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Abstract

Motivated by the well-known BZ reaction that provides an au-
tonomous chemical oscillator, we address in this paper, the problem of
autonomously generating an oscillatory execution, assuming any ini-
tial configuration (i.e., in a self-stabilizing manner) and, considering
the population protocol (PP) model designed to model a collection of
finite-state mobile agents that interact with each other in order to ac-
complish a common task. While most of the works in the literature
investigate the computational power of PPs, we throws light, in this
paper, on an aspect of PPs as a model of chemical reactions and in-
vestigate the self-oscillatory behavior. For deterministic PPs, we show
that the self-stabilizing leader election (SS-LE) and the self-stabilizing
oscillation problem (SS-OSC) are equivalent, that is, an SS-OSC proto-
col is constructible from a given SS-LE protocol and vice versa, which
unfortunately implies that (1) resorting to a leader is inevitable (al-
though we seek a decentralized solution) and (2) n states are necessary
to create an oscillatory behavior of amplitude n, where n is the number
of agents (although we seek a memory-efficient solution).

Keywords: Population protocol, Self-stabilization, Oscillatory behavior,
Leader election, Distributed algorithm

1 Introduction

The population protocol (PP) model introduced by Angluin et al. [2] is a
model of passive distributed systems. It is used as a theoretical model of a

∗A detailed version of this work is published in [7]
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collection of finite-state mobile agents that interact with each other in order
to solve a given problem in a cooperative fashion. Computations are done
through pairwise interactions, i.e., when two agents interact, they exchange
their information and update their states accordingly. The interaction pat-
tern, however, is unpredictable, that is, the agents have no control over
which agent they interact with. We thus assume the presence of an abstract
mechanism called scheduler that chooses at any time instant, the pair of
agents that interact with each other. Observe that PPs can represent not
only artificial distributed systems such as sensor networks and mobile agent
systems, but also natural distributed systems such as chemical reactions and
biological systems.

In the past few years, many problems have been investigated assuming
PPs: computing a function, electing a leader, counting, coloring, synchro-
nizing and naming [1, 2, 3, 6, 8, 4]. Most of the problems consider the
computational power of the population and hence are static; the agents are
requested to eventually reach a configuration that represents the answer to
the given computation problem. The agents are not requested to eventually
terminate, but the execution is requested to repeat the configuration that
contains the answer of the problem that is considered, forever.

Unlike most of the past works in PPs, we throw light on an aspect
of PPs as a model of chemical reactions. Specifically, we investigate the
problem of designing a PP that stabilizes to an oscillatory execution, no
matter from which initial configuration it starts; that is, we explore a self-
stabilizing PP that generates an oscillatory execution. The problem emerges
in the project of designing molecular robots [9], and is directly motivated
by the well-known Belousov–Zhabotinsky reaction, which is an example of
non-equilibrium thermodynamics providing a non-linear chemical oscillator.
We show that under a deterministic scheduler governed by an adversary,
the self-stabilizing leader election problem and the self-stabilizing oscillation
problem are equivalent, and hence costly in term of space complexity.

Apart from the difference of motivation, a few works on dynamic prob-
lems are related to our work. Angluin et al. [3] provided a self-stabilizing
token circulation protocol in a ring with a pre-selected leader. Beauquier
and Burman investigated the self-stabilizing mutual exclusion, group mutual
exclusion problems [5]. Our problem also belongs to the class of dynamic
problems.

In this paper, we use results from [6] that concern the SS-LE problem.
In [6], it has been shown that the SS-LE is impossible to solve with less than
n states where n is the size of the population. The paper also presents a PP
that solves the SS-LE. The protocol ensures that eventually each agent has
unique state.
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2 Preliminaries

In this paper, we consider a population of n anonymous finite-state agents
that update their state by interacting with other agents. We consider
only pairwise interactions, i.e., each interaction involves exactly two agents.
When two agents interact, they update their state according to a common
protocol. We denote by A = {0, 1, . . . , n− 1}, the set of agents in the pop-
ulation, that is, |A| = n. Indices are used for notation purposes only; in
fact, the agents are anonymous, i.e., they have no identity, they cannot be
distinguished from each other and they all execute the same protocol. Any
pair of agents i and j (i 6= j) in the population are susceptible to interact.

A protocol P = (Q, δ) is a pair of a finite set of states Q and a transition
function δ : Q × Q → Q × Q. When two agents interact with each other,
δ determines the next state of both agents. Let p and q be the states of
agents i and j, respectively. δ(p, q) = (p′, q′) indicates that the states of
agents i and j, after interacting with each other, are p′ and q′, respectively.
We assume that if δ(p, q) = (p′, q′) then δ(q, p) = (q′, p′).

A configuration C is a mapping A → Q that specifies the state of all
the agents in the population. By C(i), we refer to the state of agent i in
configuration C. By C we refer to the set of all possible configurations of
the system. Given a configuration C ∈ C and an interaction between the
two agents i and j, r = (i, j), we say that C ′ is obtained from C via the

interaction r, denoted by C
r→ C ′, if (C ′(i), C ′(j)) = δ(C(i), C(j)).

Let Ct be the configuration at time t and let rt be the interaction on Ct
at time t. An execution E of a protocol P is a sequence of configurations
and transitions (C0, r0, C1, r1, . . . ) such that ∀ i ≥ 0, ri is a transition of δ

and Ci
ri→ Ci+1. When a configuration C ′ is reachable from C after a finite

number of transitions we note C
∗→ C ′.

A scheduler chooses a pair of agents to interact at each time t ≥ 0.
In this paper, we consider a deterministic but globally fair scheduler that
guarantees that if there is a configuration that is reachable infinitely often,
then the configuration is eventually reached.

3 Self-stabilizing oscillators

We investigate in this section the problem of generating oscillatory execu-
tions under a global fair deterministic scheduler and starting from an arbi-
trary configuration. Let us first define some important notions that will be
used in the sequel.

Definition 1 (Oscillation) Let f : [a, b] ⊂ N → R be a function. We say
that f is an oscillation if there exists c ∈ N such that:

1) a < c < b 2) f(a) < f(c) > f(b),
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3) f is weakly increasing in [a, c] and weakly decreasing in [c, b].

The value f(c)−(f(a)+f(b))/2 is called the amplitude of the oscillation
and is denoted by ιa, whereas b−a is called the period of the oscillation and
is denoted by ιp. The increasing phase (respectively, decreasing phase) of
the oscillation is the interval in which f is weakly increasing (respectively,
weakly decreasing).

Definition 2 (Oscillatory behavior) Given an execution E of a popula-
tion protocol P and a set of states S, let fS : N→ [0, n] ⊂ N be the function
mapping a time instant t into the number of agents whose state is in S at
time t. Let {t0, t1, . . . } be a strictly increasing sequence of time instants.
We say that E exhibits an oscillatory behavior for the set of states S, if for
every i ≥ 0, the restriction of fS to [ti, ti+1] is an oscillation.

Note that, according to the previous definitions, any execution exhibits an
oscillatory behavior, unless the number of agents whose state is in S even-
tually stabilizes. However, we are also interested in evaluating the “quality”
of the oscillations, in terms of their amplitude and period.

Definition 3 (Deterministic oscillator) A population of agents execut-
ing a deterministic protocol P, under a global fair scheduler, is a (C, S, ιa, ιp)-
oscillator if starting from Configuration C, any execution E of P exhibits an
oscillatory behavior for the set of states S, with amplitude ιa and period ιp.

Definition 4 (Deterministic self-stabilizing oscillator) A population
of agents executing a deterministic protocol P, under a global fair scheduler,
is a self-stabilizing oscillator for the set of states S if, starting from an
arbitrary configuration C0 ∈ C, every execution E of Protocol P, reaches a
configuration C ∈ C such that (C, S, ιa, ιp) is a deterministic oscillator.

We consider in the following (C, S, n, ιp)-oscillators and show that starting
from an arbitrary initial configuration C0 ∈ C, the following two results hold:

1. If the SS-LE problem is solvable using MLE states, then it is possible
to solve the SS-OCS problem using MLE +O(n) states.

2. If the SS-OSC problem is solvable using MOSC states, then it is pos-
sible to solve the SS-LE problem using MOSC +O(1) states.

3.1 SS-LE ⇒ SS-OSC

We show that a deterministic population protocol POSC exists using MLE +
O(n) states per agent (MLE being the number of states necessary to solve
the self-stabilizing leader election problem).
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The idea of the solution is as follows: we build our SS-OSC protocol
POSC on the SS-LE protocol PLE proposed in [6] and that uses n distinct
states per agent. When an interaction occurs between two agents, the two
agents execute the enabled actions of both POSC and PLE . Protocol PLE
ensures that eventually one leader is elected and all the agents have a unique
state [6]. Our solution takes advantage of this “identification” to create an
oscillatory behavior. Indeed, using the identification created by Protocol
PLE , the leader can somehow recognize the agents it has already interacted
with.

The state of each agent i consists of a triplet of variables (idi, pi, Cnti).
Variable idi is used by Protocol PLE (idi ∈ {0, 1, 2, . . . , n − 1}), where 0 is
the leader’s state. According to [6], eventually each agent has a unique value
of idi. Variable pi ∈ {0, 1}, indicates the phase of the oscillation Agent i is
part of (increasing or decreasing phase). Variable Cnti is a counter variable
such that Cnti ∈ {1, . . . ,M} where M = n. The counter is used only by
the leader to keep track of the agents it has already interacted with, hence,
in the sequel, i is omitted when we refer to the counter. The state of a
non-leader agent j is only represented by the pair (idj , pj).

The leader uses its counter value to recognize the next agent it has to
interact with in order to increment its counter. More precisely, assume that
Cnt = i then, if a leader interacts with an agent i such that idi = Cnt then
the leader increments its counter value and Agent i updates its phase to
become in the same phase as the leader. When the leader’s counter value
reaches its maximum value, the leader toggles its phase and re-initializes its
counter to 1. The formal description of the solution is given in Protocol 1.
Character ’?’ indicates any state of a non leader agent. If ’?’ is used
then, the corresponding non-leader agent does not update its state in the
interaction.

Protocol 1 Self-stabilizing deterministic oscillator with central control
(C(Leader), C(¬ Leader)) → δ(C(Leader), C(¬ Leader))

1. (0, 0, i),(i, 0) → (0, 0, i+ 1),(i, 0) if i ≤ n− 1

2. (0, 0, i),(i, 1) → (0, 0, i+ 1),(i, 0) if i ≤ n− 1

3. (0, 0, n),? → (0, 1, 1), ?

4. (0, 1, i),(i, 0) → (0, 1, i+ 1), (i, 1) if i ≤ n− 1

5. (0, 1, i),(i, 1) → (0, 1, i+ 1),(i, 1) if i ≤ n− 1

6. (0, 1, n),? → (0, 0, 1),?

We state the following result:

Theorem 1 Under the global fair scheduler, if there exists a population
protocol that solves the SS-LE problem using MLE states then, there exists
a population protocol that solves the SS-OSC problem using MLE + O(n)
states.
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Remark 1. The number of states can be reduced to MLE + O(ιa) states
where ιa is the desired amplitude of the oscillator. This can be done by
using the same strategy as in Protocol 1 and by setting the maximum value
of the leader’s counter M = ιa. In addition, when the leader interacts with
a non leader agent j such that idj < M , Agent j updates its phase pj to
the default value 0. Since we assume a global fair scheduler, ∀ j ∈ A such
that idj ≥M , j eventually interacts with the leader and hence pj = 0. If we
define the set S as the set of states such that p = 1 then only (ιa−1) agents
toggle their phase with the leader and hence, we obtain an self-stabilizing
oscillator of amplitude ιa.

3.2 SS-OSC ⇒ SS-LE

We show that if the deterministic SS-OSC problem is solvable using MOSC

states, then it is also possible to solve the deterministic SS-LE problem using
MOSC + O(1) states. To show this result, we build our self-stabilizing SS-
LE protocol P ′LE on the top of the SS-OSC protocol P ′OSC . By executing
Protocol P ′OSC , the system eventually exhibits an oscillatory behavior with
respect to a given set of state S. Let us consider the population after
the stabilization of P ′OSC . We first show some important properties of a
population that exhibits an oscillatory behavior. We assume that ιa = n.
Given a configuration C ∈ C, let S(C) be the set of agents such that ∀ i ∈ A,
i ∈ S(C) if C(i) ∈ S. The number of agents part of S(C) is denoted by
#S(C). By C+, we denote the set of configurations that can appear during
the increasing phase of any oscillation before reaching the amplitude, that
is, ∀ C ∈ C+, #S(C) < n. By C∗, we refer to the set of configurations
such that ∀ C ∈ C∗, #S(C) = n (configurations in which all the agents
have their states part of S, i.e., the amplitude is reached). The first step
is to show that there is a non-empty subset of states that can only appear
when the amplitude of the oscillation is reached. More precisely, in any
configuration C ∈ C+, the transition δ(C(i), C(j)) = (C ′(i), C ′(j)) such
that #S(C) > #S(C′) is never enabled when the system is stabilized. Let Q′

be the set of states that enable such a transition then, ∀ C ∈ C+, ∀ i ∈ A,
C ′(i) 6∈ Q′ and ∀ C ′ ∈ C∗, ∃ i ∈ A, C ′(i) ∈ Q′ (States in Q′ indicates that the
next phase of the oscillation can be initiated). Next, we define a subset of
special configurations that we denote by Csp ⊂ C+. A configuration C ∈ Csp
satisfies the two following conditions: (1) ∃! j ∈ A such that C(j) 6∈ S and
(2) ∀ i ∈ A, C(i) 6∈ Q′. Observe that Condition (1) implies that ∀ i ∈ A\{j},
C(i) ∈ S. We show that a configuration C ∈ Csp is eventually reached and
∃ i, j ∈ A such that δ(Csp(i), Csp(aj)) = (C ′(i), C ′(j)) with C(j) 6∈ S and
C ′(j) ∈ S and either (C ′(i) ∈ Q′) or (C ′(j) ∈ Q′). That is, the amplitude
is reached and at least one of the two interacting agents has a state part of
Q′. We refer to such an interaction by rsp. Finally, we prove that from a
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configuration C ∈ C∗, if ∃ i ∈ A such that C(i) 6∈ Q′ and ∃j ∈ A such that
δ(C(i), C(j)) = (C ′(i), C ′(j)) with C ′(i) ∈ Q′ then C(j) ∈ Q′, that is, when
the amplitude is reached, a given agent can change its state to a state in
Q′ only if it interacts with an agent already in a state part of Q′. We take
advantage of these properties and define now our protocol.

Protocol. In order to elect a leader starting from an arbitrary config-
uration C0 ∈ C using the SS-OSC population protocol P ′OSC , we add to
the state of each agent one bit of memory to indicate whether the agent is a
leader or not (l ∈ {0, 1}). When rsp is executed, if C ′ is the resulting configu-
ration, then ∃ i ∈ A such that C ′(i) ∈ Q′ (recall that rsp:δ(Csp(i), Csp(j)) =
(C ′(i), C ′(j)) such that (i) C(j) 6∈ S. (ii) C ′(j) ∈ S. (iii) ((C ′(i) ∈
Q′) ∨ (C ′(j)) ∈ Q′)). Assume that after the execution of rsp, ∃! i ∈ A
such that C ′(i) ∈ Q′ (let us refer to this agent by asp). The idea of the
protocol is as follows: when rsp is executed, Agent asp becomes a leader. In
addition, when a given agent i interacts with a leader then, neither Agent i
nor the leader update their state (they both keep the same state). Observe
that since we assume an arbitrary initial configuration, such a transition
can be executed even if the population is not yet stabilized with respect
to P ′OSC . To be sure to create only one leader, if in a given configuration
C ∈ C, Agent i is a leader then Agent i becomes a non-leader in the next
interaction if C(i) 6∈ Q′ or C(i) 6∈ S. In the same manner, Agent i becomes
a non leader if it interacts either with another leader or with an agent j such
that C(j) 6∈ S. Observe that if ∃ i ∈ A such that i is a leader, then i can
only be enabled to become a non-leader, We show that:

Theorem 2 Under the global fair scheduler, if there exists a population pro-
tocol P ′OSC that solves the SS-OSC problem with amplitude n using MOSC

states, then the SS-LE problem is also possible to solve using MOSC +O(1)
states.

Recall that it has been proved in [6] that the SS-LE problem is not
solvable when |Q| < n and hence impossible to solve in the case where n is
arbitrary. Using Theorems 1 and 2 we deduce:

Corollary 1 There exists no deterministic self-stabilizing oscillator if the
number of states by agent is less than n, or if the size of the population is
arbitrary.

4 Conclusion

In this paper, we have considered the PPs model and have addressed the
problem of autonomously generating oscillatory executions. We have consid-
ered the problem using deterministic protocols and have shown that, under
the deterministic global fair scheduler, Ω(n) states are necessary to solve
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the SS-OSC problem. This result emphasizes somehow the impact and the
importance of randomization in biological systems and chemical reactions
in creating self-oscillations that is, it would be interesting to consider the
problem assuming a probabilistic scheduler i.e., the pair of agents chosen for
the interactions are selected randomly.
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René Peralta. Computation in networks of passively mobile finite-state
sensors. In PODC, pages 290–299, 2004.

[3] Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang. Self-
stabilizing population protocols. TAAS, 3(4), 2008.

[4] Joffroy Beauquier and Janna Burman. Self-stabilizing synchronization
in mobile sensor networks with covering. In Distributed Computing in
Sensor Systems (DCOSS), volume 6131, pages 362–378, 2010.

[5] Joffroy Beauquier and Janna Burman. Self-stabilizing mutual exclusion
and group mutual exclusion for population protocols with covering. In
OPODIS, volume 7109, pages 235–250, 2011.

[6] Shukai Cai, Taisuke Izumi, and Koichi Wada. How to prove impossibility
under global fairness: On space complexity of self-stabilizing leader elec-
tion on a population protocol model. Theory Comput. Syst., 50(3):433–
445, 2012.

[7] Colin Cooper, Anissa Lamani, Giovanni Viglietta, Masafumi Yamashita,
and Yukiko Yamauchi. Self-stabilizing synchronization in mobile sensor
networks with covering. In (SSS), 2015.

[8] Keigo Kinpara, Tomoko Izumi, Taisuke Izumi, and Koichi Wada. Im-
proving space complexity of self-stabilizing counting on mobile sensor
networks. In OPODIS, volume 6490, pages 504–515, 2010.

[9] Satoshi Murata, Akihiko Konagaya, Satoshi Kobayashi, Hirohide Saito,
and Masami Hagiya. Molecular robotics: A new paradigm for artifacts.
New Generation Computing, 31(1):27–45, 2013.

8ⓒ 2015 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2015-AL-154 No.6
2015/9/28


