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Abstract: Tor is the most popular anonymous communication tool in the world. Its anonymity, however, has not been
thoroughly evaluated. For example, it is possible for an adversary to restrict access to the Tor network by blocking
all the publicly listed relays. In response, Tor utilizes bridges, which are unlisted relays, as alternative entry points.
However, the vulnerabilities of the current bridge mechanism have not been thoroughly investigated yet. We first in-
vestigate the vulnerabilities of the current bridge mechanism under different adversarial models. Then we compare the
current bridge mechanism with our two proposals and discuss their effects on the security and performance of Tor.
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1. Introduction

In today’s expanding online world, there is an increasing con-
cern about the protection of anonymity and privacy in electronic
services. The Tor [6] network is the most popular anonymous
communication system. It is a low-latency anonymous, private
and censorship resistant network whose relays are run by volun-
teers around the world. Tor is used by private citizens, corpora-
tions, and governments to protect their online communications,
as well as users trying to circumvent censorship. Its security is
therefore essential for the safety and commercial concerns of its
users.

While a common use of Tor is to protect privacy, a growing
set of Tor users use it as a tool for censorship resistance. Since
the destination of a Tor’s client is hard to control or determine,
Tor can be an effective tool for accessing sites that some regimes
may wish to block or censor. However, because the list of all
Tor relays are publicly available from directory servers, blocking
access to Tor is as simple as downloading the list and blocking
connections to the tuples of IP/port it contains.

To counteract this situation, designers of Tor introduced a new
method of accessing the Tor network: bridges [5], which are de-
signed to help censored users. Bridges are Tor relays that are not
listed in the main Tor directory authorities and are alternatives for
publicly listed entry relays as entries into the Tor network. Since
there is no complete public list of bridges, even if the ISP is fil-
tering connections to all the known Tor relays, they probably will
not be able to block all the bridges.

Effective attacks to block or attack the bridge mechanism [12],
[27], [28] have been found and conducted in the wild. How-
ever, the vulnerabilities of the current bridge mechanism have not

1 Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo
153–8505, Japan

a) fengfei@iis.u-tokyo.ac.jp
b) kanta@iis.u-tokyo.ac.jp

been thoroughly investigated yet. This motivates us to construct
stronger bridge mechanisms against those attacks. We first thor-
oughly investigate the vulnerabilities of the current design under
exhaustive adversarial models. Then we compare our two propos-
als with the current design and show their effectiveness through
simulations regarding to security and performance of Tor.

Roadmap. We start by introducing some background in Sec-
tion 2. We then go on to describe our goals and adversarial mod-
els in Section 3. Next, we investigate the vulnerabilities of the
current bridge mechanism under those adversarial models in Sec-
tion 4. After that, we propose two alternative methods, and com-
pare them with the current bridge mechanism in Section 5. Con-
clusions and future work are discussed in Section 6.

2. Background

2.1 Overview of Tor
The Tor network, the implementation of the second generation

of Onion Routing, aims to prevent users from being linked with
their communication partners; i.e., someone monitoring a client
should be unable to discover which server he/she is accessing, and
the server (or someone monitoring the server) should be unable
to discover the identity of the client using Tor to access it.

The Tor network is a TCP overlay network whose infrastruc-
ture is run entirely by volunteers. Tor users download and install
the Tor client software, which acts as a SOCKS proxy interfac-
ing their client software with the Tor network. The client first
connects to one of the directory authorities, which monitor re-
lays’ availability and bandwidth capacity, and then periodically
generates a list of status for these known Tor relays. From these
authorities the client downloads a list, which is called the consen-
sus file. The client then selects three of these relays, and builds

The initial version of this paper was presented at Computer Security
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ommended to be submitted to Journal of Information Processing (JIP)
by Program Chair of CSS 2014.
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Fig. 1 The structure of the Tor network.

an encrypted channel, which is secured by a session key estab-
lished through an authenticated Diffie-Hellman key exchange, to
the first relay (called the entry guard). Over this encrypted chan-
nel, the Tor client builds an encrypted channel to the middle relay,
and then via this channel, connects to the third relay (called the
exit relay). In this way, the client has a connection to the exit
relay, but the exit relay is not aware of whom the entry guard or
client is; similarly the entry guard does not know which exit relay
the client has selected. Figure 1 shows the structure of the Tor
network.

The client selects an exit relay, then the guard relay, finally the
middle relay. There are additional constraints on the path, such
as avoiding using more than one relay from a given /16 subnet
or the same relay family. Details are available in the Tor Path
Specification [24].

2.2 Relays
The relays in a Tor path, and their capabilities and limitations,

are of fundamental interest.
The entry position is occupied by a type of relay called the en-

try guard. Entry guards were first proposed by Wright [29]. Only
relays considered fast and stable can receive the Guard flag. It is
generally considered better to pick a few (by default, three) pos-
sibilities for the entry position and repeatedly use them. Every
client maintains a list of those possibilities, which is called the
guard list. When the Tor client constructs this list, it selects an
expiry time for each of the guards in the list from the range of
30–60 days uniformly at random. After that time, the guards will
be dropped and repopulated through a process called guard rota-
tion. When paths are constructed by the Tor client, the entry relay
to be used is selected uniformly at random from the client’s guard
list.

Exit relays are special in that they connect directly to a server
(e.g., web server) and thus may have exit policies restricting the
types of traffic exiting from them. If traffic requires a certain port,
the client will have to pick an exit relay which supports the ser-
vice they require.

According to the Tor Path Specification [24], there are four
kinds of relays to select from when forming paths: guard relays,
exit relays, guard + exit relays (suitable for either the guard or
the exit position), and non-flagged (i.e., middle) relays. It, how-
ever, should be noted that all four kinds of relays can occupy the
middle position. Allowing such an occurrence seems a wasteful

of scarce resources, but it does permit more randomness in path
construction. However, Tor does impose a penalty in the form of
weights. Depending on the position and scarcity of the types of
relays, they will be weighted by an additional factor during path
selection.

2.3 Bridges
Tor users can send email and instant messages, surf websites,

and post content online without anyone knowing who or where
they are. Consequently, it is widely acknowledged as an im-
portant tool for freedom of expression and censorship resistance.
That is clearly a worry for authoritarian regimes that want to con-
trol and limit their citizens’ access to the Tor network. As a list
of Tor relays is publicly available from directory authorities, it
is trivial for an ISP to block all connections to Tor by blocking
access to IP addresses of all Tor relays [27], [28].

To help censored users counteract this situation, designers of
Tor introduced a new method of accessing the Tor network:
bridges [5]. Bridges are Tor relays that are not listed in the main
Tor directory authorities and are alternatives for publicly listed
entry guards as entries into the Tor network. Even if the ISP is
filtering connections to all the known Tor relays, they probably
will not be able to block all the bridges, because there is no com-
plete public list of bridges.

A bridge can be operated on a server or a personal computer
by a Tor user who is willing to help censored users to reach the
Tor network. A standard Tor client can be easily configured to
operate as a bridge. Bridges can be strictly unlisted (in which
case information of this bridge is spread within a group of people
by word of mouth), or their descriptors can be distributed on-
line by the Tor Project. The bridge authority keeps track of valid
bridges, and the bridge database [22] distributes bridge informa-
tion through the web and email, which makes it easy for any client
to find a few bridges. On the other hand, the distributing mech-
anism attempts to make it difficult for an attacker to enumerate
bridges in a short time, which is realized by restricting the distri-
bution of bridge descriptors to one set per 24-bit IP address prefix
in a week.

Censored users can get several bridges by visiting the
BridgeDB site [2] or send an email to bridges@bridges.
torproject.org with the line “get bridges” in the body of the mail.

3. Goals and Adversarial Models

3.1 Goals
We have two major goals. As suggested above, our first goal

is to investigate the current Tor network’s and its bridge mecha-
nism’s vulnerabilities to several known attacks against bridges.

Our other major goal is to propose stronger alternative bridge
mechanisms. We investigate whether adopting our proposing de-
signs helps to mitigate these known attacks. We compare the
current Round-robin Method with the two methods we propose
through simulation experiments.

3.2 Adversarial Models
Effective attacks to block or attack the bridge mechanism [12],

[27], [28] are being found in existing works and also conducted in
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the wild. Those adversaries may have different purposes and mo-
tivations. Some of them try to enumerate bridges and block the
usage of Tor, while others may want to profile or locate bridge
users. As a result, they also conduct attacks via different means –
passively or actively. In order to propose a stronger bridge mech-
anism, we first exhaustively summarize possible adversarial mod-
els. Only with these adversarial models can the vulnerabilities of
the current bridge mechanism be thoroughly investigated.

Censorship. We first consider an active adversary with full
control of the local network, who is capable of monitoring, in-
jecting, replaying, shaping and dropping packets but only within
his network bounds. An example is the Great Firewall as de-
scribed by Wilde [27]. When a Tor user within the adversary’s
network bounds establishes a connection to a bridge, deep packet
inspection (DPI) boxes identify the Tor protocol. Shortly after
the Tor connection is detected, active scanning is initiated. The
scanner pretends to be a normal Tor user and tries to establish a
Tor connection to the suspected bridges. If it succeeds, the bridge
will be blocked. The details of how the Great Firewall blocks are
described by Winter and Lindskog [28]. Iran has also used this
strategy to block Tor twice [9].

Enumeration of bridges by malicious middle relays. Next,
we consider an adversary who runs malicious Tor relays to dis-
cover bridges. This attack has been floating around in the wild,
and was documented by Ling et al. [12]. Normal clients use en-
try guards for the first node of their paths to protect them from
long-term profiling attacks, but bridge users use their bridge as a
replacement for the first node. As a result, if an adversary runs a
relay that does not have the Guard flag and rejects to be an exit
relay, the only position it will end up is as a middle one. Then,
nodes that build paths to connect to this relay are normal relays
and bridges. The adversary can easily identify whether the node,
which connected to his malicious middle relay, is a bridge or not,
by referring to the public consensus files which contains all IP
addresses of relays. This attack can also be conducted by op-
erating a relay and actively scanning the port of each client that
connects to it, to confirm which ones are running services of the
Tor protocol [13], [25].

Malicious bridges. Bridge relays are donated by volunteers
who are willing to help censored users. On the other hand, it is
hard to trust all of them, because some of them may be operated
by an attacker. In this adversarial model, we consider a passive
adversary who runs malicious Tor bridges. His goal is to do traf-
fic observation when his malicious bridges are used as the first
node into the Tor network. Then the adversary may perform a
statistical profiling attack or a fingerprinting attack [8], [16], [17]
on the user. However, the concrete procedures of these attacks
are out of the scope of this research. What we will investigate is
the relationship between the number of malicious bridges and the
number of clients compromised.

Bridge set fingerprinting. It has been discussed in the Tor
community that the sets of entry guards might be the fingerprint
for a user [4], [11]. When a user connects to Tor from multiple
locations where the network is monitored by the same adversary
(e.g., a malicious network provider), his persistent use of the same
set of entry guards uniquely identifies the user and shows the ad-

versary that connections are all coming from the same user. This
could also allow malicious exit nodes – in connection with other
attacks – to link clients across destinations. This fingerprinting
problem is also related to bridges, and it is even worse because
there are guard rotations for normal Tor clients, while there is no
rotation of bridges.

To investigate how vulnerable the current bridge design is un-
der these adversarial models, and the chance that an adversary
blocks or compromises Tor bridge, we conduct simulation exper-
iments with publicly available data provided by the CollecTor [3].

4. Vulnerabilities of the Current Bridge Mech-
anism

4.1 Experiment Design
We have developed a Tor bridge path simulator for bridge users

by using Stem [20], which is a Python controller library for Tor.
The simulator is based on information from the Tor Path Specifi-
cation [24], the Tor Directory Protocol [23], the Tor Bridge Spec-
ification [21] and the Tor source code, which accepts the existing
bridge descriptors and bridge network statuses as input. Unlike
publicly available historical relay descriptors, bridge descriptors
are sanitized by the Tor project by removing or replacing all po-
tentially identifying information, since making bridge data avail-
able would defeat the purpose of making bridges hard to enumer-
ate for censors. For example, the bridge identity is replaced with
its SHA1 value. Details are described in CollecTor [3]. However,
the sanitizing does not affect our simulation experiment because
we could identify a bridge by its unique SHA1 value in our sim-
ulator.

Our simulator implements only Tor’s relay selection logic and
does not simulate the actual construction of paths, the data trans-
mission, or network effects such as congestion. To simulate Tor’s
path selection precisely, the simulator generates paths with speci-
fied constraints, such as only using relays with the Exit flag for the
exit position, and avoiding using more than one relay from a given
/16 network. Regarding the exit policies of exit relays, we assume
bridge users do web browsing with ports 80 and 443. When simu-
lating a path, our simulator adopts Adjusted Bandwidth-weighted
Random Selection, which is the algorithm currently utilized by
Tor. Weighting factors are multiplied by the bandwidths of re-
lays, and relays are selected with a probability proportional to
those weighted bandwidths.

It is worth mentioning that, Tor clients choose relays accord-
ing to relays’ measured bandwidth in consensus file, but the Tor
Project evaluates the performance that users experience with the
bridges’ or relays’ advertised bandwidth recorded in descriptors.
This is why in our simulator, measured bandwidth is utilized
when simulating paths, while advertised bandwidth is utilized
when evaluating the performance that users experience. What’s
more, as mentioned in the Tor source code, when weighting
bridges, they enforce 20 KB/s as the lower and 100 KB/s as the
upper bound of believable bandwidth, because till now there is
no way for the Tor Project to verify a bridge’s bandwidth.

In our simulations, we only simulate bridge clients instead of
normal Tor clients, because this research assumes that all pub-
licly available Tor relays have been blocked by the adversary. Tor
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users inside the adversary’s network boundary can not access the
Tor network by using normal entry relays, so they have to use Tor
bridges as alternative entries into the Tor network.

Our simulator not only simulates paths but also bridge users’
clients. In those clients, there are N configured bridges chosen
from all the bridge network statuses of February 2014, which con-
tain information on 14,463 bridges in total. The number N varies
under different scenarios. In the following experiments, we use
the bridge network status and relay consensus of the Tor network
on 28th February 2014 as input, when there were 3,014 bridges
online, to simulate the bridge users and adversary on that day.
Our simulator then checks among these N bridges configured in
a client, how many of them are online on 28th February. This is
meant to simulate the behavior of bridge clients more closely to
the real Tor network.

All the historical data used in our experiment are downloaded
from CollecTor [3]. We run the simulator on a 8-core 3.20 GHz
Intel Core i7 machine with 23.5 GB of memory on Ubuntu 12.04
with the 3.2.0 Linux kernel.

4.2 Censorship
We first conduct the simulation of censorship events to inves-

tigate how vulnerable the current bridge mechanism is to censor-
ship events. Suppose there is an active adversary with full control
of the local network within his network bounds. When a Tor user
within the adversary’s network bounds establishes a connection
to a bridge, deep packet inspection (DPI) boxes identify the Tor
protocol. Shortly after the Tor connection is detected, active scan-
ning is initiated. The scanner pretends to be a normal Tor user and
tries to establish a Tor connection to the suspected bridges. If the
connection is built, the censor can be sure it is a bridge and thus
block it.

We assume there are 200 Tor bridge users within the adver-
sary’s network bounds. In all of the clients, there are 4 to 12
bridges configured, which are chosen from all the bridge network
statuses as of February 2014. The number of bridges configured
in each client is different because every bridge user knows a dif-
ferent number of bridges. In our simulations, the number is cho-
sen uniformly at random from 4 to 12. The adversary could block
N% of the online bridges used by the 200 users. We run all the
experiments for three rounds, and the average values of the results
are shown in Table 1.

As explained in Section 4.1, not all of the bridges recorded in
February’s bridge network statuses are online on 28th February.
Thus, some clients may only have offline bridges and have no
access to the Tor network even if there is no censorship taking
place.

As shown by Table 1, 17.9% of the clients have no online

Table 1 Simulation results of censorship events.

Percentage of Percentage of
Bridges Blocked Clients with No Increment

Online Bridge
0% 17.9% 0.0%
25% 28.3% 56.7%
50% 41.2% 147.9%
75% 65.8% 256.2%

bridges. Then the adversary starts the active blocking of clients’
online bridges. We assume he can block N% of all clients’ online
bridges. The results are shown in Table 1, in which ‘Increment’
shows the increment of the percentage of clients with no online
bridges compared to the value before censorship occurring.

After 75% are blocked, only fewer than 35% clients have ac-
cess to the Tor network. Blocking 75% may seem like a difficult
task, but it is possible if the adversary is of the scale of the Great
Firewall.

4.3 Enumeration of Bridges
Since bridges are not publicly listed, adversaries who want

to block usage of Tor would like to enumerate bridges. Next,
we conduct simulations of an adversary who tries to enumerate
bridges. This passive adversary runs malicious Tor relays to dis-
cover bridges. If the adversary runs a relay that doesn’t have the
Guard flag and rejects it to be an exit relay, the only position
it will end up is as a middle one. Thus nodes that build paths to
connect to malicious middle relays are normal relays and bridges,
because normal clients use entry guards for the first node of their
paths, while bridge users use their bridge as a replacement for the
first node. The adversary can easily identify whether these nodes
are bridges or not, by referring to the public consensus files which
contains all IP address of relays.

We simulate 20,000 Tor bridge clients and 5 Tor paths for ev-
ery clients. In all the clients, there are 4 to 12 bridges configured
(the number of bridges is chosen uniformly at random). The ad-
versary runs X malicious middle relays. By changing the num-
ber of malicious relays controlled by an adversary, we investigate
the number of bridges enumerated by the adversary. We run the
experiments for three rounds, and values shown in Table 2 are
average results.

On 28th February, there were 3,014 bridges online. As shown
by Table 2, when the adversary controls 200 malicious relays,
over 53% unique bridges running on that day will be enumerated.
Because a Tor client changes its path every 10 minutes, our sce-
nario could be considered if the adversary conducts this attack for
50 minutes. If the adversary conducts this attack for a longer pe-
riod of time, by waiting for bridge clients to change their paths,
he will be capable of enumerating more bridges. This attack can
be conducted with comparatively low cost because the adversary
can rent IPs on Amazon EC2, for example.

4.4 Malicious Bridges
It is hard to trust every bridge, because they are donated by vol-

unteers, and thus some of them may be operated by an attacker.
In this adversarial model, we consider a passive adversary who
runs malicious Tor bridges. His goal is to observe users’ traffic

Table 2 Simulation results of the enumeration of bridges by malicious
middle relays.

Number of Malicious Number of Percentage of
Middle Relays Enumerated Bridges Enumerated Bridges
50 559 18.55%
100 814 27.01%
150 1,286 42.67%
200 1,617 53.65%
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Table 4 Simulation results of clients with different number of bridges.

Percentage of
Number of Number of Clients Number of Clients that Number of Expected
Bridges that have no Bridge Sets can Access the Users per Set

Online Bridges Tor Network
3 49,416 14,295 50.6% 7.00
4 39,430 22,371 60.6% 4.47
5 30,936 31,133 69.1% 3.21
6 24,669 39,453 75.3% 2.53
7 19,486 47,780 80.5% 2.09
8 15,367 55,263 84.6% 1.81
9 12,229 61,733 87.8% 1.62
10 9,655 68,103 90.3% 1.47
11 7,683 73,065 92.3% 1.37
12 5,965 77,888 94.0% 1.28

Table 3 Simulation results of clients compromised by malicious bridges.

Number of Number of Percentage of
Malicious Compromised Compromised
Bridges Clients Clients
0 0 0.00%
50 548 2.74%
100 1,112 5.56%
150 1,611 8.06%
200 2,094 10.47%

when his malicious bridges are used as first nodes of Tor paths.
Then the adversary may perform statistical profiling attacks or
fingerprinting attacks [8], [16], [17] on these users.

We simulate 20,000 Tor bridge clients and 5 Tor paths for ev-
ery clients. In all of the clients, there are 4 to 12 bridges config-
ured (the number of bridges is chosen uniformly at random). By
changing the number of malicious bridges controlled by an ad-
versary, we investigate the number of clients compromised by the
adversary. If one or more paths of the five paths is started with a
malicious bridge, the client is defined as compromised. The re-
sults are shown in Table 3. This attack could also be performed
by renting IPs on Amazon EC2 with comparatively low cost.

4.5 Bridge Set Fingerprinting
It has been discussed in the Tor community that the sets of

entry guards might be the fingerprint for a user [4], [11]. When a
user connects to Tor from multiple locations where the network is
monitored by the same adversary, his set of entry guards uniquely
identifies the user and shows the adversary that connections are
all coming from the same user. This fingerprinting problem is
also related to bridges, and it is even worse because there are
guard rotations for normal Tor clients, while there is no rotation
of bridges.

We simulate 20,000 Tor bridge clients and 5 Tor paths for ev-
ery client. In all of the clients, there are 4 to 12 bridges config-
ured (the number of bridges is chosen uniformly at random). We
run the experiments for four rounds, and the average number of
distinct bridge sets is 12,633. Thus, the number of expected users
per set is 1.58, which means every user’s guard set is distinct with
high probability.

It is obvious that the more bridges one knows, the less likely his
client has no online bridge. On the other hand, the more bridges
one knows, the more likely the bridge set is unique to him/her.
In the following experiments, we assume every client is config-
ured with the same number of bridges, to investigate the relation-

ship between the number of bridges, the number of unique bridge
sets, and the number of clients that have no online bridge. We
simulate 100,000 Tor bridge clients for every experiment. The
results are shown in Table 4. It is clear from these results that
there is a trade-off between availability and privacy in terms of
the possibility of being fingerprinted. We consider 7 as an op-
timal number, because when 7 bridges are configured, over 80%
clients have access to the Tor network and the number of expected
users is 2.09, which ensures most clients will not have a unique
bridge set. However, the assumption that every bridge client in
the Tor network knows the same number of bridges, is not the
real case, because every client knows of a different number of
bridges. What we suggest is that, if a bridge user knows over 7
bridges, just configure 7 in the client, and periodically change the
set of bridges.

5. Possible Countermeasures

In the previous section, we investigate the vulnerabilities of the
current bridge mechanism under four different adversarial mod-
els. In this section, we propose two alternative methods of round-
robin over all bridges, and investigate whether these methods
make the bridge mechanism more robust against the aforemen-
tioned attacks compared to the current Round-robin Method.

5.1 Alternative Methods
Currently, if ten bridges are configured, the client round-robins

over all of them. Instead of the Round-robin Method, we propose
two alternative methods.
• Top One Method: The first method we propose is to repeat-

edly utilize the first bridge configured in the client, and only
moving to other bridges if the current one becomes offline.
The client will try to find usable bridge sequentially from the
top of the list, and return to use the ones that precede it in the
list, when one of them becomes online again,

• Top Three Method: The second method is to randomly
choose one of the first three bridges configured in the client,
when a path is being constructed. When there are fewer
than three bridges configured, the client randomly chooses
the first or the first two bridges. This method imitates the
current entry guard mechanism.

5.2 Comparison
We conduct simulation experiments to compare the current
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Fig. 2 Linear approximation of the relationship between the number of malicious bridges and percentage
of compromised clients under three different methods.

Table 5 Comparison of three methods under the malicious bridge model.

Number of Percentage of
Compromised Compromised
Clients Clients

Round-robin 1,019 5.10%
Top One 523 2.62%
Top Three 934 4.67%

Round-robin Method with the two alternatives under these ad-
versarial models except the censorship model. It is because our
proposals can not mitigate such active attack as the censorship
model that identifies Tor protocol, but researches have been done
on how to make Tor’s traffic undetectable [7], [14], [18], [26].

First, we assume there is an adversary who runs 100 malicious
bridges and simulate 20,000 clients and 5 paths for every client
respectively to investigate how much clients he can compromise
under three different methods. Let’s recall that if at least one
path is started with a malicious bridge, the client is defined as
compromised. Table 5 shows when the Round-robin Method is
used, clients are more likely to be compromised. And the Top
One Method is the safest method under this adversarial model.
It is easy to understand that repeatedly utilizing the first one can
decrease the possibility of a client being exposed to malicious
bridges.

Then, we change the number of malicious bridges under the
three methods respectively, and find a linear approximation of the
relationship between the number of malicious bridges and per-
centage of compromised clients in Fig. 2. Figure 2 shows that
results are almost linear. As stated in Section 4.1, clients choose
bridges randomly from all bridges in February 2014, and the sim-
ulator adopts Tor’s current path selection algorithm – Adjusted
Bandwidth-weighted Random Selection. Although, it contains
randomness, every relay’s probability of being selected at a spe-
cific position can be estimated. This is why the results are almost
linear.

Figure 2 also shows that under the adversarial model of mali-
cious bridges, the Top One Method is the safest method, while
the current Round-robin Method is the most vulnerable one.

Next, we compare the three methods under the bridge set fin-
gerprinting model. We simulate 20,000 clients and 5 paths for
every client respectively. The results in Table 6 show that when
using the Top One Method, on average 6.66 users share the same
bridge set, and hence the adversary can not link a bridge set to a
particular user. In contrast, when using the Round-robin Method

Table 6 Comparison of three methods under bridge set fingerprinting
model.

Number of Number of Number of
Distinct Expected Users Clients with
Bridge Sets per Set a Unique

Bridge Set
Round-robin 12,655 1.58 10,775
Top One 3,004 6.66 86
Top Three 12,642 1.58 10,765

or the Top Three Method, over half of the clients have their unique
bridge set, which could be the fingerprint of these clients. These
results show that repeatedly utilizing the first bridge can signif-
icantly mitigate this problem, while using the top three bridges
does little help compared to the original Round-robin Method.
This is also easy to understand, because when repeatedly utiliz-
ing the first one, the bridge set that a client has will be its first
bridge. Therefore many clients share the same bridge set. In con-
trast, in the Round-robin Method, since the bridge set of a client is
its bridge list, the probability of different clients having the same
bridge set is much lower. When a client has its unique bridge set,
it may be fingerprinted by an adversary.

We plot the cumulative distribution functions of the size of the
expected anonymity set. This is the number of expected users
per bridge set, for the three methods respectively, in order to ana-
lyze the probability of being fingerprinted. As Fig. 3 shows, when
there are 20,000 bridge users, repeatedly utilizing the first one can
ensure the median user an anonymity set of 6 users. On the other
hand, in the Round-robin Method or the Top Three method, over
85% of the bridge sets only has one user and over 53.8% of the
clients have their own unique bridge set. As a result, this could
allow malicious exit nodes – in connection with other attacks – to
link clients across destinations, and malicious network providers
to link mobile clients across locations.

Then we compare the three methods under the enumeration of
bridges by malicious middle relays model. We assume there is
an adversary who runs 100 malicious middle relays, and simu-
late 20,000 clients and 5 paths for every client for three rounds.
Table 7 shows the number of bridges found when using the de-
fault Round-robin Method and our two proposals. It shows that
in the three rounds of simulation, sometimes the adversary can
enumerate more bridges using our proposals, which means our
proposals can not mitigate this attack. We consider the reason
why our proposals can not mitigate this attack is that currently
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Fig. 3 Cumulative distribution of anonymity set size under three different methods.

Table 7 Comparison of three methods under enumeration of bridges by
malicious middle relays model.

Number of Number of Number of
Bridges Bridges Bridges
Found Found Found
(Round 1) (Round 2) (Round 3)

Round-robin 826 848 577
Top One 692 965 1,782
Top Three 525 408 1,423

Table 8 Comparison of the performance of three methods.

Average Average Average
Bandwidth Bandwidth Bandwidth
(B/s) (B/s) (B/s)
(Round 1) (Round 2) (Round 3)

Round-robin 50,747 50,781 50,696
Top One 50,251 50,903 50,785
Top Three 49,042 49,109 49,289

we assume that the adversary just insert N malicious non-guard
non-exit relays without considering the possibility of being cho-
sen as a middle relay, which causes the dispersion of the results
in different rounds.

5.3 Discussions
In the Top One Method, a specific bridge is frequently used by

a client. There might be concerns whether there is any disadvan-
tage or negative effect on anonymity or performance. We discuss
this in this section.

We first investigate whether our proposals will negatively af-
fect the performance. When a fast bridge is selected, as long as
the middle and exit relays are not slow, the client can experience
fast service. As mentioned in Section 4.1, the simulator weights
bridges by enforcing the lower and upper bound of their band-
width in the network status file, but it evaluates the performance
by their advertised bandwidth from bridge descriptor files. We
use the average bandwidth of all online bridges configured in a
client as the metric for evaluating the performance of the Round-
robin Method, the bandwidth of the first bridge for the Top One
Method, and the average bandwidth of the first three bridges for
the Top Three Method. We simulate 20,000 clients and 5 paths
for every client respectively for three rounds, and the results in
Table 8 are the average value. Table 8 shows that the Top One
Method does not negatively affect the performance, while the Top
Three Method causes a slight degradation in performance. The
reason for this slight degradation is still unknown, and we con-
sider it as a future task.

Other concerns when adopting the Top One Method include

Table 9 Comparison of the diversity at the bridge position under three
methods.

Entropy Gini Coefficient
at the Bridge at the Bridge
Position Position

Round-robin 11.47 0.19
Top One 11.41 0.24
Top Three 11.46 0.20

Table 10 Comparison of how many times each bridge is used under three
methods.

Average Standard Deviation
Round-robin 27.06 9.30
Top One 27.03 11.88
Top Three 27.20 9.90

that the diversity of paths might decrease, and the load of net-
work traffic might concentrate on some bridges. We simulate
20,000 clients and 5 paths for every client for these three methods
respectively.

We use Shannon entropy as the diversity metric. Bauer et al. [1]
adopted Shannon entropy as their definition of anonymity and di-
versity of Tor’s path selection. The higher the value is, the more
diverse these paths are. Snader and Borisov [19] adopted a dif-
ferent metric, the Gini coefficient. It is a measure of inequality,
utilized frequently in the field of economics. The Gini coefficient
G equals the normalised area between the CDF of the probability
distribution being measured, and the uniform CDF. For a popula-
tion’s income inequality, taking yi (i = 1 to n), which is indexed
in non-decreasing order, to mean the income of a person, the Gini
coefficient is:

G =
1
n

(
n + 1 − 2

(∑n
i=1(n + 1 − i)yi∑n

i=1 yi

))

A low Gini coefficient indicates a more equal distribution, with
0 corresponding to complete equality, while a higher Gini coef-
ficient indicates more unequal distribution, with 1 corresponding
to complete inequality. In Tor’s path selection, G = 0 represents
uniform distribution over all candidate relays and G = 1 indicates
that the same single relay will always be chosen. Table 9 shows
the Shannon entropy and Gini coefficient at the bridge position of
three methods. These values show that using the Top One Method
decreases the diversity of paths.

To investigate how many times each bridge is used, we calcu-
late the average and the standard deviation values. The results in
Table 10 show that there is not much difference in the average
values, while the standard deviations show using the Top One
Method causes some bridges being used more frequently, which
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means it will cause traffic load concentration.
Through these analyses, we prove that repeatedly utilizing the

first bridge will cause a decrease in path diversity and poorer load
balancing. However, this problem is easy to solve. Utilizing the
Top One Method does not mean that the client will have to use
the same bridge forever. Rotation should be introduced if the Top
One Method is adopted in Tor. The rotation of bridges can imitate
that of the entry guard.

In the current version of the Tor protocol, instead of choos-
ing a new guard every time, every Tor client maintains a guard
list, of several (by default, three) pre-selected guards, When the
Tor client constructs this list, it selects an expiry time for each
of the guards in the list from the range of 30–60 days uniformly
at random. After that period of time, the expired guards will be
dropped and repopulated, which is called guard rotation. This has
been described in Section 2.2.

Guard rotation serves several purposes. First, it is controver-
sial whether it is better to be compromised with some probability
all the time or either to be completely safe until the next guard
rotation. Øverlier and Syverson [15] proved that the latter is bet-
ter and hence the guard mechanism was introduced to Tor. As a
result, if a client chooses a malicious guard unluckily, guard ro-
tation enables this user to regain some privacy. Second, if clients
never rotate their guards, then guards would accumulate more
clients the longer they participated in the Tor network, which
leads to poor load-balancing. However, recent works [4], [10]
have suggested that the current parameters for guard rotation, in-
cluding the period of rotation time, may exposure users to greater
loss in privacy. Dingledine et al. [4] suggests extending the period
of guard rotation to 9 months.

Although bridges and guards are similar in that they all serve
as the entries into the Tor network, they are not the same. We thus
believe that the rotation mechanism of bridges, including the best
period of bridge rotation, may not be the same as that of guard ro-
tation without further research. So we regard it as another future
task.

6. Conclusions and Future Work

In this research, we first investigate the vulnerabilities of the
current bridge mechanism under four adversarial models through
simulations using our bridge path simulator. Then we compare
it with our two proposals. We discover our proposal of repeat-
edly utilizing the first bridge (the Top One Method) can effec-
tively mitigate the attacks under the malicious bridge model and
the bridge set fingerprinting model. This proposal is easy to im-
plement and proved to not negatively affect performance. So we
consider it practical for the Top One Method to be adopted in Tor.

As described in Section 5.3, utilizing the Top One Method does
not mean that the client will use the same bridge forever. Rota-
tion should be introduced if the Top One Method is adopted in
Tor. The rotation of bridges can imitate that of entry guards, but
the details, including the period and how to obtain new bridges,
remain as open research questions.

As mentioned in Section 5.2, the two proposals seem not help-
ful in mitigating the enumeration of bridges by malicious middle
relays. We regard countermeasures toward this attack as our fu-

ture work.
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Editor’s Recommendation
The authors evaluate current Tor bridge mechanisms under dif-

ferent adversarial models by developing a Tor bridge path simula-
tor. This paper shows the novel results with the high coverage of
adversarial models. In addition, the proposed method can be eas-
ily implemented and it is practical. Thus, we expect many readers
will be interested.
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