastically
degrades as soon as congestion appears and remains for a long
time. From opposite point of view, if we can obtain an effective
control method to keep the network in an edge state to congestion,
we can exploit maximal performance.

This paper discussed behaviors of routers in congested sit-
uations at variety of levels. We introduced space-time chart

to represent spatio-temporal behaviors. Based on the observa-
tion results, we proposed a novel throttling method called State-

Propagation Throttling (SPTh), we further discussed a proactive
extension of the throttling method. We applied the proposed
method to two classes of communications, steady- and unsteady-
communication, with eight of typical traffic patterns. Experimen-
tal results by our interconnection network simulator reveal ad-
vantages of the proposed method. In steady-communication situ-
ations, the method increases performance in many traffic patterns.
The evaluation results reveal that throughput and average latency
are enhanced at most two times and four times, respectively.

The proposed method works well even in difficult situations.
Collective communication, as unsteady-communication, is used
as the worst-case situations, where we assume that all nodes start
sending packets in unison. Even the proactive method cannot pre-
vent explosive increase of packets in the initial cycles and result-
ing severe congestion, the proposed throttling method effectively
works so that it can suppress unnecessary conflicts of packets,
and it can enhance the performance of collective communication.

Acknowledgments This research was supported in part
by Grant-in-Aid for Scientific Research ((C) 24500055, (C)
24500054) and Grant-in-Aid for Young Scientists ((B) 25730026)
of Japan Society for the Promotion of Science (JSPS). We sin-
cerely thank anonymous reviewers and editors for their valuable
comments that suggests us to deep discussions.

References

[1] Pfister, G.F. and Norton, V.A.: “Hot Spot” Contention and Combining
in Multistage Interconnection Networks, IEEE Trans. Comput., Vol.C-
34, No.10, pp.943–948 (1985).

[2] Dally, W.J. and Towles, B.: Principles and Practices of Interconnec-
tion Networks, Morgan Kaufmann Pub. (2004).

[3] Duato, J., Yalamanchili, S. and Ni, L.: Interconnection Networks: An
Engineering Approach, Morgan Kaufmann Pub. (2003).

[4] So, T., Oyanagi, S. and Yamazaki, K.: Speculative Selection in Adap-
tive Routing on Interconnection Networks, IPSJ Trans. Advanced
Computing Systems, Vol.44, pp.147–156 (2003).

[5] Yokota, T., Nishitani, M., Ootsu, K., Furukawa, F. and Baba, T.:
Cross-Line: A Novel Routing Algorithm That Uses Global Informa-
tion, IPSJ Trans. Advanced Computing Systems, Vol.46, No.SIG 16
(ACS-12), pp.28–42 (2005). (in Japanese).

[6] López, P., Martı́nez, J.M. and Duato, J.: DRIL: Dynamically Reduced
Message Injection Limitation Mechanism for Wormhole Networks,

c© 2015 Information Processing Society of Japan 742



Journal of Information Processing Vol.23 No.5 730–743 (Sep. 2015)

Proc. 1998 International Conference on Parallel Processing, pp.535–
562 (1998).

[7] Obaidat, M.S., Al-Awwami, Z.H. and Al-Mulhem, M.: A New Injec-
tion Limitation Mechanism for Wormhole Networks, Computer Com-
munications, Vol.25, pp.997–1008 (2002).

[8] Thottethodi, M., Lebeck, A.R. and Mukherjee, S.S.: Self-Tuned Con-
gestion Control for Multiprocessor Networks, Proc. 7th International
Symposium on High-Performance Computer Architecture (HPCA’01),
pp.107–118 (2001).

[9] Thottethodi, M., Lebeck, A.R. and Mukherjee, S.S.: Exploiting
Global Knowledge to Achieve Self-Tuned Congestion Control for k-
Ary n-Cube Networks, IEEE Trans. Parallel and Distributed Systems,
Vol.15, No.3, pp.257–272 (2004).

[10] Baydal, E., López, P. and Duato, J.: A Family of Mechanisms for
Congestion Control in Wormhole Networks, IEEE Trans. Parallel and
Distributed Systems, Vol.16, No.9, pp.772–784 (2005).

[11] Yokota, T., Ootsu, K., Furukawa, F. and Baba, T.: Entropy Throttling:
A Physical Approach for Maximizing Packet Mobility in Interconnec-
tion Networks, Proc. 11th Asia-Pacific Computer Systems Architecture
Conference (ACSAC 2006), pp.309–322 (2006).

[12] Yokota, T., Ootsu, K., Furukawa, F. and Baba, T.: Entropy Throttling
for Maximizing Packet Mobility in Interconnection Networks, IPSJ
Trans. Advanced Computing Systems, Vol.47, No.SIG 12 (ACS 15),
pp.1–11 (2006). (in Japanese).

[13] Shibamura, H., Miwa, H., Susukita, R., Hirao, T., Ajima, Y., Miyoshi,
I., Shimizu, T., Ishihata, H. and Inoue, K.: Optimization and Simu-
lation Evaluation of an All-to-all Communication Using Packet Pac-
ing, IPSJ Trans. Advanced Computing Systems, Vol.4, No.3, pp.56–65
(2011). (in Japanese).

[14] Ohira, T. and Sawatari, R.: Phase Transition in a Computer Network
Traffic Model, Physical Review E, Vol.58, No.1, pp.193–195 (1998).

[15] Tretyakov, A.Y., Takayasu, H. and Takayasu, M.: Phase Transition in
a Computer Network Model, Physica A, Vol.253, pp.315–322 (1998).

[16] Takayasu, M., Takayasu, H. and Fukuda, K.: Dynamic Phase Tran-
sition Observed in the Internet Traffic Flow, Physica A, Vol.277,
pp.248–255 (2000).

[17] Valverde, S. and Solé, R.V.: Self-organized Critical Traffic in Paral-
lel Computer Networks, Physica A, Vol.3112, No.3–4, pp.636–6448
(2002).

[18] Yokota, T., Ootsu, K., Furukawa, F. and Baba, T.: Phase Transi-
tion Phenomena in Interconnection Networks of Massively Parallel
Computers, Journal of the Physical Society of Japan, Vol.75, No.7,
p.078401 (7 pages) (2006).

[19] Nagel, K. and Schreckenberg, M.: A Cellular Automaton Model for
Freeway Traffic, Journal of Physics I France, Vol.2, pp.2221–2229
(1992).

[20] Nagatani, T.: Self-Organized Criticality and Scaling in Lifetime of
Traffic Jams, Journal of the Physical Society of Japan, Vol.64, No.1,
pp.31–34 (1995).

[21] Shante, V.K. and Kirkpatrick, S.: An Introduction to Percolation The-
ory, Advances in Physics, Vol.20, No.85, pp.325–357 (1971).

[22] Barrat, A., Marthélemy, M. and Vespignani, A.: Dynamic Processes
on Complex Networks, Cambridge University Press (2008).

[23] Takayasu, M.: Complex Dynamics in Communication Networks, chap-
ter Dynamic Complexity in the Internet Traffic, pp.329–358, Springer
(2006).

[24] Yokota, T., Ootsu, K. and Baba, T.: Steady/Unsteady Communica-
tion Performance in Large-Scale Regular Networks, Proc. 2011 IEEE
Workshops of International Conference on Advanced Information Net-
working and Applications (WAINA), pp.727–732 (2011).

[25] Kermani, P. and Kleinrock, L.: Virtual Cut-Through: A New Com-
puter Communication Switching Technique, Computer Networks,
Vol.3, No.4, pp.267–286 (1979).

[26] Yokota, T., Ootsu, K. and Baba, T.: A Quantitative Evaluation
Methodology of Interconnection Networks, IPSJ Trans. Advanced
Computing Systems, Vol.2, No.3, pp.58–70 (2009).

Takashi Yokota received his B.E., M.E.,
and Ph.D. degrees from Keio University
in 1983, 1985 and 1997, respectively. He
joined Mitsubishi Electric Corporation in
1985, and was engaged in several re-
search projects in special-purpose, mas-
sively parallel and industrial computers.
He was engaged in research and develop-

ment of a massively parallel computer RWC-1 at Real World
Computing Partnership as a senior researcher from 1993 to 1997.
From 2001 to 2009, he was an associate professor at Utsunomiya
University. Since 2009, he has been a professor at Utsunomiya
University. His research interests include computer architecture,
parallel processing, network architecture and design automation.
He is a member of IPSJ, IEICE and the IEEE Computer Society.

Kanemitsu Ootsu received his B.S. and
M.S. degrees from the University of
Tokyo in 1993 and 1995 respectively, and
later he obtained his Ph.D. in Information
Science and Technology from the Univer-
sity of Tokyo in Japan. From 1997 to
2009, he is a research associate and then
an assistant professor at Utsunomiya Uni-

versity. Since 2009, he is an associate professor at Utsunomiya
University. His research interests include high-performance com-
puter architecture, multi-core multithread processor architecture,
mobile computing devices, binary translation, and dynamic opti-
mization. He is a member of IPSJ, IEICE, and ISCIE.

Takeshi Ohkawa received his B.E. and
M.E. and Ph.D. degrees in Electronics
Engineering from Tohoku University in
1998, 2000 and 2003, respectively. He
was a postdoctoral fellow at Tohoku Uni-
versity, where he engaged in the recon-
figurable LSI and software/hardware co-
design in 2003. In 2004, he joined Na-

tional Institute for Advanced Industrial Science and Technology
(AIST), Japan as a researcher, where he started working on dis-
tributed object technology and its application to FPGA. From
2009, he started work in start-up company TOPS systems, where
he engaged in R&D of heterogeneous multi-core processor and
its software platform. From 2011, he is an assistant professor
in Utsunomiya University. His research interests include recon-
figurable technology, software/hardware co-design, parallel and
distributed architecture and component-based design technology.
He is a member of ACM, IEICE, and IPSJ.

c© 2015 Information Processing Society of Japan 743


