
Journal of Information Processing Vol.23 No.5 673–682 (Sep. 2015)

[DOI: 10.2197/ipsjjip.23.673]

Recommended Paper

Process Hiding by Virtual Machine Monitor
for Attack Avoidance

Masaya Sato1,a) Toshihiro Yamauchi1 Hideo Taniguchi1

Received: December 7, 2014, Accepted: June 5, 2015

Abstract: As attacks to computers increase, protective software is developed. However, that software is still open to
attacks by adversaries that disable its functionality. If that software is stopped or disabled, the risk of damage to the
computer increases. Protections of that software are proposed however existing approaches are insufficient or cannot
use those software without modification. To decrease the risk and to address these problems, this paper presents an
attack avoidance method that hides process from adversaries who intend to terminate essential services. The proposed
method complicates identification based on process information by dynamically replacing the information held by a
kernel with dummy information. Replacing process information makes identifying the attack target difficult because
adversaries cannot find the attack target by seeking the process information. Implementation of the proposed method
with a virtual machine monitor enhances the security of the mechanism itself. Further, by implementing the proposed
method with a virtual machine monitor, modification to operating systems is unnecessary.

Keywords: attack avoidance, process information, virtual machine

1. Introduction

Attacks to programs increasing and its prevention become im-
portant research topics. To prevent and mitigate damages from
those attacks, protective software is developed. In addition, pro-
grams that record or analyze such attacks become more important
in current situation. We call these software as essential services.
Recently, attacks for essential services to deactivate them are con-
firmed. For instance, Agobot has the functionality to stop anti-
virus software. T0rnkit and dica stop log collectors in order to
hide the malware installation process from the system administra-
tor of a target computer. The risk of damage to target computers
increases when essential services are deactivated. Therefore, it is
an important challenge to protect essential services for reducing
damage to a computer.

To prevent attacks on essential services, methods using a vir-
tual machine monitor (VMM) have been proposed [1], [2]. These
methods prevent the essential services from being affected by iso-
lating them from the target computer using virtualization tech-
nology. Research [1] reveals a method for offloading the intru-
sion detection system (IDS) from one virtual machine (VM) to
another. Moreover, Riley et al. proposed a method for malware
detection using a VMM [2]. However, these methods do not uti-
lize existing essential services and software already installed and
operational. Hsu et al. proposed a method to prevent anti-virus
software from being terminated without the consciousness of the
anti-virus software users [3]. This method monitors Windows ap-
plication program interfaces (APIs) by system service descrip-

1 Graduate School of Natural Science and Technology, Okayama Univer-
sity, Okayama 700–8530, Japan

a) sato@cs.okayama-u.ac.jp

tor table (SSDT) hooking and filter out hazardous API calls that
will terminate anti-virus software. This method is effective for
preventing anti-virus software termination using API calls. How-
ever, this method is vulnerable to SSDT patching commonly used
by rootkits because this method replaces some SSDT entries to
their handlers. For this reason, protecting the system from kernel-
level malware is a challenging problem.

To address these problems and to avoid attacks, this paper pro-
poses an attack avoidance method hiding essential services from
adversarial software. The proposed method complicates the iden-
tification of an essential service by replacing the process infor-
mation with a dummy. Specifically, this method detects con-
text switches and replaces the original process information with
dummy process information when processes for the essential ser-
vices are not running. Once the process is dispatched, the original
information is restored. The process information of the essential
service is replaced without disturbing its functionality. Adver-
saries cannot detect and identify a target for attack because the
process information of the target is replaced. For security and
adaptability, the proposed method is implemented using a VMM.
Because of its design, a VMM is more difficult to attack than an
operating system (OS). Furthermore, implementation with mod-
ification to a VMM can reduce the costs involved in modifying
existing software.

The contributions made in this paper are as follows:
• We propose an attack avoidance method complicating pro-

cess identification from adversaries. Because adversaries
identify and attack a target process using process informa-

The initial version of this paper was presented at Computer Security
Symposium 2013 (CSS 2013) in October 2013. This paper was rec-
ommended to be submitted to Journal of Information Processing (JIP)
by Program Chair of CSS 2013.

c© 2015 Information Processing Society of Japan 673

Journal of Information Processing Vol.23 No.5 673–682 (Sep. 2015)

tion, replacing the process information complicates the iden-
tification of an attack target. Our proposal is a proactive ap-
proach to attacks contrary to existing reactive countermea-
sures.

• We design a system for replacing the process information of
essential processes with a VMM. Because the proposed sys-
tem is designed with modifications to the VMM along with
an additional application program (AP) on a manager VM,
the proposed system requires no modification to OSes and
APs on a VM providing essential services.

• Evaluation results using a prototype of the proposed method
show the effectiveness of the method for attack avoidance.
Performance evaluation shows that the performance over-
head in APs is negligible.

2. Background

2.1 Attacks for Anti-Virus Software
Agobot is malware that attacks anti-virus software. Agobot in-

stalls a backdoor to Windows hosts. The malware seeks target
processes by searching out the name from the process list in or-
der to disable it. An investigation on August 8th, 2013, revealed
that Agobot included 579 targeted process names. When anti-
virus software is disabled by malware such as Agobot, the risk of
damage to the computer system increases.

T0rnkit and dica are malware for disabling a logging program.
T0rnkit is a rootkit that aims to install a backdoor for conceal-
ing their location. Its target system is Linux. When installing
programs used by t0rnkit, the malware stops the syslog daemon,
thus hiding the installation process from a system administrator.
Consequently, the system administrator cannot detect the instal-
lation or even the existence of other malware.

Some malware stops or disables software that prohibits their
activity on the computer. If essential services are stopped or dis-
abled, the risk of damage to the system increases. For this reason,
detection, prevention, moderation of damages, and avoidance of
attacks for essential services are required.

2.2 Existing Countermeasures
Research into an offloading host-based intrusion detection sys-

tem (IDS) with a VMM was proposed in VMwatcher [1]. Imple-
menting an IDS by modifying a VMM makes it difficult to attack
the IDS. In the same manner, NICKLE [2], which prevents the
execution of a kernel-level rootkit, has been proposed. Because
it monitors the execution of kernel code with a VMM, only au-
thorized code can be executed. These methods help to prevent
attacks that are difficult for existing methods without a VMM to
detect and prevent.

Protection of anti-virus software from termination, which
called ANSS, was proposed [3]. ANSS hooks system calls re-
lated to process termination and controls them if they would stop
anti-virus software. ANSS is implemented as a Windows driver
that operates in kernel mode.

2.3 Problems with Existing Methods
Existing methods cannot use essential services without modi-

fying them. Furthermore, these methods are effective only when

they are not themselves attacked. If these methods are them-
selves attacked by adversaries, a system administrator cannot uti-
lize those services to avoid the attack. The methods described in
Section 2.2 are advantageous given that attacks on a VMM are
more difficult than attacks on an OS. However, porting the func-
tions from existing software to a VMM is difficult and expensive.
The IDS offload method without modification is an effective ap-
proach. However, it is difficult to apply to general applications
because the method involves the emulation of each system call.
To completely offload the IDS, it is necessary to emulate all sys-
tem calls. However, complete emulation is difficult to implement.

Even though effective VMM-based methods have been pro-
posed, many of them cannot use existing software without modifi-
cation. Moreover, exporting existing functions used by anti-virus
software to a VMM is difficult. Further, the information collected
by existing application programs (APs) and kernels is different
from the information a VMM collects. This semantic gap makes
it difficult to port functions from existing software to a VMM.

3. Related Works

Out-of-the-VM monitoring approaches are proposed [1], [4],
[5], [6], [7], [8]. They use virtualization technology to iso-
late the monitor for security of themselves. While some re-
searches [1], [4] monitor inside the VM in a non-intrusive man-
ner, other researches [5], [7], [8] modify the memory contents of
the VM. Further, SIM approach [6] inserts an agent inside the
VM. Our approach is similar to Ether and EagleEye however our
purpose is different from them. While Ether and EagleEye pro-
vide monitoring of the VM, the proposed method monitors mem-
ory access and context switches, but these monitoring are used
for providing proactive protection of essential services inside the
VM.

Some researchers have proposed methods for preventing the
illegal alteration of memory contents [9], [10]. While these meth-
ods are indeed useful in preventing attacks, the proposed method
avoids them. Even if these methods succeed in preventing an
attack, the existence of essential services is still detectable to ad-
versaries. When adversaries detect essential services, they can
nonetheless disable them to avoid detection. Because our method
complicates process identification, adversaries will find it diffi-
cult to avoid detection by essential services hidden with the pro-
posed method. For this reason, the proposed method is a proac-
tive approach while existing methods are reactive. Because our
approach and existing methods cover different stages of attack, it
is possible to cooperate with each other.

Several researches [11], [12], [13] use VMM to provide access
control of VM. SecVisor employs a similar approach for access
control using a hypervisor [11]. While SecVisor protects kernel
codes, the proposed method focuses on the data area of the guest
kernel. HUKO [12] provides kernel integrity by access control of
kernel extensions. HUKO is similar to SecVisor from the view-
point that it uses policy based access control but employs hard-
ware assisted paging. Our system is similar to the approach found
in Sentry [13]. Sentry protects data inside the user VM by parti-
tioning the data structure of the kernel. Our method, however,
is advantageous in that it does not require any modification to

c© 2015 Information Processing Society of Japan 674

Journal of Information Processing Vol.23 No.5 673–682 (Sep. 2015)

the data structure. Modifying kernel data structures requires high
level knowledge of kernel development and thus degrades practi-
cality. No modification to kernel data structure is preferable.

ANSS [3] is effective for protecting anti-virus software from
termination. ANSS intercepts and monitors some API calls with
parameters that will stop or suspend anti-virus software to filter
out malicious calls. Even though ANSS is effective, it is vul-
nerable to malware patching SSDT entries. The paper proposing
ANSS stated working with the anti-hooking mechanism is effec-
tive. Our method is tolerant to attacks patching tables in kernel
space because the VMM restores the original process informa-
tion when essential processes are running. Moreover, our method
has possibilities to avoid unknown attacks as long as they rely on
the process information. Boeck et al. proposed protection of log
collectors [14]. This method is similar to the proposed method
from the viewpoint of the protection target. It protects a logging
daemon by providing hardware-based trust with Trusted Platform
Module and a function of AMD’s secure virtual machine (SVM)
technology. In contrast, our proposal focuses on access to the
process information. Because the process information is less de-
pendent on hardware, our proposal is more general.

These approaches are effective for protecting software on a
VM, however, some researches are weak for attacks or difficult to
implement for various services. The out-of-the-VM approach is
powerful but existing researches are reactive. The effect of reac-
tive approaches is limited. By contrast, proactive approaches have
a large impact on reduction of damage from adversaries. Some
proactive approaches are proposed but they have some problems
including problems stated in Section 2.3. For this reason, a proac-
tive approach addressing the above problems is required.

4. Attack Avoidance Method for Complication
of Process Identification

4.1 Purpose
The following explains the purposes of our research:

(1) Avoidance of attacks to essential services
(2) Use of existing software without modification.

It is difficult to handle various attacks with existing methods.
Therefore, we aim not to protect but to avoid such attacks. Even
if offloading the functionality of existing services is considerably
effective, the cost of doing so is high because of modification to
existing software. Thus, it is preferable to avoid attacks without
modifying existing software.

4.2 Basic Idea
To achieve the purposes outlined in Section 4.1, we propose

complicating process identification to avoid attacks by replacing
the process information for essential services. Because adver-
saries identify a target to attack, we propose replacing the origi-
nal process information of the target process with dummy process
information. Moreover, by implementing our method in a VMM,
the existence of our system is difficult to identify. Because of this,
an attack on the proposed method itself is difficult and unlikely.

Because a VMM is developed only for providing VMs, inter-
faces for accessing it are limited and the total amount of source
code involved is far less than in a normal OS. Thus, attacking the

Fig. 1 Access control to process information.

VMM is more difficult than attacking the OS. Moreover, imple-
menting the proposed method does not necessitate modifications
to the source code of the guest OS or its essential services. With
this feature, existing software resources are utilized efficiently.
For these reasons, we utilize a VMM with the proposed method.

The essential process provides essential services. The essen-
tial process is defined by the administrator based on importance
of its functionality. For example, damages increase when a secu-
rity software or an administration tool are stopped by adversaries.
In such case, the administrator defines the security software or the
administration tool as essential service and the process that pro-
vide the functionality of those services as essential process.

4.3 Hiding Process Information of Essential Processes
The complication of process identification consists of the fol-

lowing:
(1) Limiting access to the process information
(2) Replacing the process information

Figure 1 provides an overview of the procedure for limiting
access to the process information. With this method, the kernel
text area, which can access process information, is pre-defined.
Access to the page that includes process information is set as for-
bidden. When an access violation to that page occurs, the method
returns a dummy value when the subject is not included in the
pre-defined area. If the subject is included in the pre-defined area,
the method returns the original content. With this approach, the
original process information is invisible from adversaries because
only legitimate functions in the kernel text are permitted to access
process information.

In replacing the process information, process information for
the essential processes must first be replaced. When an essential
process is running, the original process information is restored.
The overall procedure for replacing the process information is
shown in Fig. 2. Here, we define normal processes as all pro-
cesses excluding essential processes. When a context switch from
an essential process to a normal process occurs, the method ex-
changes the original process information with a dummy. Alter-
natively, when a context switch from a normal process to an es-
sential process occurs, the method restores the original process
information. With this approach, the original process informa-
tion for the essential processes is invisible from other processes.
This method does not disturb the execution of essential processes.
The replacement of process information is described in detail in
Section 5.

c© 2015 Information Processing Society of Japan 675

Journal of Information Processing Vol.23 No.5 673–682 (Sep. 2015)

Fig. 2 Replacement of process information between essential process and
normal process.

Fig. 3 Overview of proposed system.

The advantage of replacing process information of the essen-
tial process is manageability and performance. Replacement of
the process information of essential process achieves the purpose,
however, replacing the process information of a normal process
will provide greater security. Replacement of the process infor-
mation of a normal process makes it difficult to estimate the es-
sential process from the information of a normal processes. How-
ever, it raises two problems: degradation of manageability and
performance. If process information of all processes including
essential processes and normal processes, the manager of the pro-
tection target VM cannot manage the VM. To manage the VM,
additional interfaces or other management methods are required.
Those additions have possibilities for additional vulnerabilities,
so that additions to existing OSes should be kept small. Be-
sides, replacement of the process information of a normal process
causes degradation of performance of the VM. Because the pro-
posed method replaces the process information when a context
switch occurs, replacement of process information of essential
process and normal process requires memory copy in each con-
text switch. It results in large overhead in each context switch.
For these reasons, we only replace the process information of es-
sential process.

4.4 Structure of the Proposed System
The overview of the proposed system is shown in Fig. 3. The

proposed system consists of a process information manager, re-
placing process information and controlling access to process in-
formation. The process information manager monitors context
switches in the target VM. The process information manager ex-

changes essential process information with dummy information,
and in legitimate case, restores the original. The original process
information in the VM is copied to an area allocated in the VMM.
The area is allocated and managed by the VMM for each VM. A
variety of dummy process information is prepared in advance and
the system determines what information is paired with each pro-
cess when a context switch occurs.

With the proposed system, the security administrator desig-
nates the essential process. However, the administrator cannot
distinguish which process is the essential process because the pro-
cess information of that process is hidden from the administra-
tor. Therefore, the administrator must determine which program
should be treated as an essential process before it starts, and notify
the information of that process to the administrator of the Man-
ager VM. The administrator of the Manager VM designates to the
process information manager which process is the essential pro-
cess. In the proposed system, the Control AP designates which
process is an essential process. Thus, a security administrator re-
sponsible for the protection of the target VM must communicate
to the VMM manager in advance which processes are essential.

4.5 Potential Attacks
Adversaries can stop or disable essential processes if they de-

tect the existence of the proposed system and identifying the es-
sential process. Thus, it is necessary to make it difficult for adver-
saries to judge whether a process is an essential process or not.
4.5.1 Measurement of Context Switch Times

Adversaries can identify an essential process by comparing the
processing time of the context switch between an essential pro-
cess and a normal process. With the proposed system, the pro-
cess information of the essential process is replaced. Thus, the
time for essential process context switches is longer than with a
normal process. Given this difference, adversaries can identify
which process is an essential one.

To conceal the difference in the processing times of context
switches, it might suffice to apply the same processing time to
normal processes. This done, the difference in the processing
times of context switches between the essential processes and the
others becomes meaningless. However, the performance of the
entire system degrades.

As an alternative, a time controlling function is effective. This
function is used in malware analysis. Some malware detect the
presence of debuggers by measuring the processing time and re-
spond by changing their behavior to avoid analysis. To prevent
this from happening, a time controlling function is proposed. This
function stops the virtual CPUs allocated for malware. When the
CPU is stopped, the debugger analyzes malware and resumes the
CPUs when the analysis is complete. This function enables us to
evade the detection of the proposed system by adversaries.
4.5.2 Continuous Monitoring of Process Information

Adversaries can identify the essential process by continuously
monitoring the process information for each process to determine
whether the process information has changed during a context
switch. If a process is an essential process, its process informa-
tion is replaced during a context switch whereas the process in-
formation for a normal process is remains unchanged. Therefore,

c© 2015 Information Processing Society of Japan 676

Journal of Information Processing Vol.23 No.5 673–682 (Sep. 2015)

Fig. 4 Determination procedure for access to process information.

if part of the process information has changed, even though given
a normal context switch it would not, adversaries can identify that
process as an essential process.

To prevent detection by continuous monitoring of process in-
formation, a combination of access control and process informa-
tion replacement is effective. Here, we assume an adversary who
continuously monitors process information with a loadable kernel
module in Linux. At first, the VMM forbids read access to areas
containing process information from kernel codes. This is done
to prepare for avoiding attacks. The area containing kernel code
without kernel modules must be pre-defined. In this situation, if
an access violation to the designated area occurs, the VMM de-
termines whether the access is acceptable or not by following the
procedure shown in Fig. 4. If an instruction pointer is out of range
from the designated area, the VMM returns the dummy value to
the guest. If not, the VMM traces back the kernel stack and col-
lects the virtual addresses of each function. If all the addresses
are contained within the designated area, the VMM permits the
read access and returns an original value. If not, the VMM returns
the dummy value.

The VMM permits read access by disabling read protection of
the area. However, once the protection is disabled, adversaries
also can read the area. Thus, the proposed system set the trap flag
at same time to cause VM exit at the next instruction. If the trap
flag is set, debug exception occurs in every instruction. After the
debug exception is occurred at the next instruction, the proposed
system enables the protection again and set the trap flag off. With
this procedure, the proposed system can limit access to the area
from instructions out of range from the designated area.

Because this access control model depends on an integrity of
the guest kernel, an attack patches a kernel text must be con-
sidered. DKSM attack is one of an attack patching kernel text
area [15]. To patch kernel text area, manipulation of CR0 is re-
quired. Because kernel text area is write protected ordinarily,
adversaries manipulate CR0 to remove write protect of kernel
text area. In fully virtualized environment with VT-x, access to
control registers causes VM exit. Therefore, the VMM can de-
tect patching of kernel text area by monitoring access to CR0.
This monitoring ensures kernel code integrity and functionality
of above access control model.

With this procedure, even if adversaries continuously monitor-
ing process information, identifying an essential process is im-
possible.
4.5.3 Random Process Termination

If an adversary terminates processes at random, essential pro-
cesses potentially stop. Because this attack do not require process
identification, complication of process identification is ineffec-
tive.

Although this type of attack is diverge from our purpose, the
proposed system can mitigate the damage caused by the attack
by launching a decoy. If adversaries already know that the pro-
posed system is installed on a computer, which is a target of
them, and no essential process is found on that computer, they
are likely to terminate processes randomly to terminate essential
processes. However, if decoy process is exist in the target VM,
adversaries found that the process as their attack target and termi-
nate it. Though the process is terminated, its effect is small and
the termination of essential processes is avoided.

There are two methods for launching decoy: making a pro-
cess, which have less effect for the VM, as decoy or preparing
special processes for decoy. Making a process for decoy requires
choice which process is less important for the VM. Because it
requires high-level knowledge for the task of each process, it is
hard to choose the decoy process. In contrast, preparing a special
process for decoy is easy to introduce. By swapping the process
information of the essential process and the decoy, adversaries
misunderstand the decoy as an essential process. Hence the de-
coy is supposed to be terminated, the effect by termination must
be kept small. Making a process as decoy have effects for the VM
but preparing special processes have less effect. One problem for
preparing special processes for decoy is that it requires coopera-
tion among the manager of the target VM and the manger of the
VMM. However, the proposed system assumes that the manger
of the VM designates the essential process by informing it to the
manager of the VMM, the cooperation is not a critical issue. For
this reason, preparing special processes for decoy is easy to in-
troduce and have less effect for the VM than making a process as
decoy.

4.6 Limitations
As stated in Section 4.5.3, it is possible that an essential pro-

cess will be stopped by random process termination. To prevent
attacks on essential processes, regulating access control to pro-
cess information is effective. However, attack prevention diverges
from our stated purpose. Thus, we do not discuss strategies in at-
tack prevention. As stated in Section 4.5.3, the proposed system
can be used for mitigation of damages caused by random process
termination.

Because the proposed method replaces the legitimate process
information of an essential process with dummy information, a
security administrator tasked with protecting the target VM can-
not control the essential process. This is inconvenient for the ad-
ministrator. We assume that the essential process is a kind of
resident programs. Thus, the scope for the application of the
proposed method is restricted to resident programs. We do not
assume this method will feasibly apply to other programs. To

c© 2015 Information Processing Society of Japan 677

Journal of Information Processing Vol.23 No.5 673–682 (Sep. 2015)

do so, an additional interface would be needed for the security
administrator to communicate with the process information man-
ager. However, this addition would expose vulnerabilities. Thus,
we do not consider implementing any additional communication
interface to the VMM.

5. Replacement Method of Process Informa-
tion

5.1 Replacement Target
5.1.1 Definition of Process Information

Assuming Linux for x86 or x64, we defined the following as
process information:
(1) Process control block
(2) Kernel stack
(3) Hardware context
(4) Page tables
(5) Memory used by a process

Hiding all of the above information is necessary to make the
process completely invisible. However, identifying a process
from (3), (4), and (5) is considerably difficult. On the other hand,
(1) and (2) include especially helpful information for process
identification. For these reasons, we treat (1) and (2) as process
information.

The following describes the process information in detail:
Process control block (task struct)

The process control block contains information that is effec-
tive for process identification including the PID (Process ID), the
TGID (Thread Group ID), the executable file name, and the PID
of the parent process. In Linux, the process control block is given
as task struct structure, and it is generated for each process or
thread.
Kernel stack and thread info structure

Both the kernel stack and thread info structure are allocated
in a union, named thread union. A thread union is allocated for
each task struct. A kernel stack contains the address, arguments,
and return value of functions called in the kernel space. The
thread union and task struct are linked to one another.
5.1.2 Replacement Target

The process information defined above includes information
used with a kernel when a process is not running. For example,
a kernel schedules processes or delivers signals by reference to
the process information for each process. For this reason, process
scheduling and signal delivery would be obstructed were all pro-
cess information replaced. Thus, two policies are considered for
replacing process information.
Policy (1) Replace as much process information as possible,

with the exception of information used by a kernel while the
process is not dispatched.

Policy (2) Replace only information helpful to adversaries for
identifying processes.

When replacing process information under Policy (1), pro-
cesses are more difficult to identify than under Policy (2). How-
ever, replacement under Policy (1) requires many more replace-
ment copies leading to overall performance degradation. Re-
placement under Policy (2) results in less overhead than Policy
(1). However, the strategy suggested under Policy (2) requires

that we survey what information is used by malware for identify-
ing the attack target.

Understood merely as a countermeasure to adversarial attack,
replacement under Policy (1) is preferable. However, practical
utility requires the efficient suppression of any superfluous per-
formance overhead. Therefore, in this paper, we employ Policy
(2) for a replacement strategy.
5.1.3 Information Used for Process Identification

We turn now to a discussion of the information used by mal-
ware to identify an attack target process. Agobot, developed for
Windows, searches the name of a program from a process list in
a target computer. If a name matches an entry in the list, Agobot
issues the TerminateProcess() function to stop the process and
all threads within the process. Dica, developed for Linux, stops
syslogd with the killall command. The killall command acquires
the process PID to suspend processes by searching the name of
the attack target from the proc filesystem. After acquisition, the
command invokes a kill system call to stop the process.

Whereas it is not uncommon to find malware that stop pro-
cesses, many of these programs discern the target process with
the name of the program. Therefore, it is effective to replace the
process name as well.
5.1.4 Adequate Dummy Information

To hide the existence of essential processes, dummy informa-
tion should be chosen properly. For instance, to hide a process,
the process name should be replaced with the name of a common
program, running on common servers. If the name of an essential
process is replaced with a common name, it will be more difficult
for adversaries to detect the existence of the essential process.
Additionally, the name should be chosen randomly. It would be
easy to detect the existence of the proposed method when the
dummy information always the same.

5.2 Trigger for Replacement of Process Information
To replace the process information, it is necessary to determine

whether or not a process-switch from and a process-switch to are
replacement targets. For this mechanism, the detection of context
switches in a VM from a VMM is required.

In fully virtualized environments, a guest OS works in VMX
non-root mode and a VMM works in VMX root mode. Some
instructions in non-root mode cause a VM exit and the process-
ing is switched to the software running in the VMX root mode.
Instructions not permitted in VMX non-root mode contain write
to CR3 register. In an OS supporting multiple virtual address
spaces, write to CR3 occurs when context switching to change ad-
dress space because CR3 contains a beginning address of a page
directory. Therefore, a context switch in a VM can be detected
by monitoring VM exits caused by writes to CR3.

5.3 Acquisition of Process Information in Guest OS
5.3.1 Acquisition of Process Information of Current Process

As shown in Fig. 5, thread info and task struct can be acquired
by calculating the address from the RSP register with the VMM.
Because the beginning address of a thread info can be calculated
from the RSP register and a task member of the thread info indi-
cates the beginning address of a task struct, the VMM can acquire

c© 2015 Information Processing Society of Japan 678

Journal of Information Processing Vol.23 No.5 673–682 (Sep. 2015)

Fig. 5 Relation between thread union and task struct.

Table 1 Pros and cons of next-process identification methods.

Methods Pros Cons

Scanning
method

Ease of implementation Large performance
overhead

List-based
method

Performance overhead
is small.

Total amount of mem-
ory usage increases.

Trigger-
insertion method

Performance overhead
is small.

Number of triggers is
limited.

the process information in a guest OS from the RSP register. In
this regard, the VMM must hold the definitions for each structure
beforehand.
5.3.2 Acquisition of Next-Process Information

The method for acquiring the process information stated above
is not effective for any processes set to run next (i.e., for the next-
process). Therefore, another method is needed. What is about
to be written to the CR3 register is usable information for the
acquisition of process information concerning the next-process.
Considering this, there are three methods for identifying the next-
process to acquire its process information.
• Scanning method: this method scans the process list of the

protection target VM to determine the next process.
• List-based method: With this method, the VMM holds a list,

containing the CR3 value and the address of the task struct
for each essential process. This method searches the value
for what is going to be written to the CR3 register to identify
the next-process.

• Trigger-insertion method: This method inserts a trigger,
switching execution from the protection target VM to the
VMM, in the kernel of the protection target VM for the
identification of the next-process. For example, inserting
the INT3 instruction in the kernel memory area is effective.
The trigger must be inserted in the place where the proposed
system can acquire the process information concerning the
next-process.

The advantages and limitations for each method are shown in
Table 1. The scanning method is easy to implement because it
requires only a lookup of the next process from the process list of
the protection target VM. However, this method creates debilitat-
ing performance overhead because the method scans the process
list after each context switch on the protection target VM. By
contrast, the list-based method and the trigger insertion method
do not require significant performance overhead. The list-based
method uses a VM exit, which occurs unconditionally in a fully
virtualized environment. Because unnecessary VM exits do not

occur using the list-based method, performance overhead is min-
imal in above three methods. With the trigger-insertion method,
unnecessary VM exits occur.

Thus, from a viewpoint of performance, the list-based method
is considered best. Even though the list-based method is disad-
vantageous in terms of amount of memory usage, it can be esti-
mated as sufficiently small. The amount of memory used by the
list-based method can be estimated as under 100 bytes given that
an entry in the list created by the method averages at nearly 10
bytes. Memory used by Xen [16] one of the more popular VMM
is about 182 megabytes. The amount of memory used by the
list-based method is therefore sufficiently small relative to Xen.
One disadvantage to the trigger-insertion method is the limitation
to the number of triggers. The use of debug registers and the
insertion of the INT3 instruction are pertinent triggers with the
method. Using debug registers is faster than inserting INT3 in-
struction. However, the number of debug registers is limited. For
these reasons, we employ the list-based method.

5.4 Designation of Essential Process
The proposed system requires the Control AP to designate

the essential processes prior to replace their process information.
Due to the structure of the proposed system, it is necessary for
the administrator of the protection target VM to provide the es-
sential process information to the administrator of the manager
VM via e-mail, or by other means. The proposed system does
not provide a notification mechanism because additional inter-
faces to the VMM must be kept at a minimum. Such additions
of the VMM interface risk exposing it to vulnerabilities. Before
the program initiates, the administrator for the protection target
VM must provide ether the full path of the essential process’s
executable file or a command name. The administrator of the
manager VM takes that information and provides it in the pro-
cess information manager. The exchange is implemented with an
event channel a mechanism for VMs to communicate with a Xen
hypervisor. When the process information manager receives the
information, it can monitor the name of the process running on
the protection target VM. If it detects that the process with the
designated name is scheduled, the process information manager
replaces the process information of that process on the protection
target VM. Because the procedure for designating essential pro-
cesses is conducted as described above, the information must be
exchanged before the essential process initializes on the protec-
tion target VM.

5.5 Handling Multi-Core Processors
We shall here assume an environment with multi-core proces-

sors. When an essential process is running on one CPU core,
other processes might be running simultaneously on the other
CPU cores if multiple CPU cores are allocated to a VM. In this
situation, a process running on one CPU core is able to refer to
the process information of essential processes running on other
CPU cores because the original process information is restored
when the process is dispatched.

To address this problem, we prohibit running normal processes
while essential processes are running. This is accomplished by

c© 2015 Information Processing Society of Japan 679

Journal of Information Processing Vol.23 No.5 673–682 (Sep. 2015)

suspending all virtual CPUs except the virtual CPU used by an
essential process. Therefore, any reference to essential process
information by normal processes is restricted.

6. Evaluation

6.1 Purpose and Environment
The purpose of the evaluation is to confirm the achievement

of the purposes stated in Section 4.1 and the performance over-
heads caused by the proposed system. To confirm the avoidance
of attacks to essential services, we experimented that termination
of essential processes in the following environment. With this
experiment, we aim to check whether the proposed method can
obstruct the activity of adversaries and avoid attacks or not. Ad-
ditionally, we also checked that modification to existing software
running on the VM is required or not. Performance evaluation
with LMbench and Linux kernel compilation show the overhead
incurred by the proposed system. With the performance evalu-
ation, we demonstrate that how the proposed method affects the
performance of a basic function of OS and a real world applica-
tion.

The environment used for evaluation is shown in Table 2. All
evaluations are performed on a machine with Intel Core i7-2600
(3.40 GHz, 4-cores) and 16 GB RAM. The protection target VM
is fully virtualized by Intel VT-x. Hyper-threading and the hard-
ware assisted paging functionality are disabled. One virtual CPU
and 1 GB memory are allocated for the VM. The allocated vir-
tual CPU is pinned to a physical CPU core to avoid measurement
instability caused by physical CPU sharing. The virtual CPU for
the manager VM and the protection target VM is pinned to other
physical CPU core. The manager VM and the protection target
VM use different physical CPU core.

6.2 Attack Avoidance
To confirm the effectiveness of the proposed system, we eval-

uated difficulty of detection and resistance for termination for es-
sential services. In our experiment, we examined whether the
name of an essential process was replaced when the proposed
system was applied to the essential processes. Further, we tested
that the essential process can be terminated by killall command
or not. We assumed the killall command as a tool used by adver-
saries. The killall command searches the name of a program from
the proc filesystem to determine the PID of the attack target.

In this experiment, we examined whether or not the original
name of the essential process is listed under a ps command. These
commands refer to the same information inside a kernel. To eval-

Table 2 Environment for evaluation.

Software

VMM Xen 4.2.3
OS Manager VM: Debian 7.3 (Linux 3.2.0 64-bit)

Protection Target VM: Debian 7.3 (Linux 3.2.0 64-bit)

Hardware

CPU Intel Core i7-2600 (3.40 GHz, 4-cores)
Manager VM: 1 Virtual CPU
Protection Target VM: 1 Virtual CPU

Memory Total: 16 GB
Manager VM: 1 GB
Protection Target VM: 1 GB

uate the proposed system, we assumed syslogd as an essential
process and changed its name to apache2.

On the protection target VM, we listed the names for all pro-
cesses but the list did not contain the string “syslogd.” Instead,
apache2 was listed in its place. This result shows that the name
of the essential process was successfully changed—thus conceal-
ing it. The results also show that adversaries basing their attacks
on the process name can be avoided using the proposed system.
For instance, killall command terminates processes based on the
process name. We also test that the killall command can terminate
the essential process or not. The results of the experiment showed
that the termination with killall command failed and the essential
process continued running. As stated above, the killall command
use the name of a program. Because the name of the program
is replaced by the proposed system, killall command cannot find
the target process. The kill command with PID of the attack target
can terminate the target process. However, PID is not always the
same and search of PID requires the information what the process
it is. Because the name of a program is frequently used as key for
searching PID, we believe the proposed system is still effective
for the kill command.

This experiment showed that the protection target VM with the
proposed method can avoid some attacks that terminates essential
processes.

6.3 Performance
6.3.1 Context Switching Time in Process Information Sav-

ing
We measured performance overheads in context switches

caused by the process information saving functionality of the pro-
posed system in the protection target VM. We use LMbench
micro-benchmark version 3 for the measurement. LMbench in-
cludes measurement of contexts switching time in different num-
bers of processes with different working set sizes.

Table 3 shows the context switch times between different num-
bers of processes with different working set sizes. With the pro-
posed system, context switching time degrade because copies of
process information from the VM to the VMM is required in each
context switch. After copying of process information, the pro-
posed system replace the process information only when the pro-
cess switching from or switching to is an essential process. Thus,
context switching time also degrades when essential processes are
running in the VM.

The measurement results show that the overhead with the pro-
posed system is less than 15%. The context switching overhead
caused by copies of process information is depend on the size of
process information. Because the size of the process information
is almost the same, the overhead does not significantly change in
each case. From the results, performance degradation with in-
crease of working set size is large compared with the degradation

Table 3 Context switching times in microseconds.

of processes 2 2 2 8 8 16 16
Working set size 0K 16K 64K 16K 64K 16K 64K

Xen 25.9 40.8 44.9 39.6 42.2 38.9 39.4
Proposed system 30.0 42.6 41.0 43.5 50.4 42.5 41.7

c© 2015 Information Processing Society of Japan 680

Journal of Information Processing Vol.23 No.5 673–682 (Sep. 2015)

Table 4 Linux kernel compilation times in seconds.

Compilation time

Xen 133.0
Proposed system 131.2

with the proposed system.
Consequently, the overhead with the proposed system in con-

text switch is less than 15%. Further, it has small effect when
working set size is large.
6.3.2 Kernel Compilation

To evaluate performance overheads in APs, we measured times
of Linux kernel compilation. The version of Linux kernel used
for evaluation is Linux 3.2 and the kernel is configured with
make allnoconfig. Compilation time is measured by time
command.

Table 4 shows the measurement results. The difference of
compilation time between Xen and the proposed system is less
than 2 seconds and the compilation time with the proposed sys-
tem is faster than the time with Xen. However, maximum time
in experiments showed that the time with the proposed system is
greater than the time with Xen.

From the observation of measurements, that difference is in
an acceptable error range. Because the difference of compilation
time is less than 2%, performance degradation incurred by the
proposed system for APs is considered negligible.

6.4 Discussion
From the evaluation of attack avoidance, it is confirmed that

attacks using process name are avoided by the proposed method.
We believe that attacks using other process information are also
avoidable when the proposed method hide it. Whatever attacks
use process information for identification of the target process,
the proposed method works well.

In addition, the proposed system is implemented in the VMM
and no modification is introduced to software on the VM. Thus,
existing software can be used without modification. Further, the
proposed system replaces the process information of essential
process when a context switch between the essential process and
the essential process. This causes a little overhead to the perfor-
mance of the VM, however, no additional monitoring is required.

Performance evaluation showed that the overhead in context
switch time with the proposed method is less than 15%. Further, it
is observed that the performance degradation for APs incurred by
the proposed method is negligible. However, performance degra-
dation is depend on the processes running on the VM. If many
essential processes running on the VM, performance degradation
of essential processes and normal processes on the VM increases
because memory copy for replacement of process information is
issued frequently. For this reason, the administrator must choose
the essential process with consideration for the VM’s total perfor-
mance.

7. Conclusion

We proposed the replacement of process information for essen-
tial process with a VMM to complicate process identification by
adversaries. Because adversaries identify an attack target process

with available process information, a replacement of that process
information by our system is effective in avoiding attacks of that
kind. The proposed system is implemented by modifying the
VMM and with a Control AP on the manager VM. Modification
to guest OSes and APs on each VM is unnecessary.

An experiment using a prototype of the proposed system based
on the Xen hypervisor showed that an essential process name was
successfully replaced with a dummy name. In addition, an exper-
iment showed that process termination with the killall command
fails if the target is essential service and the proposed method is
applied to that process. Performance evaluation results showed
that the overhead incurred by the proposed system in context
switch time is less than 15%. In addition, it is confirmed that the
performance overheads in Linux kernel compilation is considered
negligible.

Future work shall include the implementation of the access
control function to the process information, evaluation with vari-
ous types of real-world malware, and extensive performance anal-
ysis of the proposed system.

Acknowledgments This work was supported by JSPS KAK-
ENHI Grant Number 13J08339.

References

[1] Jiang, X., Wang, X. and Xu, D.: Stealthy Malware Detection and
Monitoring Through VMM-based “Out-of-the-box” Semantic View
Reconstruction, ACM Trans. Inf. Syst. Secur., Vol.13, No.2, pp.12:1–
12:28 (2010).

[2] Riley, R., Jiang, X. and Xu, D.: Guest-Transparent Prevention of Ker-
nel Rootkits with VMM-Based Memory Shadowing, Proc. 11th In-
ternational Symposium on Recent Advances in Intrusion Detection,
pp.1–20 (2008).

[3] Hsu, F.-H., Wu, M.-H., Tso, C.-K., Hsu, C.-H. and Chen, C.-W.: An-
tivirus Software Shield Against Antivirus Terminators, IEEE Trans.
Inf. Forensic Secur., Vol.7, No.5, pp.1439–1447 (2012).

[4] Garfinkel, T. and Rosenblum, M.: A Virtual Machine Introspection
Based Architecture for Intrusion Detection, Proc. Network and Dis-
tributed Systems Security Symposium, pp.191–206 (2003).

[5] Dinaburg, A., Royal, P., Sharif, M. and Lee, W.: Ether: Malware Anal-
ysis via Hardware Virtualization Extensions, Proc. 15th ACM Confer-
ence on Computer and Communications Security, pp.51–62 (2008).

[6] Sharif, M.I., Lee, W., Cui, W. and Lanzi, A.: Secure in-VM Moni-
toring using Hardware Virtualization, Proc. 16th ACM Conference on
Computer and Communications Security, pp.477–487 (2009).

[7] Srinivasan, D., Wang, Z., Jiang, X. and Xu, D.: Process Out-grafting:
An Efficient “out-of-VM” Approach for Fine-grained Process Execu-
tion Monitoring, Proc. 18th ACM Conference on Computer and Com-
munications Security, pp.363–374 (2011).

[8] Wu, Y.-S., Sun, P.-K., Huang, C.-C., Lu, S.-J., Lai, S.-F. and Chen, Y.-
Y.: EagleEye: Towards mandatory security monitoring in virtualized
datacenter environment, 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pp.1–12 (2013).

[9] Dewan, P., Durham, D., Khosravi, H., Long, M. and Nagabhushan, G.:
A hypervisor-based system for protecting software runtime memory
and persistent storage, Proc. 2008 Spring Simulation Multiconference,
pp.828–835 (2008).

[10] McCune, J., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V. and Perrig,
A.: TrustVisor: Efficient TCB Reduction and Attestation, Proc. 2010
IEEE Symposium on Security and Privacy, pp.143–158 (2010).

[11] Seshadri, A., Luk, M., Qu, N. and Perrig, A.: SecVisor: A tiny hyper-
visor to provide lifetime kernel code integrity for commodity OSes,
SIGOPS Oper. Syst. Rev., Vol.41, No.6, pp.335–350 (2007).

[12] Xiong, X., Tian, D. and Liu, P.: Practical Protection of Kernel In-
tegrity for Commodity OS from Untrusted Extensions, Proc. Network
and Distributed Systems Security Symposium (2011).

[13] Srivastava, A. and Giffin, J.: Efficient Protection of Kernel Data Struc-
tures via Object Partitioning, Proc. 28th Annual Computer Security
Applications Conference, pp.429–438 (2012).

[14] Boeck, B., Huemer, D. and Tjoa, A.M.: Towards More Trustable Log
Files for Digital Forensics by Means of “Trusted Computing”, Inter-
national Conference on Advanced Information Networking and Appli-

c© 2015 Information Processing Society of Japan 681

Journal of Information Processing Vol.23 No.5 673–682 (Sep. 2015)

cations, pp.1020–1027 (2010).
[15] Bahram, S., Jiang, X., Wang, Z., Grace, M., Li, J., Srinivasan, D.,

Rhee, J. and Xu, D.: DKSM: Subverting Virtual Machine Introspec-
tion for Fun and Profit, 2010 29th IEEE Symposium on Reliable Dis-
tributed Systems, pp.82–91 (2010).

[16] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I. and Warfield, A.: Xen and the art of virtual-
ization, SIGOPS Oper. Syst. Rev., Vol.37, No.5, pp.164–177 (2003).

Editor’s Recommendation
The authors propose method that obscures process identifica-

tion based on process-related information without any modifica-
tion to OSes and APs. We thus expect that this paper provides
further research developments in software security.

(Program Chair of Computer Security Symposium 2013,
Isao Echizen)

Masaya Sato received his B.E., M.E. and
Ph.D. degrees from Okayama University,
Japan in 2010, 2012 and 2014, respec-
tively. In 2013 and 2014 he was a Re-
search Fellow of the Japan Society for
the Promotion of Science. He has been
an Assistant Professor of Graduate School
of Natural Science and Technology at

Okayama University. His research interests include computer se-
curity and virtualization technology. He is a member of IPSJ and
IEICE.

Toshihiro Yamauchi received his B.E.,
M.E. and Ph.D. degrees in computer sci-
ence from Kyushu University, Japan in
1998, 2000 and 2002, respectively. In
2001 he was a Research Fellow of the
Japan Society for the Promotion of Sci-
ence. In 2002 he became a Research As-
sociate in Faculty of Information Science

and Electrical Engineering at Kyushu University. He has been
serving as an Associate Professor of Graduate School of Natural
Science and Technology at Okayama University since 2005. His
research interests include operating systems and computer secu-
rity. He is a member of IPSJ, IEICE, ACM, USENIX and IEEE.

Hideo Taniguchi received a B.E. degree
in 1978, an M.E. degree in 1980 and a
Ph.D. degree in 1991, all from Kyushu
University, Fukuoka, Japan. In 1980,
he joined NTT Electrical Communica-
tion Laboratories. In 1988, he moved
to Research and Development Headquar-
ters, NTT DATA Communications Sys-

tems Corporation. He has been an Associate Professor of Com-
puter Science at Kyushu University since 1993 and a Professor of
the Faculty of Engineering at Okayama University since 2003.
His research interests include operating system, real-time pro-
cessing and distributed processing. He is the author of Operating
Systems (Shoko Publishing Co. Ltd), etc. He is a fellow of IPSJ.
He is a member of IEICE and ACM.

c© 2015 Information Processing Society of Japan 682

