
IPSJ SIG Technical Report

A Method for Dynamic Packing of Data Blocks for
Over-the-Network Indexing

Marat ZHANIKEEV1,a)

Abstract: The problem of over-the-network indexing has been raised in recent literature. Indexing is traditionally
done on a local filesystem. When processing/access and storage are separated by network, traditional methods per-
form poorly, even if rewritten for over-the-network logic. The new engine called Stringex was newly proposed with
over-the-network efficiency in mind. However, although blocksize is optimized by the method, it is fixed for the entire
index. This paper looks into a way to allow for dynamic blocksize. The problem is formulated as dynamic packing of
unit blocks for optimal over-the-network access. The new method also takes into account the issue of atomicity of op-
erations in multiuser environments, where each of the multiple users can experience drastically different performance
on end-to-end network paths.

Keywords: over-the-network applications, resource-constricted indexing, resource-efficient indexing, high-volume
indexing, resource efficiency, resource optimization, network performance

1. Introduction and Problem Statement
Imagine a local application in form of a Javascript web appli-

cation (webapp) running in a web browser. The Javascript code
could be downloaded from a remote server, but it runs locally. It
is also possible to run standalone webapps from an HTML file
in the local filesystem. The webapp retrieves information from
web pages as you are browsing them. Let us assume that this we-
bapp retrieves metadata from pages on a scientific portal, where
the unit page shows information for one scientific paper. Such
an application needs to index the retrieved information, which
is accumulated in multiple sessions over a prolonged period of
time. The indexing is necessary in order to be able to browse
or search the information later. Note that indexing for now is a
generic term which includes tables, databases, etc., until it will be
defined later in this paper.

You are also part of social collaboration which means that your
index is shared with other people. In the age of clouds, it has be-
come convenient to share files stored in the cloud. All you need
to do is share your files (or a folder), and get access info from
your cloud provider (Google, Dropbox, etc.). This information
is readily available as part of your account. Your webapp will
use it for authentication which is normally done using the OAuth
protocol, details about which can be omitted for clarity.

This hypothetical situation creates interesting challenges.
Since our webapp runs in a browser, computing and storage re-
sources are limited. The indexing engine has to be designed
accordingly. Clouds might impose limitations on the number
of files as well as the total size of the storage. Finally, end-

1 Computer Science and Systems Engineering
Kyushu Institute of Technology
Kawazu 680-4, Iizuka-shi, Fukuoka-ken, 820–8502 Japan

a) maratishe@gmail.com

to-end throughput between the webapp and cloud storage has
a physical limit. This optimization problem is referred to as
the Stringex Problem in this paper, where the term is the con-
catenation of the words stringent and indexing. Indexing now can
be fully defined as a type of database without the relational part
– the technology has become popular recently as an alternative
to structured data storage, where indexing provides the unstruc-
tured alternative. Lucene [5] is the de-facto industry standard of
indexing tools. Lucene, of course, runs only locally and is not
optimized for over-the-network operation. Hence the need for a
Stringex-like alternative to Lucene.

There is some evidence of recent development in this general
direction. For example, Fullproof [4] is a Javascript-based index-
ing engine which was designed from scratch to be able to run un-
der HTML5. Fullproof, however, does not use cloud storage and
does not consider the above optimization problem being simply a
browser-based indexer.

Fig.1 is the visual representation of the above problem. The
figure is split into left (conventional) and right (proposed) parts.

Data

Indexer

Index

Network

Traditional
Client

Data

Indexer

Index Read,
 Write

Stringex
Client

The

Fig. 1 The fundamental problem of over-the-network indexing.

1ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-154 No.3
2015/9/28

IPSJ SIG Technical Report

Stringex

Index

Stringex
Client

The

Sync
Engine

Optimization

Local
Cache

Check
1 2

Use

Fig. 2 The core design of a Stringex client implemented as a sync engine
between local caching and remote index.

In the conventional indexing engines, while it is possible to allow
users to have an over-the-network access (web API, remote shell,
etc.), the index and indexer are tightly coupled, which means that
they are commonly located either on the same machine or very
closely located separate machines. In fact, as the figure shows,
it is quite common to store the entire documents in Lucene, in
which case even the data is stored at the same location.

So, what needs to change on the right side of Fig.1? For
starters, metadata and data could be separated not only logically
but also physically – meaning that the two could be stored on dif-
ferent machines. This is not a new way of thinking. The bigger is
the size of data the more often the servicing technology strives to
separate data from metadata. For example, this is a must-do for
Big Data-level bulk – read the Hadoop overview at [8].

Also, even more importantly, the core of the Stringex formu-
lation is the separation of Indexer from both the index and data.
It is, in fact, the main premise of the proposal – handling of both
the metadata and the data parts is to be done in over-the-network
manner.

Unfortunately, both Lucene and Hadoop (bigdata) do not con-
sider over-the-network access at present time. Instead, most re-
search on the two tools is dedicated to the problems of concurrent
access [9] and heterogeneous load [10].

2. Stringex Basics
When performing data-intensive activities over the network,

one has to invest heavily into traffic efficiency. The two funda-
mental problems are:
• one cannot use any form of locking at remote location be-

cause deadlocks from leftover or abandoned locks are in-
evitable and cannot be counteracted effectively;

• concurrency can only be supported in form of shared reads
but isolated writes – if one attempts to share writes, the prob-
lem of the first item have (but cannot) to be resolved.

Once the above fundamental problems are treated, the Stringex
client can start working on efficiency.

Fig.2 shows the efficiency logic adopted by early Stringex and
retained by the next virsion discussed in this paper. The logic fol-
lows the general caching approach by implementing a Sync En-
gine which serves as the border between local and remote content.
A limited size of Local Cache is maintained by the Sync Engine
and serves as the buffer for both metadata and data updates.

The efficiency offered by the Sync Engine should be obvious.

3.15 3.85 4.55 5.25 5.95 6.65
Index Size (log)

2.55

2.65

2.75

2.85

2.95

3.05

3.15

3.25)cod/setyb fo gol(tuphguorhT

Lucene

Stringex

Normal operation

…

Need to
improve
this part

Fig. 3 Snapshot of performance under Stringex v.1, compared to the indus-
try standard Lucene.

For example, if human user updates the same document two or
more times within a short span of time (common in practice), then
the efficiency can be achieved simply by delaying the first up-
date for some time. If the second update happens before the first
update is commited – where commit involves sending the meta-
data/data to the remote index and removing it from local cache
– then the syncing is done only once for any number of updates
happening within the timeout time span within each other.

The hidden part of the efficiency is in the optimization poten-
tial of such a method. The basic optimization formulation can be
found in the first paper on the Stringex problem in [1]. In a man-
ner of speaking, this paper continues looking into optimization
while presenting the upgraded version of the Stringex client.

3. Early Stringex: Performance Bottlenecks
Software for the old version, which also contains the bench-

mark code for comparison with Lucene can be found at [3]. It
is based on the implementation of the logic presented in [1].
Note that while that paper also formulated the optimziation prob-
lem, the software implementation was simplified, avoiding the
complexity of runtime optimization. Once of the simplifications
called for a fixed block size for both metadata and documents –
the very problem resolved by this paper.

Fig.3 shows a performance snapshot of Stringex versus Lucene
with annotations. First, it is obvious that Stringex client has two
main stages of operation. At the initiation stage, the client has to
create many new files for both metadata and data, which is why
the data exchange with the index – both in terms of file number
and byte count – is high. However, this process saturates natu-
rally, which is when the Stringex client reaches a more moderate
level of data exchange at the operation stage. Note that the main
reason for the spike at the Initiation stage is that the client uses
random hashing to define prefixes of both metadata and document
files, which is why the saturation is steep but short.

Comparing the performance with Lucene is difficult simply
because Lucene writes to local files and does not care about
throughput while the Stringex client writes to remote files over
the network and cares only about traffic efficiency. However,
Fig.3 still attempts to compare the two tools in the volume of the
byte stream they generate. The figure shows that Lucene peaks at
almost 1 order of magnitude higher than Lucene, but settles only
slightly above Lucene (0.05 of an order of magnitude).

Still, having a similar level of performance to Lucene is not a

2ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-154 No.3
2015/9/28

IPSJ SIG Technical Report

prefixmin
prefixmax
keyorder

global config

1
3
authors,
title, pages

Example
values

Cloud storage

meta.a.a.a

Three
keys

meta.a.af.a
…

meta.z.z.z

Update

docs.a.a.a
…

docs.z.z.z

Stringex
Client

The

Background
(lazy)
processing

Fig. 4 The completely new design that simplifies the metadata layer but also
allowed for variable size blocks.

good thing. Again, since Lucene does not care about the through-
put it generates, supporting the same level of traffic in the Stringex
client will definitely result in poor overall performance. Specifi-
cally, users might have to wait for multiple seconds or even min-
utes while their documents sync to the index. So, as the anno-
tation in Fig.3 says, this part in Stringex operation has to be im-
proved.

4. Advanced Stringex: Performance Tweaks
Let us first set up the objectives for the new Stringex engine as

an attempt to fix the problems described in the previous section:
• having many metadata files is messy – the old version of

Stringex would keep separate file lists for each key in meta-
data, resulting in the Stringex client having to update multi-
ple files when performing a major update;

• having large files contributes to sluggishness of the tool –
however, when the block size is fixed, this issue becomes the
unpleasant tradeoff between the number of files and down-
load times.

The following improvements are made.
Combined metadata resolves the problem of multiple meta-

data files. In the current version, metadata is viewed as a flattened
multiparameter space where each parameter is a key in metadata.
When values are hashed, one can easily predict where in the long
sequence a given set of metadata values is located. This design
even allowes for empty keys by replacing the file prefix with a
string which is not encountered in a conventional hashkey – the
client to use such strings to fill in the empty keys (search, lookup,
etc.) when bulding the name of a metadata file sync.

Asymmetric/Variable Blocks resolves the problem with
heavy traffic exchange. It applies to both metadata and document
files. The idea is to allow each independent Stringex Client to
upload smaller blocks – ideally the minimal chunks which would
hold the updated part of docs/metadata. This is a tricky part of
the new engine, but is achievable in practice.

Fig.4 shows the design of the new Stringex engine. The left
side shows the structure and filesystem design at the (remote) in-
dex location while the right side shows the simple way to deal
with variable side blocks.

The config file has some global information. The two impor-

Stringex
Client

The

JSON { name : value1, age : value2, …}

caching
hashing

Sync
Engine

Fill gaps
‘0’ prefix

My own
recent?

Timeout
passed?

no Get
cache Index

no

Get
large
block

yes

Small block
still there?

if failed

Get
small
block try

Fig. 5 The new algorithm implemented by Stringex v2 for any operation
(lookup, update, create, etc.) triggered by user.

tant parameters are prefixmin and keyorder, while the rest can
be fine-tuned by each client without breaking the index itself.
Prefixmin is important because this file is downloaded by each
Stringex Client when metadata/docs are used for the first time.
All the following handling can be done on a greatly reduced file –
this is accomplished by increasing prefix length for one or more
parts in the filename. Fig.4 shows an example, where the second
a is grown to af – the length increases from 1 to 2. The prefixmax
parameter in global configuration can be used to place a cap on
the maximum length of prefixes, but index-side automation can
be built to deal with any length, which is why it is advised that
this decision is made at client side (possible user setting).

Note that this version of the Stringex client stores all metadata
in meta* files. Filename for any particular combination of values
of keys can be calculated easily by taking hashes of values and
building the filename from prefixes of hash values. Note that this
is why key order is a global parameter – it is necessary not to
confuse the order of prefixes in filename.

Also note that doc.* files follow the same pattern – these file-
names are also constructed from multiple prefixes obtained from
shortened hash functions of metadata values. This is the con-
nection between metadata and data. The earlier version of the
Stringex client required metadata to point to filenames which con-
tains the documents for any given configuration of metadata. In
this version, both metadata and documents can be looked up by
the client separately.

This logic also requires a lazy background processing job as is
marked in Fig.4. This is because small files have to be merged
with the large files on a given (fairly long) timeout, after which
the contents should be merged into the main bulk at the maximum
globally defined size. For example, it is wise to have timeouts at
the range of 60s or more at client side (in browser). In case of
the lazy background processing, small blocks can be allowed to
live for hours or even days. If a given metadata or document are
popular among multiple users, this can drastically improve the
responsiveness of over-the-network access to the index.

5. The New Algorithm
Fig.5 shows the new algorithm. As before, the user communi-

cates with the Stringex Client using the JSON format [6]. In fact,
the internal format is JSON for the index as well, with the only
exception that JSON is stringified, compressed, and stored in a

3ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-154 No.3
2015/9/28

IPSJ SIG Technical Report

one-line-per-item format in the files at the index side. To explain
the algorithm, it is not necessary to make a distinction between
the various handling functions, such as create, lookup, update,
and others. The same generic algorithm applies to any handling
function.

As the first step, the filenames have to be properly constructed.
We know the global order of keys, but just in case some of the
keys are not set (very common) by the user, the gaps have to be
filled. The figure shows the 0 prefix, but anything meaningful
(anything not to appear in a hash function) can be used instead,
including the empty prefix, which can still be detected by count-
ing the dots.

Having the legitimate filenames, one can now interact with the
local sync engine by looking up the locally cached content. Note
that the lookup is fast because it is local, so, the local engine
can iterate through the various prefix length in order to find out
whether or not a very specific part of metadata can be found in
local cache.

There are situations when the file has been handled within
the current session but has already timeouted and has been up-
loaded/synced to the remote index. This still leaves the possibil-
ity that the specific (small) file can still be found at the remote in-
dex (difference between timeouts is normally large), which needs
confirmation. The confirmation can be implemented as try, that
is, an attempt to simply download the file, and only when the op-
eration files (no such file), the client can fall back to getting a
larger block.

Note that the logic is built is such a way that smaller blocks
are used either in local cache or remote index as much as possi-
ble, falling back to large blocks only as the last resort. Also note
that, while the Stringex Client in this version has retained its main
modules – specifically the hashing (MD5), caching, and the sync-
ing logic, the structure of the index itself as well as the algorithm
of interacting with the index has undergone a major upgrade.

6. Conclusion
This paper presented an upgraded version of the Stringex

Client – the client side of the technology for over-the-network in-
dexing. The remote side (index itself) of the technology has also
undergone a major upgrade to support the changes in the client.
All in all, the second version of this software has been rendered
completely incompatible with the old version. In fact, the possi-
bility of compatibility has completely disappeared after the first
goal – variable block size – has been reached in this paper. How-
ever, including the block size, the new version offers several ma-
jor improvements in performance and is recommended over the
early version.

The first version of the software has been plagued with two
main problem, both having to do with the structure of the in-
dex. On one hand, the metadata layer was split into sub-layers
for each key (field, column, etc.) which resulted in having to
sync multiple files for each update that created or changes one
or more keys (which is very common). On the other hand, block
size was fixed at a tradeoff point between having too many files
and having to wait for a long time to sync large files over the
network. Both problems are resolved in the new version of the

software. The total number of files is reduced by merging all the
metadata into flat sequence. However, smaller files are allowed to
be created temporarily in the updated areas of metadata or doc-
uments, which does increase the total number of files but in a
controlled/focused/local manner.

The work on the Stringex client will continue. One of the per-
formance tricks in this version allowed for independent lookups
in metadata and document spaces using the same lookup tuples.
This is convenient when the purpose of the action is to find and
read a document – in this case the metadata can be left untouched.
However, this also opens the possibility of having metadata-less
versions of the Stringex Client. Such versions might be useful
in cases where the documents themselves are mostly indistin-
guishable from metadata. These are, in fact, the usecases covered
by the traditional Lucene community [5], where it is common to
store documents as part of the metadata.

Although the practical purposes of the Stringex Client might
not be immediately obvious, there is a large class of crowdsourc-
ing web applications [2] where the proposed functionality can
helps support structured data exchange across the large social
communities of contributors.

References
[1] M.Zhanikeev, “A New Practical Design for Browsable Over-the-

Network Indexing”, International Conference on Information Science,
Electronics and Electrical Engineering (ISEEE), pp.1686–1690, April
2014.

[2] M.Zhanikeev, “Maps2Graphs: A Socially Scalable Method for Gener-
ating High-Quality GIS Datasets Based on Google Maps API”, IEICE
Technical Report on Intelligent Transport Systems Technology (ITS),
vol.113, no.337, pp.73–76, December 2013.

[3] Stringex Project Repository. [Online]. Available:
https://github.com/maratishe/stringex (January 2015)

[4] fullproof: Browser Side Indexing. [Online]. Available:
https://github.com/reyesr/fullproof (September 2015)

[5] Apachet Lucene. [Online]. Available:
lucene.apache.org (September 2015)

[6] JSON format. [Online]. Available:
www.json.org (September 2015)

[7] Dropbox Core API. [Online]. Available:
shttps://www.dropbox.com/developers/core (September 2015)

[8] Shvachko K., “HDFS Scalability: the Limits to Growth”, the Maga-
zine of USENIX, vol.35, no.2, pp.6–16, 2012.

[9] Gimme all resources you have - I can use them!. [Online]. Available:
http://blog.trifork.com/2011/04/01/gimme-all-resources-you-have-i-
can-use-them/ (September 2015)

[10] Rasooli A., Down D., “COSHH: A Classification and Optimization
based Scheduler for Heterogeneous Hadoop Systems”, Technical re-
port of McMaster University, Canada, 2013.

4ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-154 No.3
2015/9/28

