
Journal of Information Processing Vol.23 No.5 683–692 (Sep. 2015)

[DOI: 10.2197/ipsjjip.23.683]

Regular Paper

DiffHub: An Efficient Cloud Sync Technology based on
Binary Diffs

Marat Zhanikeev1,a)

Received: January 6, 2015, Accepted: May 9, 2015

Abstract: Among several distinct kinds of syncing technology implemented in clouds today, none implement binary
diffs for efficiency. Binary diffs are well established in literature and can be used to drastically reduce the bulk trans-
ferred over the network. Since most cloud technologies are distributed and depend on intensive internetworking, binary
diffs can offer a considerable efficiency boost. This paper proposes the DiffHub method for cloud syncs. Its perfor-
mance is analyzed separately on real filesystems and then on synthetic traces based on hotspot distributions. Results
show that traffic bulk can be reduced by between 1 and 2 orders of magnitude, depending on conditions.

Keywords: diffhub, cloud sync, file sync, cloud drive, group drive, binary diff, bulk transfer, cloud migration

1. Introduction

The term cloud sync in this paper loosely defines the vari-
ous cloud technologies that depend on intensive migration of
resources over the network. This paper will specifically focus
on cloud drives (Google Drive [26], Dropbox, etc.) which sync
filesystems between a storage space in clouds and a local client.
However, the same technology is applicable to migration of Vir-
tual Machines (VMs), container-based apps (Docker [27]) and
even traditional source code versioning (Github [28]).

Sync efficiency is mostly affected by the network where the re-
lated term is bulk transfer efficiency. There are several active re-
search topics related specifically to cloud syncs. For the increased
efficiency of VM migrations, greyboxes – reduced bulk of the im-
age – are discussed [10], [11]. For BigData transfers, end-to-end
circuit emulation is discussed as a method for achieving max-
imum throughput [16]. All discussions of migration cost show
that network has the biggest effect [15], [17]. There are methods
which take networking delay into consideration when building
cloud-based APIs – like the example of over-the-network index-
ing in Ref. [19]. Finally, mobile clouds introduce a new concept
of group sync where local wireless groups depend on intensive
syncing of content across each other while the group as a whole
also has to sync with the backend in the cloud. The related con-
cepts of MultiConnect [20] and GroupConnect [21] are actively
discussed in literature.

As a generic problem, distributed sync [3] and adaptive
network-aware distributed sync [4] are the two actively discussed
methods. Note that both these methods, as well as the P2P-based
sync technology normally operate only one-way [4], while cloud
sync, due to its design with the cloud backend mediating all the

1 Department of Artificial Intelligence, Computer Science and Systems
Engineering, Kyushu Institute of Technology, Iizuka 820–8502, Japan

a) maratishe@gmail.com

updates, can work in both directions.
Binary diff is a well-researched topic today. There is a current

de-facto standard protocol/format for writing binary diff files –
the VCDIFF based on RFC3284 [24]. There are also several com-
mand line tools, where VCDIFF-based xdelta [25] is arguably the
most widespread today and can be found in many popular oper-
ating systems. Binary diff technology can be viewed as a more
generic tool than the traditional textual diff – the latter is used
in software development for version management. Binary diff is
more generic because it can work with both text and binary files,
while textual diffs work only with textual information and operate
at the grain of a line of text. The currently popular git protocol
and the Github [28] service are based on textual diffs. Further
in this paper it is shown that binary diffs can often outperform
traditional diffs.

Binary diffs are not used in clouds today. Specifically, none of
the above technologies incorporate binary diffs, instead, relying
on less efficient bulk reduction methods. An experiment further
in this paper shows that Google Drive [26] transfers the entire file
for each update (full sync). In Github, text files (source code,
etc.) are processed with the traditional diff tool while binary files
are transferred and replaced in full. Technologies related to Big-
Data transfer, sharding in distributed filesystems of storage, and
others, do not consider binary diffs, relying on other efficiency
tricks instead [16]. Finally, binary diffs are not part of the two
key cloud technologies – VM Migration [15] and container-based
migration [27].

As a small taxonomy, the various diff technologies found in
practice today can be classified into one of the following three
kinds.

Textual Diff is the traditional kind found mostly in sourcecode
version control (git and Github [28]). The command line diff tool
is widespread and easy to use. The unit of such diffs is one line

of text, where end-of-line symbol is used to cut text into lines.

c© 2015 Information Processing Society of Japan 683

Journal of Information Processing Vol.23 No.5 683–692 (Sep. 2015)

Filesystem Diff is a new concept that came to life recently via
the Docker [27] service. Docker is a cloud-based hub for manag-
ing containers and container-based apps. Since a container is ba-
sically a size-optimized operating system, it is crucial for Docker
to be efficient when implementing versioning of its containers.
Today’s Docker is entirely based on git – and even specifically the
Github API, which means that filesystems in Docker are treated
the same way as sourcecode trees are treated in Github. Efficiency
is achieved through layers – Docker implements the FROM in-
struction which one can put into a Dockerfile in order to import
a base container image. This helps Docker avoid duplication of
huge – but otherwise static – base containers in the various apps
that users build for themselves.

Binary Diff is the core concept used in this paper. Its main ad-
vantage is that it can replace both the above kinds. Text can be
treated as a stream of bytes. Filesystems can be wrapped into a
single compressed file (.zip in Github, .tar.gz or .tar.bz2 are also
common) and subjected to binary diff. However, binary diffs can
also potentially offer a higher level of flexibility. For example,
each FROM instruction in Docker has to download the entire bulk
of the specified base container. Using binary diffs, one can recre-
ate a given container from a local library and transfer only the
necessary diffs over the network.

Although not directly related to this paper, the concepts of diff

and patch are the two sides of the same technology. The rela-
tion is simple – diff files can be used to patch an older file, thus
resulting in a new (intended) file.

The idea for this paper was first born via the experiment in
the next section which revealed that Google Drive uses full sync,
that transfers the entire bulk of the file on each update. The same
problem was later confirmed for Dropbox and several other publi-
cally available cloud drive services. The problem here is obvious
– users have to wait a long time for a sync to propagate from one
user to another. This was the exact problem that was experienced
within a cross-univpersity research team (same as in the experi-
ment below) that shared a cloud drive space.

The solution proposed in this paper is referred to as DiffHub

and is a technology that uses cloud drive as an intermediary for
diffs (rather than full files). Since diffs are much smaller in size,
it takes much less time for updates to propagate to other clients
(via the drive and) across the network. As a side feature, a drive
that stores only diffs can handle 10–20 times more content, on
average.

This paper also shows that besides the proposed DiffHub de-
sign, the technology is more flexible than the traditional design
and can power interesting side technologies. For examples, initi-
ation (first sync) of new clients can take hours with existing ser-
vices. This paper shows that it can be sped up considerably using
P2P file sharing [2]. If DiffHub is implemented at client-side –
as is its current implementation – than the P2P option can easily
become part of the new service.

This paper has the following structure. Section 2 introduces the
experiment that involves a probe that helped reveal the fact that
Google Drive uses full sync. Section 3 discussed related work.
Section 4 describes the proposal and introduces the DiffHub tech-
nology. Section 5 explains how the experiment in Section 2

becomes a trace for analysis later in the paper. Section 6 dis-
cusses synthetic traces which are based on the hotspot distribu-
tion [16], [22] and are necessary for performance analysis over a
wider range of conditions than those found in the real-life exper-
iments. Section 7 explains the setup for analysis and Section 8
discusses the results. A conclusion is drawn in Section 9.

2. Justification via Experiment

As was mentioned before, the idea for this paper was born
from the many reports on delayed syncs across users of a cross-
university research team. Some members were working on the
same dataset at roughly the same time and had to wait for a long
time for syncs to propagate across the service.

It was decided to confirm the premise that Google Drive uses
full sync – that is, sends the complete file of each update. Fig-
ure 1 shows the topology used for the experiment. The topology
describes a working Google Drive space shared across several
members of a cross-university research team. The drive con-
tained about 10 Gbytes of content. Note that Google Drive is
classified as a cloud sync technology rather than the distributed

sync discussed in related literature [4]. In cloud sync, all clients
have slave copies of the content while Cloud Drive has the mas-
ter copy. All the updates have to propagate to other users via the
master copy. Probe is a newly added client to the topology and is
put in charge of capturing traffic as well as filesystem changes in
realtime.

The task of probing Google Drive only appears trivial. In real-
ity, Google Drive protocol is not open source [26], while its client
API is open. Without the full knowledge of the protocol, there is
no clear way to separate metadata from sync traffic. Moreover,
additional problems are introduced by the fact that metadata traf-
fic is mixed with the bulk transfer of files as well as the fact that
syncs are asynchronous with a changing time delay between up-
loads and downloads. Finally, the Probe needs to quickly detect
changes in the filesystem so that captured packet traffic could be
aligned with file syncs.

The following rules were established to deal with these difficul-
ties. The Probe was passive – no outgoing, only arriving updates.
To maximize the promptness of detecting filesystem changes, the
Probe used rsync tool to find which files changed – the filesystem
indexing used by the tool makes it the quickest known detector
of changes in large filesystems [3]. The time when rsync detected
a change was used as a reference time. The recent 40 s of traf-
fic before the reference time would be collected and assumed as

Fig. 1 Topology used for probing Google Drive syncs. All the probing was
performed by the Probe client.

c© 2015 Information Processing Society of Japan 684

Journal of Information Processing Vol.23 No.5 683–692 (Sep. 2015)

Fig. 2 An example lifespan of a file with the traffic received from Google
Drive for each sync.

the volume of the sync. To purify the dataset, all episodes with
multiple concurrent files were removed, thus, guaranteeing that
each episode would contain only one updated file and the traffic
corresponding to its sync.

Figure 2 shows an example lifespan of a file that grew from
100 kb to 250 kb. The figure shows that the dataset is noisy, with
unexpected rises and falls of traffic volume. However, we can still
see that updates experience a growing trend, thus, mirroring the
growing of the filesize itself. This figure is the weak proof of the
fact that Google Drive uses the full sync.

For a thorough analysis, a dataset for over 2,500 files – a mix-
ture of text and binary files – was collected. Each update had
at most several 10 kbytes of a diff (verified via binary diff). As a
rule, the file always grew in size – this rule was followed naturally
and there was no need to enforce it. The overall analysis was per-
formed by observing cross-correlation (CCF: Cross-Correlation
Function) between advancing time and traffic volume. Note that
since files always grew in size, the same result would be achieved
for CCF between filesize and traffic volume. Time was chosen
as a humanly readable metric of performance – this paper started
from the complaints about long waiting time.

Figure 3 has two plots that study CCF for individual files (up-
per) and filesize classes (lower).

The upper plot shows CCF for 35 randomly selected files. One
can see that the majority of correlation is positive, that is, traffic
volume grows along with the lifespan of a file. One can also see
that there is a growing average trend in the plot – correlation is
higher for larger files. Yet, the dataset is still very fuzzy to draw
a final conclusion.

The lower plot attempts to separate noise from the valuable in-
formation. All the 2,500 files are aggregated into classes based
on filesize (horizontal scale of the plot). The plot then shows the
average CCF for each class. Here, we finally see the proof of
direct correlation between filesize/lifespan and sync size. While
for small filesize, the noise cannot be clearly separated from valu-
able information – metadata and various other traffic have heavy
impact on the relatively small volume, for large size, the correla-
tion is strongly around 30–40%. Note that this correlation cannot
come from gradually increasing updates – as this paper shows

Fig. 3 CCF analysis of sync traffic volume versus filesize, separated into
plots for individual files (top) and filesize classes (bottom).

further on, all the updates in the dataset are very small regardless
of the total filesize. This means that the strong positive correla-
tion can only come from the fact that Google Drive transfers the
entire bulk of the file on each update.

Apart from the above numeric evidence, the findings were also
supported by human observation. It always took longer for larger
files to get synced across the service. Unfortunately, these re-
ports were not confirmed numerically because it would require
not only to install Probes at multiple clients, but also perform
time synchronization across Probes. Along with having to deal
with active clients (the above design uses passive measurement),
such an effort would be considerably more difficult to implement
in practice and would arguably create more complex (and noisy)
datasets than the above.

3. Related Work

The binary diff technology is well established. VCDIFF
(RFC3284 [24]) defines the abstract format and protocol for bi-
nary diff records. VCDIFF is used by the xdelta tool [25]. There
are several other binary diff tools, but xdelta is the fastest and is
more reliable. Xdelta can execute both diffing and patching parts
of the process. Additionally, xdelta offers the feature of merg-

ing multiple diffs which is helpful for distributed asynchronous
syncs because it can further reduce the volume of bulk transfer
for delayed syncs. Note that DiffHub runs in asynchronous en-
vironments by definition and benefits from this feature – the hub
can freely merge multiple diffs and update its other clients with
a single binary diff even if its uploading client produced several
diffs in succession.

VCDIFF format itself is very efficient because it uses com-
pression internally. The algorithm for binary diffs uses several
advanced elements of compression technology [1]. However, the
main efficiency of binary diffs is in the algorithm for calculating
the delta between two versions of the same file. Xdelta in this

c© 2015 Information Processing Society of Japan 685

Journal of Information Processing Vol.23 No.5 683–692 (Sep. 2015)

respect is the leading product on the market. The documenta-
tion of the tool at Ref. [25] provides very good insight into the
heuristics of the algorithm. Xdelta is in its 3rd major version and
has undergone several major improvements. For example, one
of the biggest changes in version 3 was the threshold between
detailed versus lightweight heuristics (64 Mbytes but can be con-
figured from command line). This switch allows the tool to avoid
long computation times for extremely large files. Experiments
in the previous section showed that xdelta can calculate diffs be-
tween two 3 Gbyte files in under a minute. It is interesting that
the delta algorithm in xdelta uses a similar basic indexing tech-
nique to what rsync implements when calculating delta between
two versions of filesystem states [3].

Note that the term indexing efficiency here can be divided into
two types: indexing of filesystem changes versus changes in the
content of individual files. Rsync is efficient only at the level of
filesystem changes and does not index file content. VCDIFF is
only concerned with binary diff between two versions of a single
file. One way to view the proposal in this paper is to consider
it an attempt to create a hybrid between the two – the proposed
designs have both binary diff and filesystem components in one
package.

Given this gap, there is already literature that adds binary diff
to rsync [4] where the efficiency is helpful for distributed filesys-
tems. However, note that technologies like dsync as well as the
larger set of peer syncing technologies [4], [23] work in only one
direction. The cloud sync design – where all the updates go
through a central hub – is more robust in practice and can eas-
ily handle syncs in both directions.

There are several existing efficiency tools beyond the dsync

above for file syncing in clouds. Majority of them are based on
rsync but are not backed by academic papers (rsync itself is based
on an academic paper [3]). It is still useful to introduce some of
them to stress on the differences between popular tools today and
the proposal in this paper. The efficiency of gsync [6] is related
to very large files, where the tool implements the standard rsync

algorithm for the entire local filesystem but is unique in making
it possible to resume uploads and downloads for very large files.
Actions can be resumed only sequentially and only if the file is
not changed in the process. Otherwise, each new action involves
the entire file without any efficiency. S3sync [7] is a utility for the
S3 cloud storage run by Amazon, the only efficiency here is in
that it implements the rsync algorithm and offers the simplified
sync utility to the user instead of the raw per-file actions provided
by the basic S3 command line tool. There are also examples when
cloud storage services offer rsync interfaces for syncing – see the
example of the popular iBackup service [8]. Note that rsync-like

interfaces can already be considered as improved efficiency for
cloud storage where, including the case of cloud drives (Google
Drive, Dropbox, etc.) considered further in this paper, files are
stored in the cloud individually rather than mirroring the local
filesystem tree of the client.

Zsync [9] is the only popular tool that advertises the use of bi-

nary diffs for efficiency. Zsync is divided into client and server
sides. The client implements the basic rsync algorithm to find out
which files to sync. The server provides .zsync binary delta files

for each actual file which each client can use to patch its own old
version. In this case, only the delta file is downloaded.

Both dsync (rdiff [5] follows the same concept) and zsync use
binary diff as part of their functionality. However, in both cases,
binary diffs are always applied only to individual files. The pro-
posal in this paper is original in that it describes a platform that
is centered around binary diffs. The platform contains crucial
components like multi-user access and version control, which are
missing in dsync and zsync. Dsync is limited to the case of one-to-
many syncing where the single source always has the most recent
copy. Zsync can only support multiple clients if the server has the
most recent copy and all clients have the same older copy. Nei-
ther tool supports version control. This classifies them as backup

tools – a subclass of the larger syncing technology considered in
this paper. The rest of this section shows several technologies
which can benefit from the proposal while being unable to apply
dsync or zsync due to the lack of one of the two above compo-
nents.

VM migration suffers extensively from the cost of migration.
While the traditional VM placement technology in clouds does
not consider migration cost [13], [14], modern methods are cost-
aware [12]. It is widely accepted that the cost of migration is
mostly the bulk transfer over the network [17].

The greybox problem here is defined as a method that reduces
the bulk of a migrating VM [10]. Unique – and therefore less
backwards-compatible – designs are used as well, for example,
as APIs that separate OS from apps and data and transfer only the
necessary parts over the network [11]. This paper shows that bi-
nary diffs on VM images can be very efficient as well. Note that
in this case VM images are treated as blackboxes – that is, there
is no need to know what is inside a VM image. This makes the
binary diff approach more flexible than the above API.

Container-based migration suffers from similar problems.
Docker [27] being the popular container hosting service today
is an example of a filesystem diff technology. A given user’s
container is built in layers. Lower/base layers are mostly static
and can be imported as a base running environment for a given
container-based app using the FROM instruction in Docker. The
layers make it possible for Docker to minimize the impact from
having to deal with binary files (kernel, etc.) in OS images.
Docker assumes that all the binary files are updated very infre-
quently. This means that Docker can exist without the binary
diff and use the simpler textual diff technology. Specifically, cur-
rent Docker is based on git tools and more specifically on Github

APIs. This paper shows that binary diff can be very efficient for
filesystem images where the entire container can be handled as a
single compressed file.

Cloud syncs go beyond file syncing. Recently, syncing tech-
nology has become important for mobile clouds where syncs are
separated into local (in-group) syncing and group-to-cloud sync-
ing [21]. The more general concept of GroupConnect is proposed
in Ref. [20]. There are many practical applications for Group-
Connent [21] but all rely on more than one kind of syncs within
the same technology.

While the concept of group sync is natural to wireless environ-
ments, the same concept can be applied to wired communities.

c© 2015 Information Processing Society of Japan 686

Journal of Information Processing Vol.23 No.5 683–692 (Sep. 2015)

For example, the Group Drive technology is a form of P2P sync-
ing aiming at realtime content handling by groups in classes [23].
Note that all these examples depend on full sync and can therefore
benefit from the efficiency introduced by binary diffs.

Repeating an earlier statement, syncing performance is mostly
affected by end-to-end networking. Therefore, any technology
that improves networking, by extension, improves the perfor-
mance of syncs. All the above technologies focus on reducing the
bulk itself. There is also research that tries to improve end-to-end
throughput. For example, end-to-end circuits are discussed as a
special case of efficient networking for BigData, VM images and
other very large bulks found in clouds [16]. There is also litera-
ture that does not improve but takes into consideration network
delay – the example technology here is the over-the-network in-
dexing in Ref. [19]. Note that most cloud technologies natively
operate in over-the-network mode which means that the findings
apply to all cloud syncs. The same premise applies here – reduc-
tion of the bulk itself via binary diffing can boost the performance
of all such technologies.

Although not directly related to the scope of this paper, a re-
cent cloud technology discussed in literature is multistream con-

tent aggregation – where content is aggregated in realtime from
multiple peers in P2P networks [18] or cloud-based services [2].
While the technology has P2P features, there are several features
that make it a distinct technology. The content aggregation tech-
nology is related to this paper in the part of so-called initiation –
where the entire contents of a cloud drive has to be synced with
a newly added client. Practice today shows that such a sync can
take hours. This paper shows that this time can be minimized by
using content aggregation as defined in Ref. [2].

4. Proposal: the DiffHub

This section formulates the concept of DiffHub as well as its
implementation designs and features.

Figure 4 shows 3 distinct types of cloud syncs. All are de-
scribed as procedures undertaken when a file is updated and the
update has to propagate from the origin (User A) to Cloud Drive,
and finally to User B on the other side.

The Traditional design follows the trends discovered in the
experiment above. New file is uploaded to Cloud Drive in full,
where it replaces the old file (versioning is discussed further in

Fig. 4 Taxonomy of types of cloud syncs, with the proposed DiffHub
marked as the Advanced design.

text). Client at User B performs continuous polling on status and
promptly finds out about the updated file. The new file is then
downloaded and used to replace the old version (no versioning
here, the old version is deleted).

The Efficient design showcases the immediate efficiency from
using binary diff. The diff is created by the client at User A as a
product of comparing old and new versions of the same file. The
relatively small diff file is then uploaded to Cloud Drive, where
it is patched on the old version to create the new version. User
B in turn downloads the diff from Cloud Drive and performs the
same set of actions to create the new file. To support version
discrepancies across multiple clients in async environments, diffs
for several versions (diff versioning) can be implemented, where
xdelta tool can merge several diffs into one, potentially creating
the final diff of a smaller size than the sum of its predecessors.

The Advanced design is the main objective of this paper.
Cloud Drive here does not retain entire files but handles only
diffs. Hence the name DiffHub applied to the design. Note that
such a design would require a complete rewrite of the software
at Cloud Drive. However, in practice this drastic upgrade can be
avoided by emulating a DiffHub. The current implementation of
DiffHub simply uses a discipline of storing only diffs in Google
Drive while keeping the files themselves in a location outside of
Cloud Drive’s local filesystem. Cloud Drive in this case follows
its normal operation routine while the core logic of the DiffHub
is implemented at client side.

The unique differences between Advanced and the Tradi-
tional/Efficient designs are as follows. The Advanced design
(Diffhub) is unique compared to both other designs in that it
stores only diff files, while the other two also have to store the
main bulk. The Advanced design is partially unique compared
to Traditional design in that only diffs are used for communica-
tion between clients and Cloud Drive – the uniqueness is partial
becuase the same feature is offered by the Efficient design.

Based on the above description, DiffHub (Advanced design)
has both pros and cons. First, the fact that syncs in both Efficient
and Advanced models are smaller (and therefore faster), it is the
first obvious pro of the technology. Another pro is the storage
space, which is more efficient in the Efficient design (updates are
stored as diffs) and reaches maximum efficiency in the Advanced
design.

The main disadvantage for the Advanced model is the fact that
it cannot support initiation of new clients in its default form. The
solution for this problem is offered later in this section. Another
disadvantage is hidden in version control logic. Resolution of
collisions has always existed as a fundamental problem [4]. In
practice (including the practice with the team from the above ex-
periment), it is almost always the case that User A does not know
what User B did, which means that a collision cannot be resolved
by either user without direct communication between the two.
The discussion of versioning is left out of scope of this proposal
and will be revisited in future publications. If versioning is cru-
cial for a team’s operation, then the Efficient design is advised –
it is still more efficient than the Traditional design while imple-
menting the same versioning logic.

Figure 5 shows the solution to the initiation problem and is

c© 2015 Information Processing Society of Japan 687

Journal of Information Processing Vol.23 No.5 683–692 (Sep. 2015)

Fig. 5 Resolving the initialization problem for newly added clients. Two
separate methods are proposed in Step 3.

specific to the Advanced (DiffHub) design. Note that this de-
sign is drastically different from the other two in that all clients
have the master copies of the content – thus are more likely to be
classified as a P2P sync technology [4]. The following steps are
undertaken for each newly added client:
(1) A new client registers with DiffHub;
(2) DiffHub notifies (or, alternatively reads status updates for)

all existing clients. DiffHub does not store the files them-
selves, so, it depends on other clients for supplying the new
client with current versions of the files.

(3) This step can be implemented in two distinct ways. One
is via the v0diff (reads version zero diff) function which is
where the binary diff file contains the entire bulk of the file.
The other method is to implement P2P sync which is where
the new client aggregates the entire initial state using multi-
stream aggregation [2].

Clearly, the second method of Step 3 is much faster but re-
quires additional software for each client. If clients are in a local
network then GroupSync can be used [4], [22]. If existing clients
are remote then P2P [2] or cloud-based multisource [2] are the
available options. The current version of DiffHub implements
the relatively simple v0diff (using the VCDIFF notation) while
future publications on the topic will look into P2P options.

5. Experimental Traces

This section extends Section 2 by discussing additional details
of the experiments as well as forming a trace for further analysis.
The entire trace (dataset, etc.) contains over 6 months of opera-
tion of a cross-university research team. In this period, diffs for
over 2,500 files have been collected. Majority of them have been
synced over Google Drive, but some were too big for the space
and were handled outside. Regardless, a discipline was enforced
which collected diffs for large files and added them to the data
collected automatically by the Probe.

Table 1 shows some of the common filetypes encountered in
the trace. The filetypes were selected manually but the filesizes
were picked as the most frequent (rounded) number found in the
trace. Diffsize was defined as the average number across all the
selected syncs.

The following features were discovered based on Table 1.
Source code (programming) generates the smallest diffs, even
when taken relative to the total filesize. This is mostly the fault
of the auto-sync feature which saves current version of the file

Table 1 The table of several kinds of binary diffs that are useful in clouds
and their performance.

automatically if the content has been edited. Yet, manual saves
were found to be at most 2–3 times bigger (programmers like to
save frequently) which is not a major difference.

Office application diffs (per save) are at about 10% of file-
size, regardless of filesize and application type. PDF annota-
tion (adding comments to PDF files) is very small – about 2%.
Zip files of source code (Github commits were downloaded and
tested) are also very small. Note that this has direct relation to
Docker which handles its containers as Github repositories.

VMs are separated into 1 Gb and 2 Gb classes where the former
diffs are at 20%, and the latter at about 10% of the total filesize of
the image. Each time new VM images were created after major
software of environment updates or installations of new software
or applications. Note that diffs are closer to each other in filesize
than the images themselves – here the premise is that diffs do not
grow much in size regardless of the total filesize. Of course, this
premise only holds on condition that we are comparing incremen-
tally updated images – two unrelated images would generate huge
diff files. Also note that these diffs can compete with the success
of greyboxes [11] without the need to use non-standard APIs to
separate apps and data from OS parts of the image.

Figure 6 is generated from the same experimental data as was
presented in Section 2, but this time focuses on diffs. The plots
are separated into binary diffs only (top) and comparison between
three kinds of diffs (bottom).

The top plot shows 35 randomly selected files as vertical pairs
of filesize versus diff size. We can immediately see that diff size
does not correlate with file size – relatively large files (vertical
scale is in log) can have diffs of the same size as that for small
files. As was mentioned before, most diffs in the dataset are in
the range between 100 s of bytes and 10 s of kbytes.

The bottom plot compares the performance of text versus com-

pressed text (zip) versus binary diffs. The samples are ordered by
the decreasing size of binary diff with the two other kinds plotted
on top. Each vertical group corresponds to the same (text) file
during the same sync. We can see that text diff performs better
on average than binary diff, with occasional lapses where text diff
is much bigger. The plot also advises against using compressed
textual diffs, which only smoothens both positive and negative
advantages of the purely textual diffs. The problem here is that
compression does not perform well on small snippets of text. The
performance should be better if diff files are bigger.

The above dataset is converted to the trace as is. This means
that the actual file and diff sizes are used for analysis further in
this paper.

c© 2015 Information Processing Society of Japan 688

Journal of Information Processing Vol.23 No.5 683–692 (Sep. 2015)

Fig. 6 A randomly selected subset of real measurements showing only bi-
nary diffs (top) and comparison between three diff formats (bottom).
Logs on vertical scales are base 10.

6. Synthetic Traces

The real traces above raise an obvious problem. While the
trace comes from real measurements, it only describes a rela-
tively small subset of possible usage patterns. The synthetic trace
described in this section rectifies this problem by introducing a
method for generating realistic but synthetic traces.

The best basis for synthesis is the so-called hotspot distribu-

tion – a recently developed method for describing systems with
multiple parallel random processes of which only a small sub-
set experiences extreme behavior. There are many examples of
hotspot processes: viral (very popular) videos on a Content De-
livery Network (CDN), BigData versus ordinary bulk [16], and
filesize distribution in this paper. This paper uses the hotspot dis-
tribution to model filesize.

Full description of the synthesis method and the involved sta-
tistical processes can be found in Ref. [22]. The standard method
is a process executed in discrete time but a simplified version
has also been proposed [16]. The simplified version is static and
produces 4 sets of normal, popular (pop), hot and Flash Crowd

(flash) items. The normal in the simplified version is all set to 1
and is therefore not interesting. The pop set is part of the emu-
lated filesystem but describes the files that never get updated and
is therefore also outside of the current scope. Finally, hot and
flash sets are the two key sets that define the initial and final file-
sizes for each item, respectively. Note that this application of the
hotspot distribution is similar to BigData modeling in Ref. [16].

Fig. 7 A randomly selected hotspot distribution. Vertical scale is log base
10.

Setting the time component aside, the hotspot distribution is
modeled using the following tuple:

〈n,m, k, ad, am, av〉, (1)

where n, m, and k are normal, pop, and hot item counts (flash

count is same as hot), ad configures the Stick-Breaking (SB)
random process, and am and av define magnitude and variance
of the Dirichlet distribution that configures independent random
streams for each hot item. Further reducing complexity by fixing
ad = 0.5, we have the two main parameters am and av that can
generate a wide variety of distributions.

Figure 7 shows a randomly selected hotspot distribution with
magnitude set to am = 5 and variance to av = 2. For visual clar-
ity, all sets are plotted as ordered distributions which means that
vertical alignment does not correspond to the same item. In the
synthetic trace, each item has an independent set of hot and flash

values. In the plot we can see that hot filesize is slightly larger
(even in initial state) than of pop items. In the flash set, filesize of
hot items experiences a major surplus.

While hotspot distributions are generated using a complex pro-
cess, the two above parameters can help understand the nature of
the configuration control they offer. Magnitude controls the up-
per margin – not a fixed bound but the magnitude of the spikes.
Variance controls the variety of magnitudes across hot items –
here the counterintuitive feature is that higher variance can actu-
ally cause lower average by generating too many extreme (low
and high) fluctuations.

As was mentioned earlier, values in the above hotspot distri-
butions correspond to filesize. To adjust the values to a realistic
range of filesize, all the values are multiplied by 10, thus, creating
large files in the range of several Mbytes.

7. Analysis Setup

The target of the analysis in this paper is to compare per-
formance between the proposed DiffHub and traditional Cloud
Drives. The main performance metric remains the same through-
out this entire paper – waiting time for individual syncs. Wat-

ing time is defined as the time spent by the client waiting for
one sync to complete. For clarity, analysis further in this paper
focuses on comparing between Traditional and Diffhub designs.

c© 2015 Information Processing Society of Japan 689

Journal of Information Processing Vol.23 No.5 683–692 (Sep. 2015)

The Efficient design can be considered as a hybrid in which on
one hand waiting time is the same as that of the DiffHub because
only diffs are transfered, and on the other hand the storage space
at server side is comparable to that of the Traditional design. Stor-

age space is not considered in analysis becuase its performance
mirrors that of traffic exchange. In fact, the relation between the
two metrics is strongly proportional becuase large storage space
can be filled by high-volume traffic exchange, and vice versa.

Waiting time depends directly on end-to-end throughput. To
simplify analysis, network throughput is fixed at 5 Mbps for all
syncs (real and synthetic, v0diffs and P2P, all filesizes). In prac-
tice, the experimental data shows that most of the throughputs
(3σ band) fall within the 2–4 Mbps range for the specific case
of Google Drive, so 5 Mbps is an optimistic value. Waiting time
is calculated simply as filesize (multiplied by 8 for bits) divided
by throughput (in bps). The fixed throughput helps focus on the
effect from other parameters. For example, because of the fixed
throughput, waiting time is directly related to the traffic volume
produced by each method.

The real trace is handled in the following form. The 2,500 files
in the trace form about 50% of the entire filesystem in cloud drive
(the above experiment). Most of these files were generated auto-
matically by running simulators, or processing data in research
projects but some (like office) were handled manually. Files are
strictly growing in size. The only parameter in analysis is the
ratio of files, where a given value is used to selected a random
subset of the real files in the trace. The range of the analysis is
therefore between 5% and 50% of the entire filesystem that ex-
isted during the experiment (Sections 2 and 5). Actual diffs for
each selected file are then replayed as they were recorded in the
trace by the Probe.

The synthetic trace is handled in the following form. First, it
offers a richer set of conditions and therefore has more parame-
ters. One parameter is a set of combinations of the magnitude and
variance parameters used to generate the hotspot distribution that
defines all the filesizes. The other parameter is the relative size of
diffs, which can be between 5% and 15% of the initial filesize of
a hot item. Each file then experiences a set of increments (of each
individual diff size) until filesize reaches the value in the flash

set. Each file is replayed separately with waiting time readings
collected for each diffs. All hotspot distributions have 100 items
in its sets.

Both real and synthetic simulations were conducted until 100
samples were collected for each combination of the respective pa-
rameters. These 100 samples are viewed as averages and variance
(3σ) band when discussing the results.

8. Analysis Results

This section discusses analysis results. The analysis itself fol-
lows the setup expalained in the previous section. Same as pre-
viously in this paper, the discussion of performance is cleanly
separated into real and synthetic parts. The merit/demerit of the
real part is that the performance is derivied from real-life data
but fails to cover a sufficiently wide range of configurations. The
merit/demerit of the syntheric part is the opposite – the widest
possible range of configurations is tested but it is hard to connect

Fig. 8 Real (top) versus synthetic (bottom) results. 3σ variance bands are
shown for each bullet. Vertical scales use log of base 10.

each configuration to a real situation. Both parts should be viewed
together when forming the overall judgement about the DiffHub

technology and its advantages over the Traditional design.
Figure 8 shows the performance for real (upper) and synthetic

(lower) traces. As was explained above, the viewpoints for each
plot are different. The upper plot views waiting time against
the ratio of updated files while the lower plot sees how a given
hotspot distribution affects performance in both the compared de-
signs.

The real performance is as follows. Most real diffs (upper plot)
are small, on average 2.5 orders of magnitude smaller than the
respective filesize, meaning that the waiting time can be reduced
by over 2 orders of magnitude. Note that the small diffs are pos-
sibly due to the specifics of this particular trace where the diffs
were produced from autosaves of source code or relatively fre-
quent saves in office applications. Performance of binary diff in
respect to small versus large and text versus binary files was dis-
cusses earlier in this section based on the experimental data. This
same effect is reflected here – majority of the diffs are small, with
only a few really large updates (see the above section for specific
numbers).

Each bullet in the upper plot in Fig. 8 shows the 3σ variance
band which makes it possible to judge how scattered is each ag-
gregation of values. Indirectly, large variance can be linked to
low reliability of a given level of performance.

Let us review the upper plot in the left-to-right order. When the
number (ratio) of files is small, we can see that syncs can propa-

c© 2015 Information Processing Society of Japan 690

Journal of Information Processing Vol.23 No.5 683–692 (Sep. 2015)

gate very quickly – and reliably (small variance) in the DiffHub
while traditional syncs can cause a wide range of waiting times
(high variance). This reveals the smoothing effect of binary diffs
where diffs can be small even for large files. In fact, diff size but
definition is not related to the total file size but is derivied only
from the size of the updated portion. When only few files are up-
dated, performance of the Traditional design is widely scattered
because large files are rare and may not be found in every batch.
This does not affect DiffHub performance because diffs are small
even for most large files.

With increasing ratio (a richer mixture of files), the variance
decreases while the average waiting time increases. Interestingly,
the variance for the DiffHub model is highest for the mid-range of
the ratio (around 15–25% of the total filesystem). This is because
large diffs in the trace are even rarer that large files and reveal
themselves at a higher ratio. This artifact has a practical value.
Traditional design can expect wide fluctuations in performance
even when the ratio of files is small, while for the DiffHub design
such a point occurs at much higher ratios.

An interesting practical reading of the upper plot in Fig. 8 is
that it takes, on average, under 10 s for the DiffHub to transfer
all the diffs, while the Traditional method would take 1,000 s to
complete its sync.

Performance based on the synthetic traces is much richer (bot-
tom plot of Fig. 8) due to the wide range of hotspot distributions.
The hotspot configuration is listed on the horizontal scale in form
of pairs of values. The plot has a slightly cyclic view because
hotspot setup changes in two loops – magnitude forms the outer
loop and variance the inner. Note that changing diff ratio has no
effect on the traditional model which is why it is represented as
the single curve.

The best performance is registered at the x = 1, 7 point. This
condition is the combination of low magnitude and high variance
in filesize. The worst performance is at x = 7, 5 point where
both magnitude and variance are in mid-range. This later set con-
tains a small number of very large files (not much variance be-
tween them) which cause larger syncs on average. The entire set
for magnitude set to 10 shows reliably poor performance (but the
same relative performance) simply because all such distributions
have very large files.

Note that hotspot distributions cannot be classified using sim-
ple characteristics like heavy or light easily. Even with the two
parameters in the figure, the horizontal scale is not presented in
an increasing/decreasing or even cyclic form. Instead, the hori-
zontal scale should be viewed as a range of conditions to which
each design is subjected.

The overall trends in the synthetic performance are as fol-
lows. Both magnitude and variance affect performance. How-
ever, while growing magnitude reliably correlates to longer wait-
ing time, higher variance can both decrease and increase waiting
time due to random combinations of filesize in the respective sets.
For example, values 5 and 7 for variance often cause opposing
fluctuation in performance.

The practical reading from the bottom plot of Fig. 8 is that it
takes between 50 s and 500 s for the Traditional method to com-
plete it syncs while the DiffHub can accomplish the same job in

between 5 s and 50 s. The difference is about one order of mag-
nitude for the entire range of conditions. Note that this is an op-
timistic outcome given that the real traces above showed the gap
of 2 orders of magnitude. Even if these two outcomes can be
considered as opposite extremes, the DiffHub can be expected to
peform between 1 and 2 orders of magnitude better in any setting.

Note that, while the above plots show that the trends in waiting
time performance heavily correlate between the traditional and
DiffHub models, the relation is not direct and is mostly smoothed
out by the log scales in the plots. Traditional model causes mul-
tiple transfers of the entire bulk of the filesize while the DiffHub
model exchanges much smaller diffs.

The main target of the analysis – visualize performance bounds
for the waiting time – is fully achieved. Analysis based on real
traces shows that waiting time under DiffHub can be reduced
from several hundreds of seconds to under 10 s, on average. Syn-
thetic traces show that in the extreme cases, DiffHub can reduce
waiting time on average by close to one order of magnitude and
depends weakly on the ratio of diffs to the size of individual files.

9. Conclusion

This paper proposed a cloud sync technology called DiffHub,
the core component of which is binary diff. The immediate practi-
cal problem solved by DiffHub is the long waiting time for syncs
across clients in clouds drives – where the experiments in this
paper were conducted on Google Drive. The waiting time was
reduced by 1–2 orders of magnitude, depending on conditions.

This paper performed analysis in two kinds of conditions. Real
conditions were recreated based on experimental data and showed
that waiting time can be reduced by 2 orders of magnitude on av-
erage. Synthetic traces helped create a much more diverse set of
conditions and reduced waiting time by between 1.5 and 2 orders
of magnitude.

The proposed technology was shown to exist in two practical
forms. A minor upgrade can be facilitated simply by exchanging
diffs between clients and cloud drive while retaining the old tech-
nology in the remaining design. While the same advantages are
offered by this model in terms of waiting time, the advantage here
is that version control and initiation of new clients can be done in
the traditional way.

The most advanced design referred to as DiffHub lacks com-
patibility both in version control and initiation of new clients –
both due to the fact that DiffHub does not store the entire files.
However, this paper proposed two solutions to the initiation prob-
lem. The first solution is to use version zero diffs (v0diff, the
entire file is a diff) which is relatively easy to implement in prac-
tice in a way that is compatible with the binary diff toolset. The
other method is for the new client to aggregate the initial state
from multiple existing clients using P2P methods, where recent
literature offers new P2P methods for realtime parallel content
aggregation. Although this method requires a major effort to im-
plement in practice, it offers the most benefits because waiting
time for the initiation sync would be substantially reduced.

The current version of DiffHub implements the simple v0diff
method. The current version is also an emulation where the tra-
ditional cloud drive (Google Drive) is used as is while all the

c© 2015 Information Processing Society of Japan 691

Journal of Information Processing Vol.23 No.5 683–692 (Sep. 2015)

DiffHub functionality is implemented by clients. The proposed
design remains unchanged – cloud drive is used only to store the
diffs of files while the files themselves exist only at clients. Note
that this immediately increases the capacity of the cloud drive –
based on the numbers in this paper by at least the order of mag-
nitude.

Future work will implement the DiffHub as a full cloud ser-
vice, thus, making it possible for clients to switch to a new service
rather than to have a hybrid DiffHub + cloud drive installations.
The P2P method of initiation will be looked into as a means of
providing fast syncs both for file upgrades as well as for initia-
tion. This means that this advanced form of DiffHub would offer
excellent waiting time performance for the entire set of its func-
tions.

References

[1] Nelson, M.: The Data Compression Book, Henry Holt and Co., New
York, USA (1991).

[2] Zhanikeev, M.: Multi-Source Stream Aggregation in the Cloud, Ad-
vanced Content Delivery and Streaming in the Cloud, Wiley (2014).

[3] Tridgell, A.: Efficient Algorithms for Sorting and Synchronization,
Doctor Dissertation, Australian National University (2001).

[4] Pucha, H., Kaminsky, M., Andersen, D. and Kozuch, M.: Adaptive
File Transfers for Diverse Environments, USENIX Annual Technical
Conference, pp.157–171 (Aug. 2008).

[5] rdiff: signature-based file differences for rsync (online), available from
〈http://linux.die.net/man/1/rdiff〉 (Retrieved Mar. 2015).

[6] gsync tool syncing very large files wtih Google Drive (online), avail-
able from 〈https://code.google.com/p/gsync/〉 (Retrieved Mar. 2015).

[7] s3sync tool for syncing files on S3 (online), available from
〈https://github.com/clarete/s3sync〉 (Retrieved Mar. 2015).

[8] rsync in context of iBackup cloud service (online), available from
〈https://www.ibackup.com〉 (Retrieved Mar. 2015).

[9] zsync file transfer software (online), available from
〈http://zsync.moria.org.uk/〉 (Retrieved Mar. 2015).

[10] Wood, T., Shenoy, P., Venkataramani, A. and Yousif, M.: Black-Box
and Gray-Box Strategies for Virtual Machine Migration, 4th USENIX
Symp. on Networked Systems Design and Implementation, pp.229–
242 (2007).

[11] Antonio, C., Tusa, F., Villari, M. and Puliofito, A.: Improving Virtual
Machine Migration in Federated Cloud Environments, Second Inter-
national Conference on Evolving Internet, pp.61–67 (Mar. 2010).

[12] Andreolini, M., Casolari, S., Colajanni, M. and Messori, M.: Dynamic
Load Management of Virtual Machines in a Cloud Architecture, ICST
CLOUDCOMP, pp.201–214 (2009).

[13] Dhiman, G., Marchetti, G. and Rosing, T.: vGreen: A System
for Energy Efficient Computing in Virtualized Environments, 14th
ACM/IEEE International Symposium on Low Power Electronics and
Design, pp.243–248 (2009).

[14] Xu, J. and Fortes, J.: Multi-objective Virtual Machine Placement
in Virtualized Data Center Environments, IEEE/ACM International
Conference on Green Computing and Communications (GreenCom)
jointly with Conference on Cyber, Physical and Social Computing
(CPSCom), pp.179–188 (Dec. 2010).

[15] Zhanikeev, M.: Optimizing Virtual Machine Migration for Energy-
Efficient Clouds, IEICE Trans. Communications, Vol.E97-B, No.2,
pp.450–458 (Feb. 2014).

[16] Zhanikeev, M.: Circuit Emulation for Big Data Transfers in Clouds,
Networking for Big Data, pp.359–393, CRC (2015).

[17] Voorsluys, W., Broberg, J., Venugopal, S., Buyya, R.: Cost of Vir-
tual Machine Live Migration in Clouds: A Performance Evaluation,
CloudCom, pp.254–265 (2009).

[18] Zhanikeev, M.: A Method for Extremely Scalable and Low De-
mand Live P2P Streaming based on Variable Bitrate, 1st International
Symposium on Computing and Networking (CANDAR, former ICNC)
(Dec. 2013).

[19] Zhanikeev, M.: A New Practical Design for Browsable Over-the-
Network Indexing, International Conference on Information Science,
Electronics and Electrical Engineering (ISEEE) (Apr. 2014).

[20] Zhanikeev, M.: Virtual Wireless User: A Practical Design for Paral-
lel MultiConnect Using WiFi Direct in Group Communication, 10th
International Conference on Mobile and Ubiquitous Systems: Com-
puting, Networking and Services (MobiQuitous) (Dec. 2013).

[21] Zhanikeev, M.: Opportunistic Multiconnect with P2P WiFi and Cellu-
lar Providers, Advances in Mobile Computing and Communications:
4G and Beyond, CRC (in press) (2015).

[22] Zhanikeev, M. and Tanaka, Y.: Popularity-Based Modeling of Flash
Events in Synthetic Packet Traces, IEICE Technical Report on Com-
munication Quality, Vol.112, No.288, pp.1–6 (Nov. 2012).

[23] Zhanikeev, M. and Koide, H.: YALMS: A Group Drive API for Cloud-
Based Classrooms, IEICE Technical Report on Information Network
(IN), Vol.113, No.303, pp.19–22 (Nov. 2013).

[24] The VCDIFF Generic Differencing and Compression Data Format,
RFC3284 (June 2002).

[25] XDelta: A tool for binary diffs (online), available from
〈http://xdelta.org〉 (Retrieved Dec. 2014).

[26] Google Drive (online), available from 〈http://drive.google.com〉 (Re-
trieved Dec. 2014).

[27] Docker platform (online), available from 〈https://www.docker.com〉
(Retrieved Dec. 2014).

[28] GitHub (online), available from 〈http://github.com〉 (Retrieved Dec.
2014).

Marat Zhanikeev received M.S. and
Ph.D. in Global Information and Telecom-
munications Studies from Waseda Uni-
versity in Tokyo, Japan, in 2003 and
2007, respectively. His research interests
include network measurement, network
monitoring, and network management,
but also extend to practical applications

related to these topics as well as non-traditional applications of
information technology in general. He is presently an Associate
Professor at Kyushu Institute of Technology (Kyutech), and is a
Regular Member of IPSJ.

c© 2015 Information Processing Society of Japan 692

