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Abstract: Security-Enhanced Linux (SELinux) is a useful countermeasure for resisting security threats to embedded
systems, because of its effectiveness against zero-day attacks. Furthermore, it can generally mitigate attacks without
the application of security patches. However, the combined resource requirements of the SELinux kernel, userland, and
the security policy reduce the performance of resource-constrained embedded systems. SELinux requires tuning, and
modified code should be provided to the open-source software (OSS) community to receive value from its ecosystem.
In this paper, we propose an embedded SELinux with reduced resource requirements, using code modifications that are
acceptable to the OSS community. Resource usage is reduced by employing three techniques. First, the Linux kernel
is tuned to reduce CPU overhead and memory usage. Second, unnecessary code is removed from userland libraries
and commands. Third, security policy size is reduced with a policy-writing tool. To facilitate acceptance by the OSS
community, build flags can be used to bypass modified code, such that it will not affect existing features; moreover,
side effects of the modified code are carefully measured. Embedded SELinux is evaluated using an evaluation board
targeted for M2M gateway, and benchmark results show that its read/write overhead is almost negligible. SELinux’s
file space requirements are approximately 200 Kbytes, and memory usage is approximately 500 Kbytes; these account
for approximately 1% of the evaluation board’s respective flash ROM and RAM capacity . Moreover, the modifica-
tions did not result in any adverse side effects. The modified code was submitted to the OSS community along with
the evaluation results, and was successfully merged into the community code.
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1. Introduction

M2M (Machine-to-Machine) technologies are widely used in
various fields such as utilities, manufacturing , transportation, and
health care [1]. As a result, embedded systems are increasingly
connected to the Internet. One of the most typical embedded sys-
tems connected to the Internet is an M2M gateway, which bridges
sensor nodes without IP addresses to the Internet [2]. Linux is a
popular OS for those embedded systems, because development
environments are available as freeware and actively maintained
by the open-source software (OSS) ecosystem. Security for de-
vices that run embedded Linux is an important issue, because
those devices are typically connected to the Internet. Once vul-
nerabilities are exploited by attackers, they can destroy a system,
steal information, and attack other systems. For PC servers, ap-
plying security patches and anti-virus software are effective coun-
termeasures. However, these measures are impractical for embed-
ded systems. Applying security patches to an embedded system is
difficult for two reasons. First, developing patches is difficult be-
cause device vendors often customize embedded Linux systems,
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using them in place of standard Linux distributions. Device-
specific security patches are not typically provided by Linux dis-
tributions. Second, installing modified programs can be difficult.
Platform software is often stored in read-only flash ROM file sys-
tems. For firmware updates, it is necessary to rewrite the entire
file system to install modified programs. However, firmware up-
dates are risky because the device will not be usable if the update
fails. It is also difficult to use anti-virus software. Preparing pat-
tern files is diffcult because embedded Linux system configura-
tions differ depending on the type of device. In addition, updating
pattern files requires a risky firmware update.

Address space layout randomization (ASLR) and access con-
trol are effective security technologies not only for PC servers
but also for embedded Linux systems. ASLR protects against
attacks that exploit memory management vulnerabilities by ran-
domizing stack and heap layouts, and an implementation for em-
bedded systems is available [3]. However, ASLR only protects
against attacks that exploit memory management vulnerabilities,
and techniques to bypass it have been reported [4], [5]. Access
control blocks attacks by employing a permission check. Linux
provides access control based on file permissions. However, if
an attacker can obtain root privileges, which provide access to all
commands and files then no security technique will be effective.

Mandatory Access Control (MAC) is useful for limiting root
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privileges [6]. With MAC, access to a resource is checked based
on a set of rules called the security policy, and no user, including
root, can avoid the check. If attackers obtain root privileges, their
behavior can still be confined by MAC security policy, and attack
attempts will fail owing to lack of access rights. The Linux ker-
nel has a framework called Linux Security Modules (LSM) [7] to
implement MAC. On top of LSM, various MAC systems such as
SELinux [8], TOMOYO [9] and SubDomain [10] have been de-
veloped and are used in PC server systems. They are also useful
for embedded systems, because security policy is built in at im-
plementation time, therefore updates are not necessary.

In LSM-based MAC systems, SELinux is the most widely used
and actively maintained implementation. SELinux provides the
most fine-grained access control model based on permission and
type enforcement (TE) [11], and has been researched since the
1980’s.

However, to use SELinux on embedded systems, there are re-
source usage issues, and modified code must receive feedback
from the SELinux community. SELinux developers have pri-
marily focused on PC server implementations, and many fea-
tures have been added. As a result, resource consumption has
become unacceptable for embedded systems. To reduce resource
consumption, Linux kernel and related OSS code must be modi-
fied. In addition, modified code must be merged into code main-
tained by OSS communities to ensure its long-term use. OSS
code is made public by various open-source licenses; developers
from around the world continuously submit patches, which are
reviewed and merged into the OSS community code according to
their development processes [12]. If modified code is not merged
into the OSS community code, the developer must correct the
modified code for every version up to the most current version of
the target OSS. Conversely, if modifications are merged, they are
maintained by OSS communities and the modified code will be
used for an extended period.

We propose Embedded SELinux, in which SELinux resource
usage is reduced with code modifications that are acceptable to
the OSS community. Embedded SELinux is mainly targeted for
embedded devices directly connected to the Internet and whose
resource is constrained to save energy and cost. One of the most
typical device is an M2M gateway, where CPU clock is often
200–600 mhz and RAM size is 32–128 MBytes. Consumer Elec-
tronics (CE) devices (Low-end TV, Set Top Boxes and In Home
Displays) are also example of such devices. For these devices,
resource usage is reduced using three techniques. First, the Linux
kernel is tuned to reduce CPU overhead and memory usage. Sec-
ond, unnecessary code is removed from userland libraries and
commands. Third, security policy size is reduced by our policy-
writing tool. In addition, to be acceptable to the OSS community,
the side effects of the modified code are measured, and removed
code can be selected by a flag at build time. We implemented and
evaluated our system on an embedded system. The result shows
that resource consumption is acceptable for an embedded system.
Code modifications were proposed to the OSS community, and
eventually merged into the community code.

In summary, we provide the following contributions.
• We determined that code modifications will be necessary to

Fig. 1 Main feature of SELinux: TE (Type Enforcement).

resolve the SELinux resource consumption problem on em-
bedded devices. In particular, the overhead of the SELinux
security check, memory consumption, and file size increases
are not acceptable for embedded devices. In addition, we
clarify the requirements for modifications to existing code
that will be contributed to the OSS ecosystem.

• We built an embedded SELinux implementation that reduces
resource consumption with modifications that are acceptable
to the OSS community.

• We demonstrate the effectiveness of embedded SELinux
without side effects on an embedded device evaluation board
mainly targeted for M2M gateway and CE devices. Modifi-
cations were also contributed to the OSS community code
and successfully merged. As a result, our work creates the
basic structure of SELinux applications on embedded sys-
tems, which is used by other works such as SEAndroid [13]
and Buildroot [14].

2. Problems in Applying SELinux to Embed-
ded Systems

After an overview of SELinux, this section describes the re-
source usage problems of SELinux for embedded systems, and
the requirements for tuning code to facilitate its acceptance by
the OSS community.

2.1 Overview of SELinux
The primary feature of SELinux is a MAC referred to as type

enforcement (TE). An overview is shown in Fig. 1. Processes are
identified by labels called domain, and resources are identified
by labels called type. By default, a domain cannot access types.
A domain is only able to access types that are explicitly speci-
fied in the security policy. In the example shown in Fig. 1, the
label httpd t t is assigned to the http daemon process, the label
http content t is assigned to /var/www, and the label http port t

is assigned to TCP port 80. In the security policy, http t is granted
permission related to file reading and port binding. As a result,
the http daemon is allowed to read /var/www and bind TCP port
80; no other access is permitted, unless described in the policy.

These access control functions are implemented in the Linux
kernel using LSM hook functions to perform security checks dur-
ing system calls. In addition, a userland program is necessary to
manage security policy and labels. For example, when the secu-
rity policy is changed, the kernel must reload it.
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Table 1 System call execution time (unit: micro second) on an em-
bedded system measured by lmbench and calculated overhead
of SELinux.Overhead is rate of increase in execution time from
SELinux disabled kernel.

lmbench SELinux disabled SELinux

Null read 2.39 5.49 (130.0%)
Null write 2.07 5.10 (146.6%)
Stat 21.48 42.29 (96.9%)
Create 108.18 284.98 (163.4%)
Unlink 67.74 126.3 (86.4%)
Open/close 32.55 62.82 (93.0%)
Pipe 33.56 55.96 (66.8%)
UNIX socket 76.12 99.80 (31.1%)
TCP 259.52 316.58 (22.0%)
UDP 162.76 207.85 (27.7%)

Table 2 read/write execution time on an embedded system (unit: micro sec-
ond), measured by Unixbench and SELinux overhead.

Unixbench read/write SELinux disabled SELinux

256 byte read 7.95 13.25 (66.6%)
256 byte write 12.84 21.42 (66.8%)
1,024 byte read 12.79 17.97 (40.5%)
1,024 byte write 19.25 27.69 (43.9%)
4,096 byte read 33.96 39.45 (16.2%)
4,096 byte write*1 806.45 781.25 (−3.1%)

2.2 Resource Usage
To use SELinux, extra features must be enabled in the Linux

kernel and userland must be added to the standard Linux sys-
tem. These increase system call overhead, file size, and mem-
ory consumption. To reduce power and costs, the hardware re-
sources of embedded systems are significantly more constrained
than PC server systems. For example, in the case of a Linux based
M2M gateway, the CPU clock speed is approximately 200 MHz
to 600 MHz, the architecture utilizes ARM and SH, RAM size is
around 64 MBytes, and flash memory is used for storage. As a
result, the resource usage of SELinux is not acceptable for such
embedded systems.
2.2.1 Overhead in System Calls

When SELinux is enabled, there is overhead for system calls
to check the security policy. SELinux is implemented based
on Flux Advanced Security Kernel (FLASK) architecture [15],
where such overhead is reduced by a cache mechanism called
Access Vector Cache (AVC). In a PC environment, Loscocco,
P. et al. [8] measured this overhead and concluded that it was
insignificant. However, problems are encountered when using
SELinux on an embedded system. An example of SELinux over-
head measured on an embedded system is shown in Tables 1 and
2. These measurements were performed using lmbench [16] and
Unix Bench [17]. The embedded system platform was composed
of a SH7751R (SH4 architecture, 240 MHz) processor, Linux
2.6.22 and SELinux security policy whose size is 60 Kbytes and
number of rule is just 2,000. In particular, read/write overhead is
a problem, because they are executed frequently and the overhead
is significant. Overhead of greater than 100% was observed dur-
ing null reads/writes. Moreover, 16% of the overhead remained
when reading a 4,096 buffer. A size of 4,096 bytes is often used
for I/O buffers, because it represents the page size for many CPUs
in embedded system architectures such as SH and ARM.

*1 Performance is much worse than others because filesystem cache is fully
occupied. Cache is working in others.

Table 3 Files related to SELinux.

Component Additional features

Kernel The SELinux access control feature, audit, and xattr
support in filesystem.

Library libselinux,libsepol, and libsemanage

Command Commands to manage SELinux such as load policy.
Additional options for existing commands, such as
-Z option for ls to view file label.

Policy file The security policy

2.2.2 File Size Increase
The kernel and userland file sizes increase when SELinux is

ported, because of the components listed in Table 3. The increase
is approximately 2 MBytes if SELinux for PCs (the SELinux in-
cluded in Fedora Core 6) is ported without tuning. However, this
increase is not acceptable for embedded systems, because flash
ROM with a capacity of less than 32 MBytes is often used to
store the file system. If SELinux consumes 2 MBytes then this
is considered excessive.
2.2.3 Memory Consumption

SELinux has data structures in the kernel to load the security
policy. On a PC, the memory consumed by the security policy is
approximately 5 MBytes. However, this is also unacceptable for
embedded systems, because the RAM capacity is often less than
64 MBytes and swapping is not effective. If SELinux is used for
embedded systems, the possibility that memory can not be allo-
cated increases. If memory can not be allocated, applications will
not work correctly.

2.3 Acceptability to the OSS Community
Code must be modified to reduce the resource usage described

above. Modified code must be merged to the related OSS com-
munity source tree to obtain benefits from the OSS ecosystem.
If not merged, modifications must be ported for every version up
through the target OSS. To be merged, modifications must be
accepted by the target OSS community. There are two primary
requirements for acceptance. First, the modifications must not af-
fect existing functions. Second, the modifications cannot cause
side effects related to performance.

3. Overall Approach of Embedded SELinux

To apply SELinux to embedded systems, we propose embed-
ded SELinux. The approach for using embedded SELinux to re-
solve the problems described in the previous section is described
in the following section.

3.1 Reducing Resource Usage
The resource usage of SELinux shown in Table 3 is reduced as

follows.
3.1.1 Kernel

The overhead related to system calls, RAM, and file size usage
are all candidates for tuning. To mitigate system call overhead,
we focus on reducing overhead in reads/writes, because overhead
is significant as shown in Section 2.2.1. To reduce RAM and file
size usage, the simplest method to reduce resource usage is to re-
move unused features. However, it is difficult to remove features
from the kernel, because this will significantly affect existing fea-
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Table 4 Features included in SELinux userland. Features 1,2, and 3 are
used for embedded SELinux.

# Feature Related packages

1 Load policy libselinux
Load security policy file to the kernel

2 Change labels libselinux
View and change domains and types policy coreutils

coreutils
procps

3 Switch mode libselinux
Switch permissive/enforcing mode

4 User space AVC libselinux
Use the access control feature of SELinux
from userland applications

5 Analyze policy libsepol
Access data structure of policy

6 Manage conditional policy libselinux
Change parameters of conditional policy feature libsepol

libsemanage

7 Manage policy module framework libsemanage
Install and remove policy modules

tures. For example, data structures and APIs must be modified,
which will also have an effect on userland. Therefore, we adopt
another approach, in which we analyze overhead and bottlenecks
first, and subsequently perform the tuning of the kernel.
3.1.2 Userland

SELinux userland was intended for server usage, therefore
many features are unnecessary for embedded systems. File size
can be reduced by selecting features that meet the following cri-
teria.
• Access control feature of SELinux works.
• Security policy can be replaced.

Most problems related to SELinux are caused by lack of pol-
icy configurations. To correct such problems, features that
enable the user to replace security policy will be necessary.

Features in SELinux and userland can be classified as shown in
Table 4. Features 1, 2, and 3 were selected according to the cri-
teria above. Feature 1 is necessary to use access control, while 2
and 3 are required to replace policy.

In addition to removing unnecessary features, commands are
integrated into BusyBox [18]. BusyBox is a tool that is widely
used in embedded systems, and allows multiple commands to be
executed from a single executable binary file. It reduces the over-
head of executable file headers by integrating multiple commands
into a single binary executable file. It is expected that merging
SELinux-related commands to BusyBox will further reduce file
size.
3.1.3 Security Policy

In PC systems, SELinux security policy is usually formulated
by customizing a security policy template called refpolicy [19].
Customization is typically not required for PC server systems, be-
cause the necessary configurations have already been prepared. In
contrast, substantial customization is required for embedded sys-
tems. For example, to reduce security policy size, unused con-
figurations must be removed. In addition, because the file tree
structure is different from PC systems, security policy must be
modified to accommodate the structure. Such customization is
dfficult, because there are more than 2,000 macros and 1,000 type
configurations. Therefore, we prepared the security policy from

scratch, without using refpolicy.

3.2 Modifications Acceptable to OSS Community
As discussed in Section 3.1, the source code of the Linux ker-

nel, SELinux library, and BusyBox must be modified. To be ac-
ceptable to the related OSS community, these modifications must
not adversely affect existing code. To avoid affecting existing
code, the kernel, SELinux library, and BusyBox were modified
as follows.
• Kernel

The modifications do not alter the function of the kernel it-
self, because only tuning is required. However, there may be
side effects that affect performance. For example, if mem-
ory usage is tuned, performance may decline. Therefore,
we proposed modifications to the community that include an
evaluation of possible regressions.

• SELinux library
Our modifications remove features that are unnecessary for
embedded implementations; however, these features are nec-
essary for PC usage. To resolve this conflict, build flags in
the Makefile and #ifndef preprocessor in the C language are
used. The build flag EMBEDDED is defined in the Make-
file, and unnecessary code is enclosed with #ifndef and #en-
dif. When a build is executed with the EMBEDDED flag
set to y, parameters are defined for #ifndef blocks and un-
necessary source code is not compiled. Conversely, when a
build is executed and the EMBEDDED flag is not set to y,
this code is compiled.

• BusyBox
BusyBox has a framework that switches included features on
or off according to a build flag. The CONFIG SELINUX
build flag is already set to link the selinux library; we use
this flag to include SELinux-related commands only when
the CONFIG SELINUX flag is enabled.

4. Implementation of Embedded SELinux

Embedded SELinux was implemented following the ap-
proaches discussed in the previous section.

4.1 Kernel Tuning
The Kernel was tuned to reduce read/write system call over-

head and memory usage.
4.1.1 Reducing Read/write Overhead

Bottlenecks were analyzed by considering the read/write flow.
A process behaves as follows when it reads from, or writes to, a
file.
( 1 ) Open file

A process opens a file and obtains a file descriptor with the
open system call, with a specified access mode (e.g., read
only, write). Linux file permissions and SELinux permis-
sions are checked.

( 2 ) Read/write
Using the file descriptor obtained from the open system call,
a read/write system call is executed to complete the ac-
tual read and write operations. The access mode is checked
first. If the access mode does not match the operation, the
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read/write process returns a permission error. Next, SELinux
permissions are checked. If the validation succeeds, data is
read from, or written to, the opened file. Reads and writes
are typically called from applications multiple times once a
file is opened.

( 3 ) Close
The file is closed by using the file descriptor, and related re-
sources are released.

By examining the read/write flow, it is evident that the SELinux
permission verification in the read/write step is duplicated, be-
cause an operation that is different from the one allowed in the
open step is denied by the access mode check in the read/write
step. For example, assume a process attempts to open a file in
read-only mode; read access is allowed and write is not allowed
in the SELinux policy. In this case, when the process attempts a
write system call, access is denied in the access mode check be-
cause the file descriptor obtained in the open step only includes
read-only access. Therefore, the SELinux permission check is
not necessary in the read/write step. However, there are two ex-
ceptional cases where SELinux permission checks are necessary
for a read/write step. First, if the security policy is changed be-
tween the time the file is opened and the time of the read/write
call, permission must be rechecked for the read/write call to ac-
commodate the change. Second, when the domain or type labels
are changed in a similar manner, permission must be rechecked.

To perform SELinux permission checks only in the exceptional
read and write cases described above, the following changes were
introduced in the kernel.
( 1 ) SELinux

A data structure was added to store the state of the security
policy, as well as domain and type labels.

( 2 ) Open system call
A new LSM hook function, security dentry open, was in-
troduced. In security dentry open, the states of the secu-
rity policy, domain, and type are stored in the data structure
introduced in (1). SELinux file permissions are rechecked
after the states are stored, to account for any state changes.

( 3 ) Read/write system call
Compares the current status of the security policy, domain,
and type with those described in (2). SELinux permission is
checked only when a status change is detected.

4.1.2 Reducing Memory Usage
To reduce memory usage, unnecessary SELinux data struc-

tures were removed from the kernel. The largest data structure
in SELinux is the hash table in struct avtab. Two avtabs are
statically allocated in the Linux kernel, and security policy ac-
cess rules are stored there. During this process, 32,768 hash slots
are prepared for each hash table, which consumes approximately
250 Kbytes. In PC systems, the number of access rules often
exceeds 100,000. Conversely, in embedded systems, the num-
ber of rules is often lower than 10,000, because embedded sys-
tems have significantly fewer installed applications compared to
PC systems. Therefore, embedded systems require significantly
fewer hash slots. To reduce the number of hash slots, they are al-
located dynamically based on the number of access control rules
in the security policy; i.e., the number of allocated hash slots is

Table 5 SELinux commands ported to BusyBox.

# Feature Commands

1 Load policy load policy

2 Change labels chcon,setfiles,restorecon
-Z option for ls and ps

3 Switch mode getenforce,setenforce,selinuxenabled

one-quarter the number of rules.

4.2 Modification of Userland Programs
4.2.1 Reducing Library Size

As described in Section 3.1.2, unnecessary features are dis-
abled by the build flag, and only libselinux is used. The detailed
modifications to libselinux are as follows.
• Remove libsepol function call

Usage of libsepol, which is approximately 300 Kbytes in
size, is forced because libselinux calls the libsepol function
to load the security policy. To remove the dependency on lib-
sepol, the security policy is loaded directly by calling kernel
functions, thus bypassing libsepol.

• User space AVC and conditional policy are disabled
When the EMBEDDED build flag is enabled, files related to
these functions are not compiled, and code fragments related
to them are disabled by the #ifndef preprocessor.

4.2.2 Integrating Commands to BusyBox
As discussed in Section 3.1.2, commands related to Table 4

1-3 are ported to BusyBox from the libselinux and policycore-
utils packages using the CONFIG SELINUX build flag. Ported
commands are shown in Table 5. The -Z option logic to show
labels when using ls and ps is embedded in ls and ps BusyBox
applets. Other commands are also implemented as BusyBox ap-
plets. They are compiled only when the CONFIG SELINUX
flag is enabled.

4.3 Preparing Policy from Scratch
Writing SELinux security policy is difficult because there are

hundreds of permissions and label configurations. To facilitate
policy writing, we adopted SEEdit [20], which was proposed in
our previous research [21]. SEEdit simplifies security policy con-
figuration using a higher-level language called Simplified Policy
Description Language (SPDL). SPDL reduces number of permis-
sions by integrated permission, and hides label configuration by
path name based configuration. Security policy is written using
SPDL and converted into a kernel-loadable format by SEEdit.

5. Evaluation

Performance of embedded SELinux is measured on an evalua-
tion board which is used for development of M2M gateway and
CE devices and performance is compared with SELinux without
tuning. Possible regression is also measured and the result of pro-
posal to community is shown.

5.1 Target Device and Software
The devices and software versions used in the evaluation are

listed below.
( 1 ) Target device

We used a Renesas Technology R0P751RLC001RL
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Table 6 Read/write system call execution time (unit: micro second) on the
evaluation board, measured by lmbench and overhead of SELinux.
The same security policy (files size is 60 Kbytes, 2,000 access rules
are included) is used to eliminate the effects from differences in
policy.

lmbench SELinux Standard SELinux Embedded SELinux
disabled

Null read 2.39 5.49 (130.0%) 2.68 (12.5%)
Null write 2.07 5.10 (146.6%) 2.38 (14.9%)

Table 7 Read/write execution time (unit: micro second) on the evaluation
board, measured by Unixbench and overhead of SELinux. The se-
curity policy is the same as Table 6.

Unixbench SELinux Standard SELinux Embedded SELinux
read/write disabled

256 byte read 7.95 13.25 (66.6%) 9.24 (16.2%)
256 byte write 12.84 21.42 (66.8%) 16.29 (26.8%)
1,024 byte read 12.79 17.97 (40.5%) 14.46 (13.1%)
1,024 byte write 19.25 27.69 (43.9%) 22.89 (19.0%)
4,096 byte read 33.96 39.45 (16.2%) 35.08 (3.3%)
4,096 byte write 806.45 781.25 (−3.1%) 806.45 (0.0%)

(R2DPLUS) board as a target device. This board is often
used to evaluate software for embedded devices such
as M2M gateway and CE devices which are targets of
embedded Linux. The specifications are shown below.
• CPU: SH7751R(SH4) 240 MHz
• RAM: 64 MBytes
• Compact flash: 512 MBytes
• Flash ROM: 64 MBytes (32 MBytes available for root file

system)
SELinux can be ported to both compact flash and flash ROM.
For convenience, we measured benchmarks using the com-
pact flash system.

( 2 ) Software and policy
The software versions and policy used in the evaluation are
listed below.
• Kernel: Linux 2.6.22
• SELinux userland: libselinux 2.0.27
• Security policy (before tuning): policy.21 and file contexts

file were taken from selinux-policy-targeted-2.4.6-80.fc6,
obtained from Fedora 6.

• Security policy (after tuning): Written by SELinux Policy
Editor, including configurations for 10 applications. Not all
applications are confined similar to targeted policy [22].

5.2 Benchmark Results
We ported standard SELinux and embedded SELinux to the

target board, and measured benchmarks for both. The benchmark
results for read and write overhead, file size, and memory usage
are shown below.
5.2.1 System Call Overhead

Read and write system call overhead was measured by lmbench
and unixbench. The results are listed in Tables 6 and 7. Before
tuning, the SELinux overhead for read/write was significant. Null
read/write overhead was reduced by 90% after tuning . The over-
head in reading the 4,096 buffer was a significant problem; how-
ever, it was mostly eliminated in embedded SELinux. In addition,
Yamamoto et al. [23] described the effectiveness of our modifica-
tions when testing them using a Pentium 4 PC.

Table 8 File size related to SELinux. Userlands are built with -Os flag and
stripped.

Component File size of standard File size of embedded
SELinux (Kbyte) SELinux (Kbyte)

Kernel (zImage) 74 74
size increase

Library 482 66

Command 375 11
(39: without using BusyBox)

Policy file 1,356 60

Total 2,287 211

Table 9 Memory usage by SELinux.

Component Memory usage Memory usage
of standard SELinux of embedded SELinux

(Kbyte) (Kbyte)

Hash tables in 252 1
struct avtab

SELinux program 5,113 464
and policy

Total 5,365 465

5.2.2 File Size
The file sizes related to SELinux are summarized in Table 8.

As a result of tuning, file sizes were reduced to 211 Kbytes from
2,287 Kbytes. On the evaluation board, the flash ROM available
for the root file system is 32 MBytes. The size of SELinux is
less than 1% of this capacity; therefore, it is acceptable for the
evaluation board.

Integrating commands to BusyBox reduces overhead by
28 Kbytes. Commands require 4 Kbytes, and seven commands
were ported. The effect will increase as the number of ported
commands increases.
5.2.3 Memory Usage

We measured memory usage with the free command. The us-
age by SELinux was measured as follows.

A = The result of the free command when the SELinux-enabled
kernel was booted;
B = The result of the free command when the kernel without
SELinux was booted;
Therefore, memory usage by SELinux = A - B.

SELinux’s memory usage was measured for both standard
SELinux and embedded SELinux. We also measured the memory
usage of the hash table in struct avtab to measure the effects of
tuning. Code that displayed the size of the allocated tables was
inserted into the kernel for that purpose. The results are shown in
Table 9. The memory consumption after tuning was 465 Kbytes
and the evaluation board’s memory capacity is 64 MBytes. There-
fore, SELinux consumes less than 1% of the board’s memory ca-
pacity. This demonstrates that, the device has ample resources to
accommodate SELinux.

5.3 Regressions
5.3.1 Possibility of Regressions

The modifications to the SELinux library and BusyBox do not
affect existing features, because they are implemented as options.
If developers want to use existing features as before, they only
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Table 10 Open/close execution time (units in microseconds) on the evalua-
tion board, measured by lmbench and overhead of SELinux. The
security policy is the same as Table 6.

lmbench SELinux Standard SELinux Embedded SELinux
disabled

Simple 32.55 62.82 (93.0%) 58.70 (80.3%)
open/close

Table 11 Effect of reducing number of hash slot, when number of SELinux
access rules is 8,188.

Number of hash slot longest chain time to call
length security compute av

(sec)

8,192 13 9.67
(=number of rules)

4,096 21 9.65
(=number of rules/2)

2,048 35 9.68
(=number of rules/4)

1,024 64 9.78
(=number of rules/8)

need to set the SELinux build flag to off. However, modifications
to the kernel may affect the performance of existing features as
described below.
• Tuning of read/write overhead

This may affect performance when files are opened, be-
cause the new LSM hook function security dentry open
was added.

• Tuning of struct avtab
This may affect performance when the security policy is re-
trieved, because the hash table size was reduced.

5.3.2 Measurement of Side Effect
These possible side effects of our modifications were measured

on the evaluation board as follows.
• Tuning of read/write overhead

The performance of the file opening process was mea-
sured by lmbench for standard SELinux and for embedded
SELinux.

• Tuning of struct avtab
To measure performance of security policy retrievals, the
processing time of security compute av, where security
policy is searched from avtab, must be measured. The time
required to call security compute av 10,000 times from the
startup of SELinux was measured, because the time required
to perform a single function call was too short to measure.
The time was measured by varying the number of hash slots
when the security policy (which contains 8,188 rules) was
loaded.

5.3.3 Result
The results of side effect measurements are shown in Tables 10

and 11.
• Side effects on the performance of open

The results of the performance measurements for the open
system call are shown in Table 10. The performance does
not decrease in embedded SELinux; it is actually better than
standard SELinux. We did not determine the reason. One
possible reason is that instructions generated by the C com-
piler were arranged more efficiently for embedded SELinux.

• Side effects on the performance of security policy searches

Table 12 OSS versions where our modifications are merged.

Modification Merged OSS version
Reducing read/write overhead Linux 2.6.24
Reducing size of avtab Linux 2.6.24
Reducing size of libselinux libselinux 2.0.35
Integrating SELinux commands BusyBox 1.9.0

The performance of the security policy search is shown in
Table 11. No drop in performance was observed, even when
the number of allocated hash slots was reduced to one quar-
ter the number of access rules.

To summarize, no adverse side effects were caused by our modi-
fications.

5.4 Results of OSS Community Proposals
We submitted our modifications to the Linux, BusyBox, and

SELinux OSS communities, using the diff utility [24] to highlight
the modifications; evaluation results were included as well. The
modifications were successfully merged, as shown in Table 12.
The links to the patches can be accessed on the Embedded Linux
Wiki at http://elinux.org/SELinux.

6. Related Work

The initial research to port SELinux to embedded devices was
performed by Coker [25]. SELinux was ported to an ARM-based
mobile device. The version of SELinux used in this initial re-
search had not been merged into the Linux kernel community
code; thus, the features and data structures are different from
the SELinux used in our work. The research focused on reduc-
ing memory and file size in userland commands and policy. His
approach in reducing userland commands was similar to ours.
Only necessary features were ported, and BusyBox was also used.
However, the modifications were not merged to community code,
and there is no mention of overhead or kernel memory tuning.
Security policy was not created from scratch, because the secu-
rity policy template for older versions of SELinux was simpler
and easier to customize than refpolicy.

Another approach to reduce resource usage is to modify hard-
ware. Fiorin et al. [26] reduced the overhead of SELinux for em-
bedded devices by hardware assistance. They implemented an
AVC on a FPGA, and succeeded in reducing SELinux overhead
in system calls.

Our embedded SELinux provides the basic structure required
to apply SELinux to embedded systems by reducing resource us-
age; however, there are two additional problems to be resolved.
The first problem involves integration with application frame-
works for embedded systems. Application frameworks have re-
sources that are not visible to the OS, and they control access
to such resources by various permissions in userland. Integrat-
ing SELinux to application frameworks will bring MAC to the
application layer. Research that aims to resolve these issues has
been performed for BusyBox and Android. BusyBox is a sim-
ple application framework in which there is a problem assigning
domains to each command, i.e., commands in BusyBox are not
identified by the OS, and all commands executed from BusyBox
are assigned the same domain. This problem was resolved by
Shinji [27], by utilizing APIs provided by SELinux and the solu-
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tion was subsequently merged into BusyBox’s community code.
Android is a widely used application framework for mobile de-

vices, and the OS is based on the Linux kernel. Android provides
its own application layer permission check, and these applica-
tions are not identified by the OS. The initial port of SELinux to
Android [29] did not resolve the problem. SEAndroid [13] brings
the SELinux check to Android applications by inserting SELinux
APIs into Android’s framework. However, Android can only ac-
commodate mobile devices with GUIs. There are frameworks for
devices without GUIs, such as OSGi [30] and Alljoyn [31]. In-
tegrating SELinux to these frameworks will be required in the
future.

The second problem involves developing and managing secu-
rity policies. SEEdit is used in our work to facilitate security
policy development; however, it does not provide a mechanism
to manage the security policy. Honda et al. [28] proposed an
SELinux policy configuration system for mobile devices. This
system enables modular management of security policies.

7. Conclusion

Applying SELinux to embedded devices such as M2M gate-
ways and CE devices where CPU is around 200 Mhz to 600 Mhz
and RAM size is often around 64 MBytes, presents several chal-
lenges. The SELinux kernel, userland, and the security policy all
consume an unacceptable amount of hardware resources. Related
code must be tuned, and tuned codes must be merged into OSS
community code to benefit from usage on the its ecosystem.

We developed a version of embedded SELinux in which re-
source usage is reduced, using code modifications that are ac-
ceptable to the OSS community. Resource usage is reduced us-
ing three techniques. First, the Linux kernel is tuned to reduce
CPU overhead and memory usage. Second, unnecessary code is
removed from userland libraries and commands. Third, security
policy size is reduced by our policy-writing tool. To be acceptable
to the OSS community, the side effects of the code modifications
were measured. In addition, the proposed system allows removed
code to be selected by using a build flag at compilation time.

Embedded SELinux was evaluated on a SH-based evaluation
board targeted for M2M gateways and CE devices. Benchmark
results show that the SELinux overhead for read and write opera-
tions is almost negligible. SELinux’s file space requirements are
approximately 200 Kbytes, and memory usage is approximately
500 Kbytes, which consume approximately 1% of the flash ROM
and RAM of the evaluation board, respectively. These results
show that SELinux can be applied to embedded devices effec-
tively. Regressions were also measured, and no regression prob-
lems were observed. We presented the modified code to the OSS
community along with the evaluation results; as a result, the mod-
ifications were successfully merged into the community code.
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