
Space Efficient and Output Sensitive Greedy

Algorithms on Intervals

Toshiki Saitoh1,a) Takashi Horiyama2,b) David Kirkpatrick3,c) Yota Otachi4,d)

Ryuhei Uehara4,e) Yushi Uno5,f) Katsuhisa Yamanaka6,g)

Abstract:

In this paper, we consider fundamental problems on the following machine model: An input is stored

in read-only random-access memory, a limited random access workspace is available, and we report the

output to a write-only media. We first propose efficient greedy algorithms using priority queues on the

machine model as a general framework. Then, we apply the greedy algorithm to maximum independent

set problem on intervals. Our algorithm runs in any workspace O(s) and it has the same time complexity

of Snoeyink’s algorithm which is the best known result if s = Ω(n).

1. Introduction

Recently, there are many huge size data sets, such as

biological data, social networks, and so on. Because of

the huge size of the data, we demand algorithms running

in a limited workspace. To consider the memory con-

straint, we propose algorithms on the read-only random-

access machine model [5], [7]; the input is stored in a

read-only random-access memory, a limited random ac-

cess workspace is available, and we report the output to a

write-only media in the machine model.

On the other hand, a greedy strategy is significant in

algorithm theory because we can find optimal or approxi-

mate solutions for many combinatorial optimization prob-

lems by using the strategy, for example, shortest paths on a

graph, knapsack problem, and so on [4], [9]. On greedy al-

gorithms, we select an element which has highest priority

1 Department of Electrical and Electronic Engineering, Kobe Uni-

versity
2 Graduate School of Science and Engineering, Saitama Univer-

sity
3 Department of Computer Science, UBC
4 School of Information Science, JAIST
5 Graduate School of Science, Osaka Prefecture University
6 Department of Electrical Engineering and Computer Science,

Iwate University
a) saitoh@eedept.kobe-u.ac.jp
b) horiyama@al.ics.saitama-u.ac.jp
c) kirk@cs.ubc.ca
d) otachi@jaist.ac.jp
e) uehara@jaist.ac.jp
f) uno@mi.s.osakafu-u.ac.jp
g) yamanaka@cis.iwate-u.ac.jp

(minimum or maximum value) as an output from candi-

dates for each step. Borodin et al. studied a general frame-

work of greedy algorithms [3]. They mention that there are

two types of models for the priorities; fixed priority model

and adaptive priority model. In the fixed priority model, a

total order of the priorities of all elements in the input is

specified in the beginning. On the other hand, in the adap-

tive priority model, the ordering depends on the elements

which have already outputted. Considering the adaptive

priority model on the read-only random-access model, it is

difficult to compute the priorities of all candidates for each

step because we cannot remember all of the values and the

outputted elements on the space constraint. Thus, we con-

sider the fixed priority model in this paper. To develop

efficient greedy algorithms, it is important how to find the

next element which is highest priority, efficiently. To ob-

tain the element quickly, priority queues play a crucial role

in the greedy strategy.

Priority queues are data structures that store a collection

of elements and support find-min, insert, and extract oper-

ations. On the read-only random-access machine model,

memory adjustable priority queues which uses O(s) words

or bits of workspace for a given parameter s(≤ n) are pro-

posed, for example tournament trees, navigation piles, and

heaps [1], [2]. In a greedy algorithm adopting the oper-

ations of one of the data structures, we first insert all the

elements in the input into the data structure. We then ex-

tract the minimum (or maximum) element from the data

structure and we output the element if it is feasible. The

1ⓒ 2015 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2015-AL-154 No.4
2015/9/28

algorithm repeats the process until there is no elements in

the data structure. The extract operation of the memory ad-

justable priority queues takes O(lg s) *1 time on the struc-

ture and we extract all the elements one by one. Hence,

the algorithm takes O(n lg s) time on the structure and the

running time does not reach output sensitiveness. It is be-

cause the operations of the data structures are versatile. We

need to develop specific operations for greedy algorithms

to propose faster algorithms.

In this paper, we propose a new extract operation re-

fresh on memory adjustable tournament trees and naviga-

tion piles on the machine model for greedy algorithms.

The operation refresh is simple and natural improvement

of extract to get the next element for each step in the

greedy algorithms. We show an interesting analysis of bi-

nary trees to prove that the greedy algorithms using the

operation runs fast. By applying our greedy algorithm,

we propose an efficient algorithm for the maximum in-

dependent set problem on intervals. The algorithm runs

in O(m(lg sk/m + n/s)) time where n is the size of in-

put, k is the size of the output, s is the size of words

on the tournament tree or bits on the navigation piles,

and m = min(n, sk). The running time of the algorithm

achieves output sensitiveness which depends on the out-

put size. In this paper, we first define the new operation

refresh on memory adjustable priority queues for greedy

algorithms in Section 2. Then, we apply our algorithm for

the maximum independent set problem on intervals in Sec-

tion 3.

Related works. The multi-pass streaming model is also

studied in space-constraint situation. This model is in-

troduced by Munro and Paterson for selection and sort-

ing problems [11]. On the model, the input is stored in

the read-only sequential-access media and we analyze al-

gorithms by counting the number of passes of the media.

Emek et al. studied the maximum independent set problem

of intervals on the streaming model [6]. They proposed

2-approximation streaming algorithm and 1 + 1/(2p − 1)-

approximation multi-pass streaming algorithm where p is

the number of passes.

On the offline setting, there is a greedy algorithm for

the maximum independent set problem on intervals and

the algorithm runs in O(n lg n) time because it requires to

sort the intervals by right endpoints [4], [9]. Snoeyink pro-

posed an output sensitive algorithm by using divide-prune-

and-conquer and the algorithm runs in O(n lg k) time where

k is the output size of the solution [12]. However, these

algorithms need extra Ω(n) workspace. Recently, Bhat-

tacharya et al. studied the problem on the machine model

with space constraint [2]. Their algorithm uses a memory

adjustable min-heap with size s(≤ n) words. The algorithm

*1 We use the symbol lg x to denote log2 x.

runs in O(m(lg s + n/s)) and this implies that if s = O(n),

the time complexity is same as the greedy algorithm using

sort, and not output sensitive. Our independent set algo-

rithm is a improvement of the Bhattacharya’s algorithm

and a generalization of the Snoeyink’s algorithm.

2. Greedy Algorithms and Priority

Queues

In a greedy strategy, we choose the best candidate as an

output for each step and we repeat the process until there

is no candidates. On a step, an element is feasible if the set

which includes the current output set and the element is

feasible, and is infeasible otherwise. To find the best feasi-

ble element effectively, memory adjustable priority queues

are useful in the space constraint.

In this section, we define the memory adjustable priority

queues, tournament trees and navigation piles, proposed

by Asano et al. [1]. Tournament trees are also called se-

lection trees [10] and use O(s) words of workspace. The

second structure is a navigation pile which is proposed by

Katajainen et al. [8]. The original navigation pile stores

O(n) bits where n is the size of an input. Asano et al.

improve the data structure to memory adjustable structure

and the workspace of memory adjustable navigation pile

is O(s) bits for lg n ≤ s ≤ n/ lg n. The two data struc-

tures support find-min and insert in O(1) time, and extract

in O(n/s + lg s) time.

We have the following assumptions to describe the pri-

ority queues for greedy algorithms:

(1) A parameter s is a power of 2.

(2) All elements in the input are inserted in the data struc-

tures as a candidate set before extractions.

(3) The elements are extracted from the data structure in

monotonic fashion. At any given point of time, we

keep the latest outputted element that the elements

smaller than or equal to that have been extracted from

the data structure.

(4) The two manipulation of comparison and feasibility-

check which decides whether or not an element is fea-

sible can be computed in the workspace.

The greedy algorithms utilize comparison and feasibility-

check to obtain the next elements for each step. We an-

alyze the complexity of the greedy algorithms by count-

ing the number of manipulations of comparisons and

feasibility-checks. For the reason, we assume that these

functions can be computed in the workspace. In particular,

comparisons and feasibility-checks are available in O(s)

words while discussing the tournament trees, and in O(s)

bits while discussing the navigation piles.

2.1 Tournament Trees

In this subsection, we have O(s) words of ex-

2ⓒ 2015 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2015-AL-154 No.4
2015/9/28

tra workspace. We separate an input array A =

{e1, . . . , en} into s buckets {B1, . . . , Bs} such that Bi =

{e(i−1)⌈n/s⌉+1, . . . , ei⌈n/s⌉} for each i. The size of each bucket

Bi is ⌈n/s⌉ for i ∈ {1, . . . , s−1}, and |Bs| = n− (s−1)⌈n/s⌉.

For each bucket Bi, at most one element is in a tournament

tree.

A tournament tree is a complete balanced binary tree

with s leaves. The number of nodes in the tree is at most

2s − 1 and the height of the tree is lg s. Each leaf li cov-

ers a bucket Bi and each internal node covers the buckets

which are covered by the leaves in the subtree rooted at

the internal node. Each node v stores a direct pointer to the

element and the element is denoted by e(v). The element

e(v) of a node v is minimum in the buckets covered by v;

every internal node has at most two children and stores the

smaller element of them. The size of the tournament tree

is O(s) since the number of nodes is 2s − 1 and each node

holds the direct pointer to an element using one word.

A tournament tree supports find-min in O(1) time and

extract in O(n/s + lg s) time. Since the minimum element

is stored at the root in a tournament tree, find-min can be

computed in O(1) time. In the extract operation, given an

element e, we extract the element e in the tournament tree.

We suppose e is in a bucket Bi. To find the next minimum

element, we scan the bucket Bi and we save the element in

the leaf li covering the bucket Bi. Then, we update nodes

from the leaf li to the root. The number of comparisons in

extract is O(n/s + lg s) because we manipulate in O(n/s)

and O(lg s) times for scanning the bucket and updating the

path, respectively.

We analyze the complexity of greedy algorithms using

the extract operations. Using the naı̈ve extract operations,

the number of iterations of the greedy algorithms is Θ(n)

because we extract all elements in the input from a tourna-

ment tree. We can reduce the number of iterations imple-

menting simple idea. While selecting the next minimum

element from a bucket, we do not choose an infeasible ele-

ment as the next element even if the element is minimum.

This extraction breaks the assumption (3). However, since

the nodes keep the direct pointers to the elements, we can

restore the elements of nodes of a tournament tree even if

the latest extracted element has changed. Hence, the num-

ber of iterations of greedy algorithms becomes min(n, sk)

because we output at least one element after extracting s

elements where k is the size of an output. In this extrac-

tion, the number of comparisons and feasibility-checks are

O(n/s + lg s) and O(n/s) times for each extract operation,

respectively.

To obtain the next output element efficiently, we pro-

pose refresh operation for a tournament tree. The refresh

is bottom up and recursive procedure. The element of the

root becomes minimum and feasible after executing the

Procedure 1: Refresh(a node vr in the tree)

1 Assume that the element of vr comes from a leaf li and li covers

a bucket Bi;

2 Find an element ei which is minimum and feasible in Bi;

3 Set the leaf li to node v and e(v) = ei;

4 while v is not vr do

5 Let vs and vp be the sibling of v and the parent of v,

respectively;

6 if e(vs) is infeasible then Refresh (vs);

7 if e(v) is smaller than e(vs) then Set e(vp) = e(v);

8 else Set e(vp) = e(vs);

9 Set v = vp;

refresh operation. We describe the refresh procedure in

Procedure 1 and guarantee that the element of a node vr is

minimum and feasible after refresh by the lemma below.

Lemma 1. Procedure 1 updates the element of a node vr

such that the element is minimum and feasible in the buck-

ets covered by vr.

Proof. We prove that the element of each node v in the

procedure is minimum and feasible in the buckets covered

by v. First, the node v is li and the element of li is mini-

mum and feasible in Bi since Step 2 gets the minimum and

feasible element by scanning all elements in Bi. If there is

no feasible elements in Bi, we set infinity to e(li).

In while loop, we reset the elements of the nodes on

the path from li to vr. For each iteration, we first check

whether or not the element of the sibling vs of v is fea-

sible. If the element is infeasible, we call the procedure

recursively and the procedure chooses the minimum and

feasible element in the buckets covered by vs. Then, we

assign the smaller element in e(v) and e(vs) as the parent’s

element in Steps 7 and 8. Thus, the element of vp is mini-

mum and feasible in the buckets covered by vp. Finally, we

assign v as vp. The element of v is minimum and feasible

in the buckets covered by v. We repeat this process until v

becomes the node vr . �

Next, we analyze the time complexity of the procedure.

To analyze the time complexity, we show a significant

lemma.

Lemma 2. Let T be a binary tree with height h and s′

leaves. The number of nodes in T is at most s′ lg 2h

s′
+ s′−1.

Proof. We prove the lemma by induction on height. In

the base case, we assume that the height h of T is 1. The

tree T has only one leaf and 1 · lg 21

1
+ 1 − 1 = 1.

We assume that the root of T with height h has exactly

two children. Let sl be the number of leaves in the left sub-

tree. The number of leaves in the right subtree is s′−sl > 0.

The nodes in T is a union of the nodes of the left subtree,

the nodes of the right subtree, and the root. From the hy-

pothesis for height, the number of nodes in T is as follows.

3ⓒ 2015 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2015-AL-154 No.4
2015/9/28

(

sl lg
2h−1

sl

+ sl − 1

)

+

(

(

s′ − sl

)

lg
2h−1

s′ − sl

+
(

s′ − sl

)

− 1

)

+ 1

= sl lg
2h−1

sl

+
(

s′ − sl

)

lg
2h−1

s′ − sl

+ s′ − 1

≤
s′

2
lg

2h−1

s′/2
+

s′

2
lg

2h−1

s′/2
+ s′ − 1 (1)

= s′ lg
2h

s′
+ s′ − 1

Inequation (1) comes from the maximizing the entropy

of the coin toss, namely, the number is maximum when

sl = s′/2. Thus, the lemma holds when the root has two

children.

Next, we discuss the case that the root of the tree T

has only one child. The nodes in T are the root and the

nodes of the subtree rooted the child. We have the follow-

ing equation from the hypothesis and lg 2h−1

s′
= lg 2h

s′
− 1.

s′ lg
2h−1

s′
+ s′ − 1 + 1 = s′

(

lg
2h

s′
− 1

)

+ s′

≤ s′ lg
2h

s′
+ s′ − 1

since s′ ≥ 1. �

From the lemma above, we analyze the time complexity

of Procedure 1 below.

Lemma 3. Let r be the root of the tournament tree with

size s, and let s′(< s) be the number of refreshed el-

ements by Procedure 1 at r. The number of compar-

isons and feasibility-checks in Procedure 1 is at most

s′ · n
s
+ s′ lg s

s′
+ s′ − 1 and the procedure runs in O(s)

space.

Proof. We estimate the total cost of Step 2. Once the pro-

cedure is called, we refresh one element in Step 2. Thus,

the number of calls of Procedure 1 is s′ since the number

of refreshed elements in Step 2 is s′. For every element

in Bi, we check whether or not the element is feasible and

minimum in Step 2, and the size of Bi is ⌈n/s⌉. Therefore,

the number of both of comparisons and feasibility-checks

in Step 2 are at most s′ · n/s in total.

We analyze the size of a subtree T ′ which is constructed

from nodes on updating paths in the whole process. Since

the number of refreshed elements is s′, T ′ is a binary tree

with s′ leaves. From Lemma 2, the size of the subtree is at

most s′ lg s
s′
+ s′−1 since the height of the tournament tree

is lg s. For each node v in T ′, we check feasibility of the

sibling’s element e(vs) of v and compare e(v) and e(vs). The

total number of both of comparisons and feasibility-checks

in while iterations is s′ lg s
s′
+ s′ − 1. Therefore, in Pro-

cedure 1 for r, the number of comparisons and feasibility-

checks are s′ · n/s + s′ lg s
s′
+ s′ − 1 in total.

We discuss the space complexity of the procedure. The

tournament tree is represented in O(s) words. For each call

of the procedure, we need to remember the argument node

vr using a constant word and the depth of recursion is at

most lg s. Hence, Procedure 1 runs in O(s) words. �

2.2 Navigation Piles

A navigation pile is a compact representation of a tour-

nament tree [1], [8]. The main differences are following.

The navigation pile represents s elements by using O(s)

bits for workspace in lg n ≤ s ≤ n
lg n

. Any node stores a

partial information of the position for the minimum ele-

ment in the covered buckets of the node. We add an as-

sumption for refresh operation on the navigation pile.

(5) If the element of a node is infeasible, the elements of

its ancestors are also infeasible.

We separate the input array A = {e1, . . . , en} into s

buckets {B1, . . . , Bs} such that Bi = {e(i−1)⌈n/s⌉+1, . . . , ei⌈n/s⌉}

for each i. The size of each bucket Bi is ⌈n/s⌉ for i ∈

{1, . . . , s − 1}, and |Bs| = n − (s − 1)⌈n/s⌉.

A navigation pile is a complete binary tree with s/2

leaves. The leaves have height 1 and internal nodes have

height h if the nodes have children of height h − 1. Each

leaf covers two buckets and an internal node covers the

buckets which are covered by the leaves in the subtree

rooted at this internal node. Thus, each node with height

h covers 2h buckets and the size of 2h buckets is at most

2h × ⌈n/s⌉. Each node with height h stores 2h bits. We

divide the buckets covered by the node into ⌈n/(s · 2h)⌉

contiguous elements, called quantile. Each node points to

the quantile which contains the minimum element in the

buckets covered by the node. The first h bits represents

the bucket which contains the quantile and the second h

bits represents the index of the quantile in the bucket. If

2h > ⌈lg n⌉, nodes with height h have ⌈lg n⌉ bits and point

to the minimum element in the buckets, directly. The num-

ber of nodes with height h is s/2h and each node stores

min(2h, ⌈lg n⌉) bits. Therefore, the total number of bits of

the navigation pile is
∑lg s

h=1
(S/2h) ·min(2h, ⌈lg n⌉) = O(s).

A navigation pile supports find-min and extract opera-

tions. To support the find-min operation in O(1) time, we

keep a separate pointer to the minimum element in the nav-

igation pile by using lg n bits. This minimum pointer is

updated with every extract operation.

Next, we explain how to extract an element in O(lg s)

time from a navigation pile. We first get the bucket con-

taining the extracted element. Then, we find the next min-

imum element of the bucket by scanning the bucket, and

update the leaf covering the bucket pointer of the quantile

which contains the element, that is, we update the informa-

tion of the nodes on the path from the leaf to the root. To

update each internal node on the path, we compute the two

4ⓒ 2015 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2015-AL-154 No.4
2015/9/28

elements of its children by scanning the quantiles pointed

by the children. Then, we compare the two elements and

save the pointer to the quantile which contains the smaller

element at the node. We can access the quantile of an in-

ternal node in constant time because navigation bits are

stored in a bit vector in breadth-first order. After getting

to this position, we get the elements by scanning the quan-

tile. For a node of height h, the size of the quantile is at

most ⌈n/(s · 2h)⌉. By summing on this formula over the

updating path, both of comparisons and feasibility-checks

is required O(n/s + lg s) times for the extract operation.

From the extract operation, we figure out that the re-

fresh operation described in the previous section can be

performed on the navigation pile in the same way. For

each node on a updating path, we check whether or not

the element of the sibling of the node is feasible. If the

element is infeasible, we update the sibling, recursively.

However, since we have only O(s) bits for workspace, we

cannot execute the recursive call, simply; we need to keep

an argument node vr using lg n bits and the depth of the

recursive call is lg s. In the greedy algorithm, we only

extract the minimum element of the root of a navigation

pile. Thus, we can expand the recursive call in the refresh

procedure on O(s) bits workspace. For each height, we

manipulate comparisons and feasibility-checks in at most

s′ ·⌈n/(s ·2h)⌉ times because the quantile size of nodes with

height h is ⌈n/(s ·2h)⌉ and the number of nodes with height

h is at most s′ where s′ is the number of updated leaves in

the operation. Hence,
∑lg s

h=1
s′ · ⌈n/(s · 2h)⌉ = O(s′ · n/s).

In addition the size of the touched nodes is s′ lg s
s′

from

Lemma 2. Therefore, the running time of the procedure is

O(s′ · n/s + s′ lg s
s′

).

If the navigation pile satisfy the assumption (5), we can

extract all infeasible elements by adopting refresh, sim-

ply. However, if the navigation pile does not guarantee the

assumption (5), our refresh operation does not work cor-

rectly in a greedy algorithm. We use the latest output as

a boundary value while scanning the quantile to find the

corresponding element from a quantile. After changing

the latest output, we cannot get back the corresponding el-

ements which become infeasible before since nodes of the

navigation pile have pointers to the quantile, not the direct

pointers to the elements. In our refresh operation on the

navigation pile, we need to extract all infeasible elements

in the navigation pile. However, the navigation pile repre-

senting candidates may not satisfy the assumption (5) on

some problems.

To get rid of the assumption (5), we use restricted pile

which is also a navigation pile with s/2 leaves. We call a

candidate pile an ordinary navigation pile for candidates.

The restricted pile is isomorphic to the candidate pile and

each node in the restricted pile covers the buckets which

covered by the corresponding node in the candidate pile.

Each node of the restricted pile represents a restricted ele-

ment which is more restricted than the candidate, that is, if

the candidate of a node is infeasible, the restricted element

corresponding to the node is also infeasible. We assume

that the restricted pile have the assumption (5), namely, if

a restricted element of a node are infeasible, the elements

of its ancestors are also infeasible.

We next discuss how to use a restricted pile for refresh.

In a greedy algorithm, we first output the minimum and

feasible candidate from a candidate pile on a step. Then,

we refresh the restricted pile for refreshing the candidate

pile. We can extract all infeasible elements in the restricted

pile because the restricted pile hold the assumption (5). We

have the condition that the restricted elements are infeasi-

ble if the candidates are infeasible. Hence, we can extract

all infeasible elements in the candidate pile by updating the

nodes which are infeasible in the restricted pile. The time

complexity of this refresh of the candidate pile is same as

that of the restricted pile. From above discussion, we have

the following lemma.

Lemma 4. Let T and T ′ be a candidate pile and its re-

stricted pile. We can extract all infeasible elements in T by

applying refresh operation for T ′ and we manipulate com-

parisons and feasible-checks in O(s′ · n/s + s′ lg s′

s
) times

where s′ is the number of updated leaves in the restricted

pile T ′.

We give an example using a restricted pile in the next

section.

3. Algorithms for Maximum Indepen-

dent Set on Intervals

In this section, we apply the method in Section 2 to the

problem of finding the maximum independent set on inter-

vals. A set of intervals is independent if for any two dis-

tinct intervals I and I′ in the set, I do not intersect I′. The

maximum independent set problem is to find a independent

set which has the maximum cardinarity from an input in-

tervals I. We define l(I) and r(I) as the coordinate of the

left and right endpoints of the interval I ∈ I, respectively.

It is known that there is a greedy algorithm for the max-

imum independent set problem on intervals. Let IA be the

set of intervals which have been outputted. An interval

I ∈ I \ IA is infeasible if there exists an interval I′ ∈ IA

such that I intersect I′. Otherwise, I is feasible. For each

iteration, the greedy algorithm outputs an interval with the

minimum right endpoint in the feasible intervals. We can

compare the right endpoints of two intervals in constant

time. In the greedy algorithm described in Algorithm 2,

we only check the feasibility by comparing the left end-

point of a interval with the right endpoint of the latest out-

put. Hence, it takes O(1) time for the feasibility-check.

5ⓒ 2015 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2015-AL-154 No.4
2015/9/28

Algorithm 2: Greedy Algorithm for Maximum Inde-

pendent Set on Intervals

1 r = −∞;

2 while there is a feasible interval do

3 Find an interval I with minimum right endpoint in feasible

intervals that r < l(I);

4 Output I and set r = r(I);

For implementing the algorithm, we first sort intervals

with increasing order of the right endpoints simply. Then,

we can find output intervals by sweeping the sorted array

once. However, the implementation runs in O(n lg n) time

and Θ(n) words for workspace. Thus, the implementation

does not work in the space constraint.

In this section, we propose two algorithms for the maxi-

mum independent set problem on intervals by using mem-

ory adjustable priority queues described in Section 2.

3.1 Algorithm using Tournament Trees

We construct a tournament tree for storing intervals.

The key of the tournament tree is right endpoints of in-

tervals. For the problem, we apply refresh procedure on

the tournament tree in Algorithm 2.

Theorem 5. Our algorithm using tournament tree runs in

O(m · (lg sk
m
+

n
s
) time where m = min(n, sk) and k is the

size of the optimal solution.

Proof. From Lemma 3, the step 3 takes si ·
n
s
+ si lg 2s

si
+

si − 1 time where si is the number of refreshed inter-

vals for each iteration i. The algorithm takes
∑k

i=1 si ·
n
s
+

∑k
i=1 si lg s

si
+

∑k
i=1 si −

∑k
i=1 1 time. We next prove that

∑k
i=1 si ·

n
s
= O(m · n

s
) and

∑k
i=1 si lg s

si
= O(m lg sk

m
) where

m = min(n, sk).

Here, we prove that
∑k

i=1 si ≤ min(n, sk). For each itera-

tion in the algorithm, we refreshed at most s intervals, that

is, si ≤ s because the tournament has at most s intervals.

On the other hand, for each interval, the interval is stored

into the tournament at most once in the algorithm since the

threshold r increases monotonically. Thus the total num-

ber of refreshed intervals is at most min(n, sk). Therefore,
∑k

i=1 si ·
n
s
= O(m · n

s
).

Next, we prove that
∑k

i=1 si lg s
si
≤ m lg sk

m
inductively.

We assume that sk < n, that is, k < n/s. Because

the derivative of si lg s
si

with respect to si is
log s/si−1

log 2
, the

root of this function is s
e

where e is a Napier’s constant.
∑k

i=1 si lg s
si
≤

∑k
i=1

s
e
=

lg e

e
sk = O(sk).

We assume that sk ≥ n, that is, k ≥ n/s. We prove that
∑k

i=1 si lg s
si
≤ m lg sk

m
by induction on k. We can prove the

base case from the above discussion. From hypothesis,

k
∑

i=1

si lg
s

si

=

k−1
∑

i=1

si lg
s

si

+ sk lg
s

sk

≤ (m − sk) lg
s (k − 1)

m − sk

+ sk lg
s

sk

≤

(

m −
s

k

)

lg
s (k − 1)

m − s/k
+

s

k
lg

s

s/k
(2)

= m lg
sk

m
.

By using the discussion of the maximizing entropy, we set

si =
s
k

for each si in the inequality (2). �

Here, we have some discussion for the time complexity

of our algorithm. If n/s ≤ k then it takes O(n lg sk
n
+ n2/s)

time. This running time is better than Bhattacharya’s

algorithm because k ≤ n. The time-space product is

O(ns lg sk
n
+n2). If n/s > k then the algorithm runs in O(kn)

time. The time-space product is O(ksn) and ksn < n2.

From this observation, if k and s are small, the time-space

product is o(n2). If s = n, that is, the space is enough for

the problem, our algorithm runs in O(n lg k) time. The run-

ning time is output sensitive and same as that of Snoeyink’s

algorithm.

3.2 Algorithm using Navigation Piles

We have O(s) bits as workspace in this subsection.

We construct two navigation piles, candidate pile and re-

stricted pile in Section 2.2. The key of the candidate pile

and the restricted pile is right endpoint and left endpoint,

respectively. We have the following lemmas.

Lemma 6. If the candidate interval of a node of the can-

didate pile is infeasible, the restricted interval of the cor-

responding node of the restricted pile is also infeasible.

Proof. Since the candidate interval I of a node of the can-

didate pile is infeasible, l(I) is smaller than or equal to r.

Let J be the restricted interval of the corresponding node of

the restricted pile. Because the key of restricted intervals is

left endpoint, the left endpoint of J is smaller than or equal

to that of the candidate interval, that is, l(J) ≤ l(I) ≤ r.

Thus, J is also infeasible. �

Lemma 7. If the restricted interval of a node is infeasible,

the intervals of its ancestors are also infeasible.

Proof. We suppose that the restricted interval I of a node

is infeasible. Since the key of restricted intervals is left

endpoint, the left endpoint of the interval of any ancestor

is smaller than or equal to l(I). �

From Lemmas 4, 6, and 7, we can extract all infeasi-

ble intervals from the candidate pile by refreshing the re-

stricted pile. Thus, we can describe an algorithm using

navigation piles for the maximum independent set problem

on intervals and the analysis of the algorithms is similar to

6ⓒ 2015 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2015-AL-154 No.4
2015/9/28

Theorem 5.

Theorem 8. Our algorithm using navigation piles runs in

O
(

m ·
(

lg sk
m
+

n
s

))

time where m = min(n, sk) and k is the

size of the optimal solution.

4. Conclusions

We have presented an efficient greedy algorithm with

memory constraint using priority queues, and we have pro-

posed a new operation refresh for designing efficient algo-

rithms. We have applied our method to maximum inde-

pendent set problem.

We can apply our algorithms for several dominating set

problems on intervals, for example minimum (connected,

totally, or paired) dominating set. For almost all of the

problems, it is known that there are greedy algorithms for

these problems. By applying our ideas, these problems can

be solved in the same time of ours.

In this paper, we treat greedy algorithms with fixed pri-

ority model. It is an interesting future work to consider

greedy algorithms with the adaptive priority model that the

value of an element depends on the outputted elements.

Many greedy algorithms, for example the shortest paths

or minimum spanning tree on a graph, are on this model.

The weighted problems on intervals can be solved in poly-

nomial time using dynamic programming. However, it is

difficult to construct a computational table with space con-

straint. We should consider how to realize dynamic pro-

gramming on space constraint.

References

[1] Tetsuo Asano, Amr Elmasry, and Jyrki Katajainen. Priority
queues and sorting for read-only data. In Theory and Appli-
cations of Models of Computation, 10th International Con-
ference, TAMC 2013, Hong Kong, China, May 20-22, 2013.
Proceedings, pages 32–41, 2013.

[2] Binay K. Bhattacharya, Minati De, Subhas C. Nandy, and
Sasanka Roy. Maximum independent set for interval graphs
and trees in space efficient models. In Proceedings of the 26th
Canadian Conference on Computational Geometry, CCCG
2014, Halifax, Nova Scotia, Canada, 2014, 2014.

[3] Allan Borodin, Joan Boyar, Kim S. Larsen, and Nazanin Mir-
mohammadi. Priority algorithms for graph optimization prob-
lems. Theor. Comput. Sci., 411(1):239–258, 2010.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[5] Omar Darwish and Amr Elmasry. Optimal time-space tradeoff
for the 2d convex-hull problem. In Algorithms - ESA 2014 -
22th Annual European Symposium, Wroclaw, Poland, Septem-
ber 8-10, 2014. Proceedings, pages 284–295, 2014.

[6] Yuval Emek, Magnús M. Halldórsson, and Adi Rosén. Space-
constrained interval selection. In Proceedings of the 39th In-
ternational Colloquium Conference on Automata, Languages,
and Programming - Volume Part I, ICALP’12, pages 302–313,
Berlin, Heidelberg, 2012. Springer-Verlag.

[7] Greg N. Frederickson. Upper bounds for time-space trade-offs
in sorting and selection. J. Comput. Syst. Sci., 34(1):19–26,
1987.

[8] Jyrki Katajainen and Fabio Vitale. Navigation piles with appli-
cations to sorting, priority queues, and priority deques. Nordic
J. of Computing, 10(3):238–262, September 2003.

[9] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2005.

[10] Donald E. Knuth. The Art of Computer Programming, Volume
3: (2Nd Ed.) Sorting and Searching. Addison Wesley Long-
man Publishing Co., Inc., Redwood City, CA, USA, 1998.

[11] J. Ian Munro and Mike Paterson. Selection and sorting with
limited storage. Theor. Comput. Sci., 12:315–323, 1980.

[12] Jack Snoeyink. Maximum independent set for intervals by di-
vide and conquer with pruning. Netw., 49(2):158–159, March
2007.

7ⓒ 2015 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2015-AL-154 No.4
2015/9/28

