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Computational Complexity of Competitive Diffusion on
(Un)weighted Graphs
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Abstract: Consider an undirected graph modeling a social network, where the vertices represent individuals, the
edges do connections among them, and weights do levels of importance of individuals. In the competitive diffusion
game, each player chooses a vertex as a seed to propagate his/her opinion, and then it spreads along the edges in the
graph. The objective of every player is to maximize the number of infected vertices. In this paper, we investigate a
problem of asking whether a pure Nash equilibrium exists in the game on unweighed and weighted graphs. We first
prove that the problem is W[1]-hard when parameterized by the number of players even for unweighted graphs. We
also show that the problem is NP-hard even for series-parallel graphs with positive integer weights, and is NP-hard
even for forests with arbitrary integer weights. We then show that the problem for forest of paths with arbitrary weights
is solvable in pseudo-polynomial time. Moreover, we prove that the problem is solvable in polynomial time for chain
graphs, cochain graphs, and threshold graphs with arbitrary integer weights.

1. Introduction
Ideas, innovations or trends spread by interactions between in-

dividuals. Social networks such as Facebook and Twitter facil-
itate their diffusion; an idea of an influential individual spreads
along the connections over a network, and a small number of
initial seeds can yield widespread infection. Since we can em-
ploy the so-called word-of-mouth effect as a tool for viral mar-
keting, analysis of the dynamics and process of the diffusion re-
ceive increasing attention in computer science. A number of pa-
pers focus on a task for a single company that wishes to adver-
tise their product through a network; they investigate a problem
of finding key individuals for maximizing the largest expected
infection based on a given stochastic model of diffusion pro-
cess ([9], [19], [20], [22]). Another active line of research stems
from a task for multiple competing companies which try to adver-
tise their products through a network, where the diffusion process
is set in a game-theoretic formulation ([1], [2], [3], [4], [5], [6],
[7], [10], [15], [16], [23], [24]).

In this paper, we focus on the latter setting, and consider the
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one introduced by Alon et al. [1]. In their setting, a network is
modeled by an unweighted graph, and each of a given number of
competing companies chooses a vertex in the graph as a seed of
their advertisement. Then their advertisements deterministically
spread along the edges of a graph so that every infected vertex
adopts its neighbors in a discrete time step. The objective of ev-
ery player is to maximize the number of infected vertices. (The
precise definition of the game is given in Section 2.) Alon et al.
call the game competitive diffusion game, and show that there ex-
ists an unweighted graph of diameter three that does not admit a
Nash equilibrium for two players. Following the paper [1], sev-
eral results are known for the competitive diffusion game. Take-
hara et al. provided an unweighted graph G of diameter two that
does not admit a Nash equilibrium for two players [24]. Small
and Mason considered the case where a social network has a tree
structure, and show that any tree admits a Nash equilibrium for
two players [23]. More recently, Bulteau et al. consider certain
graph classes including paths, cycles and grid graphs; in particu-
lar, they prove that there is no Nash equilibrium for three players
on m × n grids with min{m, n} ≥ 5 [6].

We generalize the game to weighted graphs, where a weight on
a vertex represents a level of importance of an individual; nega-
tive weights are admitted to express very demanding customers.
We then focus on a problem Competitive Diffusion of deciding
whether, given the number k, a graph G and weight function w,
the competitive diffusion game on G with w for k players has a
Nash equilibrium.

We establish solid complexity foundation of Competitive Dif-
fusion with regard to graph classes. Since there are a number
of theoretical models of social networks, and some of them are
directly related to restricted graph classes (such as random trees
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Fig. 1 Example of competitive diffusion with k = 3 players. (a) The graph G and weight w; numbers
in the gray squares are weights. (b) p1, p2 and p3 choose v1, v7 and v9 in G, respectively; thus a
strategy profile ~s = (v1, v7, v9). (c) Each player dominates the neighbor. (d) The game ends; the
two gray vertices are neutral. Consequently, U1(~s) = 2,U2(~s) = 3 and U3(~s) = 1.

Fig. 2 The vertex v3 becomes neutral at time 2, and consequently, p3 dominates v4 at time 7.

with scale free properties [8]), our results give useful tools for
obtaining algorithmic results on such models.

Our contributions are twofold. On the one hand, we provide
the following three hardness results:
(i) Competitive Diffusion is W[1]-hard when parameterized

by the number of players even for unweighted graphs;
(ii) Competitive Diffusion is NP-complete even for series-

parallel graphs with positive integer weights;
(iii) Competitive Diffusion is NP-complete even for forests

with arbitrary integer weights.
Very recently, Etesami and Basar studied unweighted version of
the problem, and showed that Competitive Diffusion is a NP-
complete problem [12], but their result does not imply ours. On
the other hand, we obtain the following two algorithmic results.
(iv) For forests of paths, we prove that Competitive Diffusion is

solvable in pseudo-polynomial time. In particular, we give a
quadratic-time algorithm for forests of unweighted paths;

(v) For chain graphs, cochain graphs, and threshold graphs
with arbitrary integer weights, we show that Competitive
Diffusion is solvable in polynomial time.

Note that, while four years past after Alon et al. introduced
the competitive diffusion game, no nontrivial algorithm for the
k-player game is known, even for unweighted trees with k ≥ 3.
Our research breaks this situation, and provides a new landscape
of the computational aspect of the game.

The rest of the paper is organized as follows. In Section 2, we
formally define the competitive diffusion game and the problem
Competitive Diffusion. In Section 3, we present our hardness re-
sults for Competitive Diffusion. In Section 4, we give algorithms
for forests of paths. In Section 5, we provide an algorithm for
chain, cochain, and threshold graphs.

2. Preliminaries
We model a network as an undirected graph G = (V, E), where

the vertex set V represents individuals in the network, and the
edge set E does the connections among them. The weight func-

tion w : V → Z represents a level of importance of each individ-
ual. For a positive integer k, we define [k] = {1, 2, . . . , k}, and call
the k players p1, p2, . . . , pk.

The competitive diffusion game (k,G, w) proceeds as follows
(see Fig. 1(a)–(d) for an explicit example). At time one, each
player chooses a vertex in V; suppose a player pi, i ∈ [k], chooses
a vertex v ∈ V . If any other player p j, i , j, does not choose the
vertex v, then pi dominates v; and otherwise (that is, if there exists
a player p j, i , j, who chooses v), v becomes a neutral vertex.
In the subsequent time steps, no player can dominate the neutral
vertex. For each time t, t ≥ 2, a vertex v ∈ V is dominated by a
player pi at time t if (i) v is neither neutral nor dominated by any
player by time (t − 1), and (ii) v has a neighbor dominated by pi,
but does not have a neighbor dominated by any player p j, i , j.
If v satisfies (i) and there are two or more players who dominate
neighbors of v, then v becomes a neutral vertex at time t. The
game ends when no player can dominate a vertex any more.

We note that the notion of a neutral vertex plays important role
in the game; it sometimes gives critical effect on the result. (See
Fig 2.) This contrasts to a similar game, called Voronoi game,
where a player can dominate all the nearest vertices; if there is a
vertex whose distances to seeds of two or more players tie, then
they do not dominate but share the vertex [11], [13], [21], [25].

Let ~s = (s(1), s(2), . . . , s(k)) ∈ Vk be the vector of vertices which
the players choose at the beginning of the game. We call ~s a strat-
egy profile. For every i ∈ [k], we define a utility Ui(~s) of pi for
~s as the sum of the weights of the vertices which pi dominates at
the end. (See Fig. 1(d).)

For an index i ∈ [k], we define (~s−i, v
′) as a strategy profile such

that pi chooses v′ instead of s(i), but any other player p j, i , j,
chooses s( j): (~s−i, v

′) = (s(1), s(2), . . . , s(i−1), v′, s(i+1), . . . , s(k)). For
simplicity, we write Ui(~s−i, v

′) for Ui((~s−i, v
′)). Then, if ~s satisfies

Ui(~s−i, v
′) ≤ Ui(~s) for every i ∈ [k] and every v′ ∈ V , we say

that ~s is a (pure) Nash equilibrium. The strategy profile given in
Fig. 1(b) is, in fact, a Nash equilibrium. We define Competitive
Diffusion as the problem of deciding whether (k,G, w) has a Nash
equilibrium.
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Fig. 3 Unweighted graph G′. (a) Graph A. (b) Graph B; the black vertices originate from G, and compose
V .

3. Hardness Results on Competitive Diffusion
In this section, we observe computational complexity of Com-

petitive Diffusion. Our first hardness result is the following the-
orem.
Theorem 1. Competitive Diffusion is W[1]-hard even for un-
weighted graphs when parameterized by the number of players.

To prove the theorem, we construct a reduction from a well-
known W[1]-hard problem, Independent Set [14]. Given a graph
G = (V, E) and a positive integer k, Independent Set asks whether
there exists an independent set I of size at least k, where a set I
(⊆ V) is called an independent set if there is no pair of vertices
u, v ∈ I such that (u, v) ∈ E.

Below we provide the desired reduction and a proof overview.

Proof idea. We construct a graph G′ = (V ′, E′) such that
G = (V, E) has an independent set I of size |I| ≥ k if and only if
(k + 3,G′, w′) has a pure Nash equilibrium, where w′ : V ′ → {1}.

Construction of G′.
Let n = |V |, and dv be the degree of v for every v ∈ V . The

graph G′ consists of two connected components A = (VA, EA)
and B = (VB, EB).

We obtain the component A as follows (see Fig. 3(a)). We con-
struct a path of four vertices a1, a2, a3, a4; and make 2n vertices
a′1, a

′
2, . . . , a

′
n and a′′1 , a

′′
2 , . . . , a

′′
n . Then we connect the terminal

a1 to a′1, a
′
2, . . . , a

′
n, and connect the terminal a4 to a′′1 , a

′′
2 , . . . , a

′′
n .

We obtain the component B from the original graph G as follows
(see Fig. 3(b)). For every edge e = (u, v) ∈ E, we add a vertex
be subdividing e. Then, for each v ∈ V , we introduce a set Dv of
n − dv vertices, and connect v to every u ∈ Dv. Lastly we make
a vertex b and λ vertices b1, b2, . . . , bλ, where λ is a sufficiently
large number satisfying λ = Θ(n3), and connect b to every v ∈ V ,
and connect b to b1, b2, . . . , bλ. Thus, we have V ′ = VA ∪ VB and
E′ = EA ∪ EB.

Consider the game (k + 3,G′, w′). We can easily observe that

any Nash equilibrium includes a strategy of a single player choos-
ing the vertex b, since the strategy always give the maximum
utility. Consequently, we can show that exactly two players can
choose vertices other than the ones in the original graph G to
hold a Nash equilibrium; otherwise, some player has extremely
low utility (that is, below two) due to the player choosing b. In
fact, we can show that any Nash equilibrium includes strategies
of the two players choosing the vertex a2 and a3. Then the ex-
istence of a Nash equilibrium depends on whether there exists a
strategy profile such that the other k players choose vertices com-
posing an independent set: If the strategy profile of the other k
players does not compose an independent set, then one of the k
player obtains the utility less than n + 1; but the player can obtain
the utility exactly n + 1 by changing its strategy to a1 or a4. �

For the cases where weights can be nonnegative or arbitrary
integers, we can obtain the following stronger hardness results.
Theorem 2. Competitive Diffusion is NP-complete even for
series-parallel graphs with nonnegative integer weights.
Theorem 3. Competitive Diffusion is NP-complete even for
forests of two components with integer weights.

The proofs for Theorems 2 and 3 are similar to the one for
Theorem 1, but we use other tricks by means of a neutral vertex
together with positive and negative weights; we omit them due to
the page limitation.

4. Algorithms for Forests of Paths
In the last section, we have shown that Competitive Diffu-

sion is basically a computational hard problem. However, we
can solve the problem for some particular graph classes. In Sec-
tion 4.1, we give a pseudo-polynomial-time algorithm to solve
Competitive Diffusion for forests of weighted paths; as its con-
sequence, we show that the problem is solvable in polynomial
time for forest of unweighted paths. In Section 4.2, we improve
the running time of our algorithm to quadratic for the unweighted
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case.

4.1 Forests of weighted paths
Let F be a forest consisting of weighted m paths

P1, P2, . . . , Pm, and let W j be the sum of the positive weights in a
path P j, j ∈ [m]. Then, we define W = max j∈[m] W j as the upper
bound on utility for F, that is, any player can obtain at most W in
F. In this subsection, we prove the following theorem.
Theorem 4. Let F be a forest of weighted paths. Let n and W be
the number of vertices in F and the upper bound on utility for F,
respectively. Then, we can solve Competitive Diffusion, and find
a Nash equilibrium, if any, in O(Wn9) time.

We note that W = O(n) if F is an unweighted graph. Therefore,
by Theorem 4, Competitive Diffusion is solvable in O(n10) time
for an unweighted graph F; this running time will be improved to
O(n2) in Section 4.2.

Idea and definitions.
Let F be a given forest consisting of weighted m paths

P1, P2, . . . , Pm. Let w be a given weight function; we sometimes
denote by w j the weight function restricted to the path P j, j ∈ [m].
Suppose that, for an integer k, there exists a strategy profile ~s for
the game (k, F, w) that is a Nash equilibrium. Then, the strategy
profile restricted to each path P j, j ∈ [m], forms a Nash equilib-
rium for (k j, P j, w j), where k j is the number of players who chose
vertices in P j. However, the other direction does not always hold:
A Nash equilibrium ~s j for (k j, P j, w j) is not always extended to
a Nash equilibrium for the whole forest F, because some player
may increase its utility by moving to another path in F. To cap-
ture such a situation, we classify a Nash equilibrium for a (single)
path P j more precisely.

Consider the game (κ j, P j, w j) for an integer κ j ≥ 0. For a strat-
egy profile ~s j for (κ j, P j, w j), we define µP j (~s j) as the minimum
utility over all the κ j players: µP j (~s j) = mini∈[κ j] Ui(~s j). In other
words, any player in P j obtains the utility at least µP j (~s j). For the
case where κ j = 0, we define ~s j = ∅ as the unique strategy pro-
file for (κ j, P j, w j); then, ~s j is a Nash equilibrium and we define
µP j (~s j) = +∞.

For a strategy profile ~s j =
(
s(1)

j , s
(2)
j , . . . , s

(κ j)
j

)
for (κ j, P j, w j),

we then define the “potential” of the maximum utility under ~s j

that can be expected to gain by an extra player other than the κ j

players. More formally, for a vertex v in P j, we denote by ~s j+v the
strategy profile

(
s(1)

j , s
(2)
j , . . . , s

(κ j)
j , s(κ j+1)

j
)

for (κ j + 1, P j, w j) such

that s(κ j+1)
j = v. Then, we define νP j (~s j) = maxv∈V(P j) Uκ j+1(~s j +v).

For two nonnegative integers κ j and t, we say that P j ad-
mits κ j players with a boundary t if there exists a strategy pro-
file ~s j such that ~s j is a Nash equilibrium for (κ j, P j, w j) and
νP j (~s j) ≤ t ≤ µP j (~s j) holds. Then, the following lemma char-
acterizes a Nash equilibrium of the game (k, F, w) in terms of the
components of F; we omit the proof.
Lemma 1. The game (k, F, w) has a Nash equilibrium if and only
if there exist nonnegative integers κ1, κ2, . . . , κm and t such that
k =

∑m
j=1 κ j and P j admits κ j players with the common boundary

t for every j ∈ [m].

Algorithm.
We first focus on a weighted single path.

Lemma 2. Let P be a weighted path of n vertices, and t be a
nonnegative integer. Then, one can find in O(n9) time the set
K ⊆ {0, 1, . . . , 2n} of all the integers κ such that P admits κ play-
ers with boundary t.

Based on Lemma 2, we can obtain the m sets K1,K2, . . . ,Km,
where K j ⊆ {0, 1, . . . , 2n}, j ∈ [m], is the set of all the integers κ
such that P admits κ players with boundary t. This can be done in
O(n9) time, where n is the number of vertices in the whole forest
F.

We now claim that, for a given integer t, it can be decided in
O(n3) time whether there exist nonnegative integers κ1, κ2, . . . , κm

such that k =
∑m

j=1 κ j and P j admits κ j players with the com-
mon boundary t for every j ∈ [m]; later we will apply this pro-
cedure to all possible values of t, 0 ≤ t ≤ W. To show this,
observe that finding desired m integers κ1, κ2, . . . , κm from the m
sets K1,K2, . . . ,Km can be regarded as solving an instance of the
multiple-choice knapsack problem [18]: The capacity c of the
knapsack is equal to k; each integer κ′ in K j, j ∈ [m], corresponds
to an item with profit κ′ and cost κ′; the items from the same set
K j form one class, from which at most one item can be packed
into the knapsack. The multiple-choice knapsack problem can be
solved in O(cN) time [18], where N is the number of all items.
Since c = k and N = O(mn), we can solve the corresponding
instance in time O(kmn) = O(n3).

We finally apply the procedure above to all possible values of
boundaries t. Since any player can obtain at most the upper bound
W on utility for F, it suffices to consider t ∈ [W]. Therefore, our
algorithm runs in O(Wn9) time in total.

4.2 Forests of unweighted paths
In this subsection, we improve the running time of our al-

gorithm in Section 4.1 to quadratic when restricted to the un-
weighted case.
Theorem 5. Let F be a forest of unweighted paths, and n be the
number of vertices in F. Then, we can solve Competitive Diffu-
sion, and find a Nash equilibrium, if any, in O(n2) time.

In the rest of this subsection, we consider unweighted graphs,
and thus define w : V → {1} for the vertex set V of a given forest.
We assume that the number k of players is less than n; otherwise,
a Nash equilibrium always exists. Note that, in this case, every
player has utility at least one for any Nash equilibrium.

We first show that the set K j of Lemma 2 can be obtained in
O(1) time, instead of O(n9) time, by characterizing Nash equilib-
riums for (κ, P, w) in terms of κ, t and n.
Lemma 3. Let P be a single unweighted path of n vertices, and
let κ and t be nonnegative and positive integers, respectively.
(1) P admits κ = 0 player with boundary t if and only if n ≤ t.
(2) P admits κ = 1 player with t if and only if t ≤ n ≤ 2t + 1.
(3) P admits κ = 2 players with t if and only if 2t ≤ n ≤ 2t + 2.
(4) P admits κ = 3 players with t if and only if t = 1 and n = 3, 4

or 5.
(5) For any integer κ ≥ 4, P admits κ players with t if and only

if

(κ + 1)t − 1 ≤ n ≤ (2κ − 4)t + κ if κ is odd;
κt ≤ n ≤ (2κ − 4)t + κ if κ is even.
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By Lemme 3, we can immediately obtain the number of play-
ers which P admits with a given boundary t:
Corollary 1. Consider a fixed boundary t. If P is a path of n
vertices, the numbers of players which P admits with a boundary
t is given as follows.
(1) If n ≤ t − 1, the number is only 0.
(2) If n = t, the numbers are 0 and 1.
(3) If t + 1 ≤ n ≤ 2t − 1, the number is only 1.
(4) If 2t ≤ n ≤ 2t + 1 and n = 3, the numbers are 1, 2 and 3;

and if 2t ≤ n ≤ 2t + 1 and n , 3, the numbers are 1 and 2.
(5) If n = 2t + 2 and n = 4, the numbers are 2, 3 and 4; and if

n = 2t + 2 and n , 4, the number is only 2.
(6) If 2t + 3 ≤ n ≤ 4t − 1, P has no desired Nash equilibrium.
(7) If 4t ≤ n and 5 ≤ n, the numbers are integers κ such that⌈

n + 4t
2t + 1

⌉
≤ κ ≤ max(kodd, keven),

where kodd is the maximum odd integer satisfying kodd ≤

(n − t + 1)/t, and keven is the maximum even integer satis-
fying keven ≤ n/t.

We use Corollary 1 to design our algorithm for forests of paths.
Without loss of generality, we assume that P1 is a longest path

among the m paths, and has n1 vertices. For each t, 1 ≤ t ≤ n1,
we repeat the following procedure: For every j, 1 ≤ j ≤ m, we
obtain, using Corollary 1, the minimum number kmin

j and the max-
imum number kmax

j of players which P j admits with the boundary
t. Corollary 1 implies that, for every j, 1 ≤ j ≤ m, P j admits κ
players with t for any κ between kmin

j and kmax
j , and hence (k, F, w)

has a Nash equilibrium with the common boundary t if and only
if

m∑
j=1

kmin
j ≤ k ≤

m∑
j=1

kmax
j . (1)

We thus complete the procedure by checking if the two inequali-
ties in (1) both hold. Since Corollary 1 implies that we can obtain
kmin

j and kmax
j in constant time for every j, the running time of the

procedure above for single t is O(m), and hence that of our entire
algorithm is O(n1m) = O(n2), as desired.

5. Algorithms for Chain, Cochain, and
Threshold Graphs

A bipartite graph B = (X,Y; E) with |X| = p and |Y | = q is
a chain graph if there is an ordering (x1, x2, . . . , xp) on X such
that N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xp), where N(u) denote a set
of neighbors of a vertex u. If there is such an ordering on X,
then there also exists an ordering (y1, y2, . . . , yq) on Y such that
N(y1) ⊆ N(y2) ⊆ · · · ⊆ N(yq). We call such orderings inclusion
orderings. A graph B′ is a cochain graph if it can be obtained
from a chain graph B = (X,Y; E) by making the independent sets
X and Y into cliques. A graph B′′ is a threshold graph if it can be
obtained from a chain graph B = (X,Y; E) by making one of the
independent sets X and Y into a clique. Observe that inclusion or-
derings on X and Y in B can be seen as inclusion orderings in B′

and B′′ if we use closed neighborhoods in cliques. Such inclusion
orderings can be found in linear time [17]. Because the algorithm
for chain graphs we will describe in this section depends only

on its property of having inclusion orderings, we can apply the
exactly same algorithm for cochain graphs and threshold graphs.

The following lemma follows directly from the definitions.
Note that we denote N[u] = N(u) ∪ {u}.
Lemma 4. If N(u) ⊆ N(v) or N[u] ⊆ N[v] holds for u = s(i) ,

v = s( j), then

Ui(~s) =

0 if there is h , i such that s(h) = u,

w(u) otherwise.

In what follows, let B = (X,Y; E) be a chain graph with in-
clusion orderings (x1, . . . , xp) and (y1, . . . , yq) on X and Y , re-
spectively. We define η(~s, X) = max({0} ∪ {i | xi ∈ V(~s)}) and
η(~s,Y) = max({0} ∪ {i | yi ∈ V(~s)}).
Lemma 5. Let ~s be a Nash equilibrium of B. If s(i) <

{xη(~s,X), yη(~s,Y)}, then

w(s(i)) ≥ max
{
w(u) | u ∈

(
{x j | j ≤ η(~s, X)} ∪ {y j | j ≤ η(~s,Y)}

)
\V(~s)

}
.(2)

Proof. Since N(s(i)) ⊆ N(xη(~s,X)) or N(s(i)) ⊆ N(yη(~s,Y)), it fol-
lows that Ui(~s) ≤ w(s(i)) by Lemma 4. Suppose for the contrary
that there exists u ∈ ({x j | j ≤ η(~s, X)} ∪ {y j | j ≤ η(~s,Y)}) \ V(~s)
such that w(s(i)) < w(u). Now it holds that N(u) ⊆ N(xη(~s,X))
or N(u) ⊆ N(yη(~s,Y)). Thus, by Lemma 4, we have Ui(~s−i, u) =

w(u) > w(s(i)) ≥ Ui(~s). This contradicts the assumption that ~s is a
Nash equilibrium. �

Thus, it suffices to check the strategy profiles satisfying Eq. (2)
for our purpose.
Theorem 6. Let G be a chain, cochain, or threshold graph of n
vertices and m edges. Then, we can solve Competitive Diffusion
for G, and find a Nash equilibrium, if any, in O(n4(m + n)) time.

Proof. We present an algorithm for chain graphs only. As pre-
viously described, we can apply the same algorithm for cochain
and threshold graph.

We first guess η(~s, X) and η(~s,Y). Here we assume η(~s, X) , 0.
The other case can be treated in the same way by swapping X
and Y . We assign xη(~s,X) to the first player. If η(~s,Y) , 0, then
we assign yη(~s,Y) to the second player. By Lemma 5, if ~s is a
Nash equilibrium, then the other players have to select the heavi-
est vertices in {xi | i < η(~s, X)} ∪ {yi | i < η(~s,Y)}. For each of the
remaining players, we assign a vacant vertex with the maximum
non-negative weight. If there is no such a vertex, we assign xη(~s,X).
We then test whether the strategy profile is a Nash equilibrium.
See Algorithm 1.

Lemma 5 implies that if the algorithm assigns at most one
player to xη(~s,X), then the algorithm is correct. If two or more
players are assigned to xη(~s,X), then these players have utility
0. In such a case, there are not enough number of vertices of
non-negative weights in {xi | i < η(~s, X)} ∪ {yi | i < η(~s,Y)}.
Thus every ~s with the guesses η(~s, X) and η(~s,Y) has a player
with non-positive utility. If such a player, say pi, has negative
utility, then ~s is clearly not a Nash equilibrium. If pi has util-
ity 0, then it may improve its utility only if there is a vertex
v ∈ {xη(~s,X)+1, . . . , xp} ∪ {yη(~s,Y)+1, . . . , yq} such that Ui(~s−i, v) > 0.
However, in this case, there is no Nash equilibrium with the
guesses η(~s, X) and η(~s,Y). Therefore, the algorithm is correct.
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Algorithm 1 Find a Nash equilibrium ~s ∈ Vk of a chain graph
B = (X,Y; E)
1: Let (x1, . . . , xp) on X and (y1, . . . , yq) on Y be inclusion orderings.
2: // The following is for the case where η(~s, X) , 0.
3: for all guesses (η(~s, X), η(~s,Y)) ∈ {1, . . . , p} × {0, . . . , q} do
4: s(1) := xη(~s,X). s(2) := yη(~s,Y) if η(~s,Y) , 0.
5: R := {xi | i < η(~s, X)} ∪ {yi | i < η(~s,Y)}.
6: while there is a player i not assigned to a vertex do
7: v := arg maxu∈R w(u).
8: if w(v) ≥ 0 then
9: s(i) := v. R := R \ {v}.

10: else
11: s(i) := xη(~s,X).
12: end if
13: end while
14: return ~s if it is a Nash equilibrium.
15: end for
16: return “no Nash equilibrium”

We now analyze the running time of the algorithm. We have
O(n2) options for guessing xη(~s,X) and yη(~s,Y). For each guess, the
bottle-neck of the running time is to test whether the strategy pro-
file is a Nash equilibrium or not. It takes O(n2(m + n)) time as
follows: we have O(n2) candidates of moves of players; for each
candidate, we can compute the utility of the player moved by
running a breadth-first search once in O(m + n) time by adding a
virtual root connecting to all the vertices occupied by the players.
In total, the algorithm runs in O(n4(m + n)) time. �
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