
Electronic Preprint for Journal of Information Processing Vol.23 No.5

Regular Paper

Reducing Congestion in the Tor Network with Circuit
Switching

Kale Timothy Girry1,a) Satoshi Ohzahata1 CelimugeWu1 Toshihiko Kato1

Received: December 5, 2014, Accepted: June 5, 2015

Abstract: The Tor network is a distributed circuit-switching overlay network, which provides anonymous commu-
nication by using voluntarily running onion routers around the world. Tor is vulnerable to network congestion and
performance problems because circuit traffics with different rates are competing to transfer their data through a single
TCP connection. A large fraction of available network capacity is consumed by the bulk users’ traffic, resulting in
increasing delays for the light interactive users. The unfair distribution between the circuit traffics of bulk and light
users are contributing to bottleneck in the Tor routers. This problem increases the end-to-end latency and reduces the
quality of communication in Tor, which discourages many users from using and joining the network. As a result, the
degradation of Tor performance does not only affect the users’ experience, but also degrade the anonymity of Tor. In
this work, we discovered that the current Tor design encountered problems from several performance and deployment
issues relating to lower network capacity. To improve the problems in Tor, we applied the circuit switching method and
addressed the short-comings of limited network capacity, by connecting the congested OR to higher bandwidth ORs.
The proposed method is evaluated on our setup testbed environment and partly in the live Tor network. The experi-
mental results showed that TCP socket buffers and Tor network capacity are better utilized and the overall end-to-end
latency is reduced.
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1. Introduction

The onion routing (Tor) network is a distributed overlay net-
work designed to anonymize TCP-based applications like web
browsing, secure shell, and instant messaging [1]. Tor consists of
onion routers (ORs), which are operated by volunteers around the
world to relay the user’s traffic. Tor clients work as onion proxies
(OPs) and build circuits through the ORs in the network to dis-
patch their traffic. The goal of Tor is to protect its clients OPs
from any adversaries who can easily identify the users’ physi-
cal locations and information they access through the Internet.
Tor uses a layered encryption scheme based on onion routing to
strengthen the anonymity service.

Although Tor gained wide popularity, it is vulnerable to net-
work congestion problems due to unfair distribution of traffic be-
tween the bulk and light traffics competing to send data through
a single TCP connection. This problem imposes greater latency
to majority of Tor web users, than they would experience without
using the Tor network [2]. In addition, high latency and low com-
munication quality of Tor discourage many users from joining the
network, which leads to degradation of anonymity services pro-
vided by Tor.

To help the wide usages of Tor, incentive-based schemes have
been introduced to encourage users to join and donate bandwidth
to the network to reduce the traffic pressure on the routers [3], [4].
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Many users donating ORs to relay traffics would result in increas-
ing capacity of the Tor network, but few users would lead to lower
network capacity and increase Tor network-wide congestion [5].

Tor decentralized congestion control with the techniques of
end-to-end acknowledge messages, and detect congestion on net-
work edges by sending less data until the congestion reduces [1].
The problem of this design is the total latency along the circuit
which contributed to longer delay of reply message to detect con-
gestion, and to repair packet losses. Tor does not react quickly
when applying its end-to-end window based flow-control algo-
rithm. Therefore, other congestion controls techniques have been
proposed to address the problem of flow-control in Tor [6], [7].
The major problem with Tor is the increase of congestion due
to a small fraction of users using greedy file-sharing application
such as BitTorrent that consumed a lot of network bandwidth.

Reardon and Goldberg [8] pointed out that bulk circuits are of-
ten multiplexed with light circuits in the same TCP connection,
and result in unfair application of the TCP congestion control of
the shared connection on all circuits. They proposed TCP-over-
DTLS, where every circuit gets a separate user-level TCP connec-
tion, and DTLS is used for encrypting and securing the commu-
nication between routers. Unfortunately, TCP-over-DTLS faces
drawbacks in deployment and performance problems issues that
hinder its adoption. In addition, for any pair of Tor routers to use
TCP-over-DTLS, both onion routers need to be upgraded which
would result in complexity of transport design.

Tang and Goldberg [9] proposed a method to address the prob-
lems based on prioritizing Tor traffic of users in each OR to re-
duce the high congestion and, focused on improving the quality
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of services for the interactive user traffic. They implemented their
method of calculating the exponentially weighted moving aver-
age (EWMA) of the number of cells to measure the recent activity
of a circuit, and then giving higher priority to circuits that have
lower EWMA value, which classified as light interactive traffics
to have their cells transferred. The problem with their approach
is bulk and light circuits are still using the same TCP connection
to send cells to the next OR. Therefore, the competition of send-
ing cells still occurs since the incoming rates of different circuit
traffics are not equal. Furthermore, since the prioritize approach
in Tor only serves larger bandwidth for the higher priority traffic
than that of the lower one in the limited bandwidth of OR, the
benefit of this approach is still limited.

The aim of this paper is to address the unfair distribution of
bulk and light traffics on a congested Tor circuit. We focus on
applying the circuit switching method to reduce the network con-
gestion by increasing the capacities of the Tor routers. This ap-
proach allows us to address the causes of higher delays on con-
strained OR that multiplex multiple incoming circuits. We eval-
uated the effectiveness of the circuit switching method and offer
the following contributions;
• We showed why the active circuit switching approach can

increases the capacity of OR and reduce the circuit conges-
tion.

• We improved the congestion on the selected ORs along the
circuit by applying the control schemes to monitor the buffer
occupancy in the entry ORs.

• Our control schemes can easily monitor the congestion state
in Tor and helps to improve the end-to-end throughput and
latency problems.

• We showed a simple circuit switching method with small
modification to stock Tor protocol.

• The proposed circuit switching approach is evaluated on our
setup testbed environment and partly in the live Tor network.

The rest of the paper is structured as follows. We provide the
related works in Section 2 and discuss the background of Tor net-
work in Section 3. We elaborate on our proposed method in Sec-
tion 4 and evaluate it in Section 5. Finally we conclude our study
and state our future work in Section 6.

2. Related Works

There are several proposals that aim to increase the total num-
ber of ORs to increase the network capacity and reduce the con-
gestion in Tor [3], [4], [10]. Although the network capacity of Tor
could be increased with new relays, we believe this approach is a
short-term solution. This is because faster network attracts bulk
users which can consume more network resources. Hence, the
congestion continues to occur on any selected ORs in Tor.

Dingledine [11] describes a method which tunes available op-
tions of Tor nodes, specifically PerConnBWRate and PerConnB-
WBurst configuration options, to control the traffic and reduce the
effect of buffer overflow. Both these options are used to separately
rate-limit every connection from a non-relay. When applying the
options, the heavy clients can be throttled at the entrance router.
The issue with this approach is that the configuration is static.
This approach does not take care of the current load and state of

the network. Even if there is bandwidth available, clients could
unnecessarily throttle.

Tschorsch and Scheuermann [12] pointed out the problems
of previous work and explained how the division of bandwidth
among the circuits is not fair. User-configured bandwidth is di-
vided equally among connections, and each connection’s band-
width is divided equally among the circuits. They implemented
a solution which achieves max-min fairness between circuits and
uses the N23 congestion feedback scheme [7], [12] to better make
use of bandwidth and prevent congestion. However, their ap-
proach raises a problem when opening many light circuits more
than a heavy circuit [7]. Less bandwidth is available to a light
circuit if one TCP connection accommodates many light circuits
traffics [12].

Gopal and Heninger [13] proposed a method called “Torches-
tra” to solve the unfair distribution between the bulk and light
users in Tor. In their proposal, two TCP connections are used for
OR-to-OR communication. One TCP connection is dedicated for
light circuits and another is dedicated for heavy circuits. They
used the EWMA proposed by the Tang and Goldberg [9] to clas-
sify circuits into light and heavy categories. They suggested that
having separate connections might help solve the unfairness prob-
lems in Tor. The problem to their approach is opening two con-
nections for light and heavy traffics between the same pair of ORs
that are highly congested can still degrade the performance of
light interactive traffics. In addition, both ORs can causes over-
head (TCP kernel memory overflow and mismanagement of traf-
fic flow) if accommodating many light and bulk traffics.

3. Background

In this section, we provide an overview of the Tor network and
its current transport design. We identify the problems in Tor and
elaborate on the problem effects that degrade the performance of
Tor.

3.1 Tor Overview
The Tor network is a second generation of onion routing over-

lay network [1]. A client connects to a destination through Tor
first contact a directory server to obtain the list of Tor nodes.
Next, the client constructs a circuit of three Tor routers (or nodes)
and forwards traffic through the circuit to a desired destination
using a layered encryption scheme based on onion routing [14].
To balance the traffic load across the routers’ bandwidth, clients
select routers in proportion to their bandwidth capacities. Each
onion router (OR) runs as a user-level process without any special
privileges. All relays in Tor communicate using pairwise TCP
connections. A pair of the relays communicates with several ORs
at once and all circuits between the pair are multiplexed over their
single TCP connection. Each circuit between ORs carries traffic
for multiple services that the user is accessing. Each Tor user lo-
cally runs software, which is called an onion proxy (OP). Onion
Proxy (OP) presents a SOCKS proxy interface to local applica-
tions, such as web browsers.

3.2 Circuit Constructions
When an application makes a TCP connection to OP, the OP
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splits the TCP segment into 512 bytes of fixed-size cells, and
forwards them over to Tor network. The client (OP) selects a
first OR (entry OR1), and makes a TCP connection as well as the
transport layer security (TLS) on that connection. Tor entry OR1

multiplexes circuit from one or more OPs into a single outgoing
TCP connection. The OPs then instructs entry OR1 to connect to
a second OR (OR2). The OP then instructs OR2 to contact a third
OR3 and the TCP connection is made between OR2 and OR3. The
last OR3 performs de-multiplex circuits from the OR2 and, opens
the TCP connection to the responder web server. Then the OR3

reports a one byte status message back to the client application
proxy.

The ORs communicate with one another and with client OP via
TLS connections with the ephemeral keys. To identify different
circuits, each OR assigns different circuit IDs to the circuits. By
default, Tor uses three hops circuit to enhance the OPs anonymity.
If privacy is not an issue, the number of hops can be reduced to
one or two ORs circuit with specific exit node. Reducing the
number of hops improves the circuit performance, without expe-
riencing many unexpected delays through ORs.

3.3 Tor Router Architecture
Figure 1 describes the Tor router architecture that includes the

circuit and TLS in the application layer and the host receiving
and sending TCP socket buffers for a single onion router [1], [8].
The TCP stack is responsible for providing hop-by-hop conges-
tion control, reliability and in-order delivery for TLS data. The
TLS conceals data and encrypts the segments of the circuit con-
nections to provide hop-by-hop authentication, integrity and con-
fidentiality between nodes. The circuit cryptography layer is re-
sponsible for confidentiality, providing label-switching routing
and performing demultiplexes and multiplexes of multiple cir-
cuits carried by the TLS [1], [8]. An input buffer inside Tor is
where Tor places cells from incoming circuit traffics it reads from
the TLS socket. Each cell is processed and pushed into the cor-
responding FIFO circuit queue, then further transferred into the
output buffer. The output buffer inside Tor is used for cells that
have been processed and are waiting to be dispatched to corre-
sponding sending TCP socket.

Fig. 1 Tor router architecture’s protocol stacks of a single OR. Cell process-
ing involves encryption/decryption in the FIFO circuit queues. The
TCP kernel input buffer holds the data from other OR and transfers
them into Tor application. TCP kernel output buffer holds the data
from the Tor application and transfer them to the outgoing traffic.

3.4 Performance Problems in Tor
3.4.1 Tor Design Problem

Reardon and Goldberg [8] have identified some problems with
Tor design when Tor’s OPs and ORs communicate with each
other using TCP connections. Every entry OR to other ORs has
TCP connection multiplex circuits from several Tor clients.

Figure 1 shows the Tor OR multiplexing the incoming circuits’
traffics to a single outgoing TCP connection. The single OR en-
sures that the flow of traffics appear in the correct order in which
the component streams are multiplexed.

Reardon and Goldberg [8] pointed out that this design can po-
tentially hinder the performance of interactive circuits carrying
light traffics. They believe that multiplexing TCP streams over a
single TCP connection is unwise and results in an unfair behav-
ior of TCP’s congestion control mechanism. It results in multiple
data streams competing to send data over a TCP stream which
gives more bandwidth to circuits that send more data. The Tor
scheduler gives each byte of data the same priority regardless of
its sources. A busy circuit that triggers congestion control causes
light interactive circuits to struggle to have their cells sent, which
result in increasing delays.
3.4.2 Causes of Congestion Delays in Tor

Joel Reardon [15] stated that the encryption computation in
Tor does not represent the largest source of delays, since the
OpenSSL’s reads require 30 microseconds and writes only re-
quires 40 microseconds. The time Tor takes to process 90% of
cells is between 8 to 10 microseconds. For this reason the cryp-
tography computational delays is eliminated and not a cause of
delay in Tor.

The delay in Tor depends on two components, the delay
through the node and the delay attributed to the latency of tra-
versed overlay links [16], [17]. Delays occur at the node level
when a node reaches its bandwidth limit, and when a node’s con-
nection to the Internet is congested. When a node is congested,
the out-going cells must wait in the node’s output queue. Some
studies [2], [6], [16], observed that the Tor’s token bucket rate
limiting implementation often contributes to congestion delays
of up to one second per node. These delays are detrimental to Tor
router performance.

We also studied the node based delays in Tor [18] to find out
the causes of congestion in Tor and, observed that the node based
delay is significantly larger than the propagation link delays from
the OPs to the exit OR. The average delay in a single node is
1.12 ± 1.13 seconds and the average propagation delays from the
OP to exit OR is 0.38 ± 3.36 seconds. Packet queuing due to
bottleneck in the node kernel buffers causes the node delay to in-
crease and affects the overall congestion delays in Tor. The end-
to-end latency delay is 2.94±2.37 seconds and the average delays
of packet queued in the node buffers is 0.82 ± 0.69 seconds.

From the measurement results, we concluded that the main
cause of congestion delays in Tor is due to bottleneck occurring
in node when multiple circuits are competing to send data to a
single TCP connection.

4. Proposed Method

To solve the above problem, we focused on improving the
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overall network capacities and the end-to-end throughput by
switching the Tor circuit to different TCP connection that has
lower congestion. We took a different approach from the related
works [11], [12], [13], by applying the circuit switching of active
bulk traffic that consumes a lot of bandwidth resources to another
TCP connection. We applied the circuit switching approach and
improve the flow rates of both light and bulk traffics because the
available capacity along the circuit is improved *1.

4.1 Metrics for Congestion Detection
We applied two metrics to evaluate and monitoring the unfair

distribution of multiple circuit traffics across congested ORs. One
is the output buffer occupancy in Tor application level, and the
other is the number of TCP socket un-writable events in the trans-
port level.
4.1.1 Tor Output Buffer Occupancy

This scheme can incur a significant overhead for determining
incoming and outgoing circuit rates occupying the output buffer
in Tor. By default, Tor has a buffering capacity for the instan-
taneous incoming and outgoing circuit traffics in the application
level for input and output buffers occupancy, and the receiving
and sending TCP kernel buffers as shown in Fig. 1. We applied
this metric to monitor the OR throughput, which we denoted as
the available capacity of OR, and the expected throughput of a
circuit traversing the selected OR. We measured the relative rates
for each circuit by measuring the buffer occupancy of all incom-
ing and outgoing traffics.

We applied the per-circuit connection cell exponential
weighted moving average (EWMA) to monitor the output buffer
occupancy over time. This metric is used to classify circuits into
light and bulk traffics that overflow the Tor output buffer. The
per-circuit connection EWMA algorithm that we used is com-
puted in much the same way as the EWMA algorithm that was
proposed by Tang and Goldberg [9]. The difference is, whenever
the circuit’s cell counter is incremented, the cell counter of
the outgoing connection to which that circuit belongs is also
incremented. Our control scheme is based on this incremented
value to identify which circuit contributed to overflowing the
output buffer *2.

We continuously update the EWMA value for each circuit
when performing our experiment. We rely on the observation
that bulk connections have higher EWMA values than light traf-
fic connections, because bulk clients always steadily transferring
data. When the OR output buffer is overloaded and the sending
TCP socket cannot receive any more data, the circuit traffic that
produces the congestion is switched to another TCP connection
that was preemptively built by OP at the beginning of circuit cre-
ation. This gives a better choice of switching the bulk circuit that
causes the bottlenecks in the selected ORs.
4.1.2 TCP Socket Un-writable Event

Joel Reardon [15] has fully detailed the effects of peer ac-
knowledging for data return slowly even if the data was trans-

*1 The light circuit traffics can easily transfer their cells without any need
to queue behind the bulk traffics when congestion control occurs.

*2 Note that the transferred cell EWMA value is for each client circuit and
does not affect other circuit EWMA value.

ferred properly. Since the TCP output buffer is where TCP main-
tains a perfect record of all unacknowledged data. This record
is used to generate packet retransmission if a packet dropped.
The TCP kernel output buffer usually swells up until acknowl-
edgements are received. In a worst case, the sending TCP buffer
size grows to a point where more memory cannot be allocated,
and consequently the operating system reports the socket as un-
writable.

In this work, we monitor this situation when un-writable events
occur to indicate the TCP socket buffer cannot receive any more
new data. We detect the socket as un-writable when executing the
node monitor algorithm, and observe the writing events for the
outgoing circuit reported as zero byte. This indicates the send-
ing TCP socket cannot accept any new data because the buffer is
overfull and congestion occurs at a single TCP connection.

4.2 Congestion Detection Algorithm
The classification of a circuit with heavy traffic is done at the

entry OR. In this work we consider the case where only the en-
try ORs are responsible for switching a circuit and the entire cir-
cuit is switched at once. It is simple and effective to work at the
entry ORs to determine the attribute circuit congestion to other
ORs. In addition, the current distribution of bandwidth in the
Tor network shows that the entry guards ORs have the higher
probability of being chosen due to higher bandwidth and stable
performances [6]. Therefore, applying the classification of circuit
traffics and switching method at the entry OR is more effective to
detect the congestion along the circuit.

For chosen buffer occupancy over time, the entry OR collects
statistics about the number of cells sent on each circuit queue to
the corresponding output buffer in Tor.

We modify a small portion of stock Tor algorithm to calculate
and estimate the EWMA periodic samples of instantaneous out-
put buffer occupancy B for each incoming circuit in Tor, which is
expressed in Eq. (1).

Bt = γ ∗ Bt−1 + (1 − γ) ∗ Bsample (0 < γ < 1) (1)

Bsample is the current collected number of sample cells sent
from the circuit queues and occupied the output buffer in Tor.

The EWMA parameter γ is the fractional weight of the pre-
vious buffer estimated in the EWMA estimator. We used it to
estimate the current buffer occupancy and determine the depth of
kernel memory usage in the allocated output buffers in Tor. The
larger γ has a greater influence on the number of cells occupying
the output buffer by the incoming circuits.

Algorithm 1 shows the pseudo code to classified circuit traf-
fic. We define α and β to be the minimum and maximum buffer
threshold values *3, below α is considered as buffer is underfull
(line 21) and above β is considered as buffer overfull (line 9). If
the current buffer occupancy Bt is within the acceptable range of
minimum and maximum (α ∗ Bt−1 ≤ Bt ≤ β ∗ Bt−1) (line 18),
we do not take any action to switch the circuit that has higher
EWMA value. However, if the Tor output buffer rises above the
maximum threshold (Bt > β ∗ Bt−1) (line 9) or the sending TCP

*3 Note that the buffer occupancy thresholds also show how aggressive the
flow rate of each incoming and outgoing TCP connections.
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kernel buffer cannot accept any new data S → 0, we switch the
circuit that has the higher EWMA value to different connection.
This approach allows the circuits with lower EWMA value (light
interactive circuit) to have better throughput performance.

We have experimented the switch timing of circuit traffics for
appropriate alpha α and beta β used in our control metrics. The
most appropriate minimum and maximum thresholds for the four
OPs circuits is when α = 0.1 and β = 0.5. These threshold val-
ues have smaller circuit switching time of 1 second and provide
better throughputs for all bulk and light circuits. Note that these
threshold parameters are fractional of the total allocated memory
for each output buffer size in the OR, which is 32 KB. Details of
the experiments are shown in Section 5.3.1.2.

4.3 Circuit Switching Procedures
This subsection explains in details the proposed analysis of

circuit switching. We explained where the congestion detection
point and the circuit switching initiator point.

Figure 2 shows an example of the switching method we ap-
plied on OP2 circuit as the bulk circuit traffic that switched to
different TCP connection. The flow of traffics is from the client
OPs to the web server. In this environment, the communication
between the OPs and the exit OR uses Tor protocol over TLS pro-
tocol. Then the communication between the exit OR and the web

Fig. 2 Circuit switching approach and experiment setup. Solid lines indi-
cate the initial circuit built by all the OPs. The dashed lines indicate
the switched circuits passing through different TCP connections. The
configured bandwidth on all the ORs is 1.5 Mbps.

server uses TLS protocol. The web server accepts the TLS ses-
sion resumptions [25] to resume connections after switching of
circuit, and continue receiving the packets from the exit ORs.

In the proposed approach, the entire client OPs build two cir-
cuits to the web server and one of the circuits is selected for data
transfer. The switching of circuit to a different TCP connection
happens in the entry ORs. The entry ORs sends the control mes-
sage to other ORs when its current output buffer rises above the
maximum β threshold and sending TCP socket is un-writable.

To make this approach easier to implement, we applied the
method of Gopal and Heninger [13] of connection switching pro-
tocol between two opening TCP connections. The similarity to
their work is that we consider only single OR to be responsible
for switching a circuit and, the entire circuit switches at once.
We applied two control cells that Gopal and Heninger [13] de-
fined to manage the connection transfer, which are SWITCH and
SWITCHED CONN cells that sent by the entry ORs when con-
gestion occurs. A SWITCHED CONN and SWITCH ACK cells
have no payload. The SWITCH cell’s payload contains a flag
that indicates that all further cells for the old circuit will be sent
on the new TCP connection. Hence, the ORs on the old circuit
can discard the corresponding circuit ID.

The differences are, first, we defined a SWITCHED ACK mes-
sage that sent by the receiving node to inform the initiator (send-
ing OR) that the switch is completed and can send further cells on
the new circuit. The second difference is we distributed the cir-
cuit traffics from the entry OR to different ORs instead of using
the same pair of ORs. When the entry OR switch the circuit to
new TCP connection, the old circuit is discarded after the entry
OR sends the DESTROY cell, which contains a single octet to the
adjacent OR on the appropriate direction’s CircID. This process
of sending the DESTROY cell has already been implemented in
Tor protocol specification [19]. Third difference is only the bulk
circuit traffics that causes the congestion to occur (i.e., circuit traf-
fics with higher EWMA value) is switched to new TCP connec-
tion, based on our two control schemes. After switching the bulk
circuit traffics to the new TCP, the OP owning the bulk circuit
continues to send and receive cells from its current pending re-
quests. We described our circuit classification and switching of
active circuit via single entry OR (entry OR1) and, via different
entry OR (from entry OR1 to entry OR2) as shown below.
4.3.1 Mechanism to Switch the Circuit via Single Entry OR

This subsection explains the mechanism of switching the cir-
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cuit via a single entry OR. Figure 2 shows the switching of OP2

circuit at the entry OR1.
The steps are as follows:

1. First, we allowed the entry ORs and middle ORs to relay
traffics within Tor network based on the circuit selected by
all the OPs. At the initial stage, the OP1, OP2, OP3 and
OP4 are multiplexed on the entry OR1 and passes through
the middle OR1 and exit OR1.

2. Before the entry OR1 switches the circuit to the separate
TCP connections, the entry OR1 monitors the incoming cir-
cuit traffics and checks if there is no congestion occurs on
all the ORs along the circuit. The Algorithm 1 keeps track
of the buffer occupancy to see if it stays within the accept-
able range between minimum and maximum thresholds and
whether the TCP socket is un-writable.

3. When the entry OR1 detects the OP2 circuit is flooding the
output buffer occupancy beyond the maximum threshold β,
the congestion occurs. The entry OR1 switches the current
circuit of OP2 that send the cells with sequence number 1
and 2 to a different TCP connection. The remaining cells
with sequence number 3 and 4 are transferred through the
other circuit that the OP2 preemptively built. The process of
switching circuit involves the entry OR1 sends a SWITCH
cell on the old bulk circuit (OP2 circuit) with right CircID to
inform the middle OR1 that no more cells for this circuit are
coming on this connection. The middle OR1 then sends the
SWITCH cell to the exit OR1 and discard the circuit when
receiving the DESTROY cell. When the exit OR1 receives
the SWITCH and DESTROY control cells, the exit OR1 first
sends the cells with sequence number 1 and 2 to the web
server then it tears down any associated edge connections
for the corresponding circuit ID. The cells with sequence
number 1 and 2 which are received by the web server are
kept in the input queue and, processed when the remaining
cells with sequence number 3 and 4 arrive from the middle
OR2 and exit OR2.

Next we describe the details of OP2 packet received in
the web server from exit OR1 (sequence number 1 and 2)
and exit OR2 (sequence number 3 and 4). Tor uses Trans-
port Layer Security (TLS) session resumption [25], which
enables the Transport Layer Security (TLS) to resume ses-
sions of sending the packets with sequence number 3 and 4 to
the web server, after the client OP2 sends the “Stream Iden-
tifier” of the packets and relay begin cell that contains the IP
address and port number of the web server. Tor applies this
approach to resume sending of data to the web server after
the active circuit traffics are switched to exit OR2. Further-
more, the TCP segments that both exit OR1 and exit OR2

nodes sending to the web server has the “Stream Identifier”
header [21], which holds the length of the relay payload, re-
lay command and stream identity. Initially, when the client
OP2 constructs a new TCP connection through the exit OR1

to reach the web server, the OP2 chooses the “Streams Iden-
tifier” for all the streams data which will be sent. The OP2

constructs the relay begin cell with a payload encoding the IP
address and port number of the destination host web server

(i.e., after receiving handshake reply message from the web
server). Therefore, as the exit OR1 receives the streams data
(sequence number 1 and 2) in Tor gateway layer, the exit OR
encapsulates the cells, and sends it out to the appropriate host
via the TCP/IP connection to reach the web server. Note that
TCP layer is responsible for providing in-order delivery, and
reliability for TLS incoming and outgoing data. When the
entry OR1 switches the circuit to middle OR2 and exit OR2,
the OP2 client resumes the session, which includes sending
Stream Identifier and relay begin cell. When the exit OR2 re-
ceives the information of relay begin cell, it sends the packet
with sequence number 3 and 4 to the same web server IP
address and port number. With the same information encod-
ing in the relay begin cell, the packets sent by the exit OR1

and exit OR2 can be successfully delivered to and processed
(reordering of packets) by the web server.

4. After step 3, the entry OR1 then sends a SWITCH CONN
cell on the new TCP connection followed by the circuit’s
cells to the middle OR2. Once the middle OR2 received
the cell, it sends a SWITCH ACK cell back to entry OR1

(the initiator). The entry OR1 instructs the middle OR2 to
send the SWITCH CONN cell to the exit OR2, and the exit
OR2 sends back the confirmation SWITCH ACK cell back
to middle OR2.

Next, we explain the details of communication between
the exit ORs and the web server. In Tor application layer,
the entry OR1 gateway protocol instructs the gateway proto-
col at the exit OR1 to send the packets (sequence number 1
and 2) to the web server when the connection is ready. The
web server can then successfully accept the data after the exit
OR1 sends the packets. In addition, as soon as the exit OR1

receives the SWITCH and DESTROY control cells, the exit
OR1 tears down any associated edge connections for the cor-
responding circuit ID to web server. Furthermore, since the
connection between exit OR2 and the web server are preemp-
tively built by client OP2 through middle OR2 and exit OR2

nodes. When the exit OR2 receives the SWITCH CONN
control cell and sends back the SWITCH ACK cell indicat-
ing the connection is ready to be used, the entry OR1 (at the
gateway layer in Tor) instructs the exit OR2 to transfer the re-
maining packets with sequence number 3 and 4 to the right
destination web server. The web server then receives the
TCP segments and sends the ACK message back to the exit
OR2. Since Tor uses the Transport Layer Security (TLS) ses-
sion resumption [25] to resume connections after switching
of circuit, the Transport Layer Security (TLS) can resume
sessions of sending the packets with sequence number 3 and
4 to the web server via exit OR2.

Note that our method can still work for general applica-
tions even if the server does not accept or uses the resump-
tion of TLS session. In cases that the server does not uses
the TSL connection, if Tor maintains the same exit OR con-
nection to the server, the switching of circuits only occurs
within the Tor network. In addition, since our circuit switch-
ing procedures also use the default Tor protocols (i.e., all the
OPs circuit can multiplexes and de-multiplexes at the single
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exit OR1 to reach the web server), the connection between
the exit OR and the server can still be maintained to transfer
data.

4.3.2 Mechanism to Switch the Circuit via Different Entry
OR

This subsection explains the mechanism to switch the circuit
via different entry ORs. Figure 2 shows the switches of OP4 cir-
cuit from the entry OR1 to entry OR2.

The steps are as follows:
1. Initially, the OP1, OP2, OP3 and OP4 are multiplexed on the

entry OR1 and passed through the middle OR1 and exit OR1.
2. When the entry OR1 detects the OP4 circuit is flooding the

output buffer occupancy beyond the maximum β threshold,
and the congestion occurs. The entry OR1 switches the cur-
rent circuit of OP4 via another entry OR2 that OP4 preemp-
tively built. The mechanisms to switch the OP4 circuit to
different entry OR2 are explained in the next step.

3. The entry OR1 sends a SWITCH CONN control cell
to the middle OR2, and the middle OR2 extends the
SWITCH CONN cell to the exit OR2. If the entry OR1

does not receive any SWITCH ACK in reply back from the
middle OR2 and exit OR2, or the SWITCH ACK remains
unattached for “SocksTimeout” (default 2 minute), at the
entry OR1 [21], the entry OR1 discards the control cell and
sends an error message back to the client OP4 as appropri-
ately to close the SOCKS connection. Client OP4 will im-
mediately switch its circuit to another circuit via entry OR2,
which was preemptively built and successfully connected to
the web server [21]. Tor build circuits preemptively, which
means number of circuits are kept ready even if there is
no data to be sent yet through entry OR2, middle OR2 and
the exit OR2 *4. When a circuit passing through entry OR2

is ready to be used, Tor (client OP4) attaches the request’s
stream to the circuit and sends a BEGIN, BEGIN DIR and
RESOLVE ORs pending cell as appropriate to attach on the
entry OR2, middle OR2 and exit OR2. This configuration of
stream attached to new circuit was made by default in Tor
algorithm to continue on with the transfer TCP streams [21].
Since the proposed method also work with the default Tor
algorithm, this switching of circuit to different entry ORs is
made possible for all client OPs.

4.4 Circuit Selection Method
For the circuit selection method, we have configured the Tor

auto-circuit algorithm [20] in the client OPs to expose the func-
tionality of TorCtl library. This allows us to tune the OP opera-
tions timely, such as query the runtime and available bandwidth
and, control the number of circuits to build with specifying the
number of hops.

In the first part of our evaluation, the circuit selection method
is manually configured since we want to observe if the circuit
switching method of active TCP connection can improve the un-
fair distribution between the bulk and light circuit traffics. The
dynamic selection of circuit in the live Tor network will be our

*4 Note that the connection to the web server is maintained by the OP4 after
circuit construction.

future work.
In this paper, we concentrated only on evaluating the effect of

the circuit switching. We carefully consider the case that chang-
ing the behavior of Tor circuit selection [21] might enable new
attacks. Therefore, we make sure that we do not degrade the
anonymity of Tor too much by ensuring our setup entries ORs
to be guard nodes. Since our current work is focused more on the
performance issues in Tor, we will address the anonymity of Tor
in relation to this work in the future studies.

In the second part of our evaluation, we evaluated our proposed
method partly in the live Tor network, where our entry ORs are
configured to run in our testbed environment and the middle and
exit ORs are selected from the public Tor network. We selected
the good route through the middle and exit ORs that have a re-
liable and higher OR capacities to ensure fairness between the
bulk and light circuit traffics before switching, and after switch-
ing the bulk traffics. Our experimented OPs constructed circuits
with a specified distance between each OR. The ORs are se-
lected using uniform selection method, one-by-one from the cur-
rent list of running ORs in the live Tor network to distribute the
traffics. There are other studies in Tor that shows Tor path se-
lections to improve the fairness and the performance in the Tor
Network [6], [23], [24].

5. Performance Evaluation

In this section, we evaluated the performance and show the
possible improvement of our circuit switching method. Firstly,
we show our method evaluation that we analyzed in the testbed
environment. Secondly, we evaluated the proposed method partly
in a live Tor network to observe the effectiveness of our approach.

5.1 Experiment Setup
5.1.1 Network Setting

Figure 3 shows the experiment setup for our evaluation. All
the ORs were running on the commercial 1 Gbps network in
our University laboratory. The client OPs were running on an-
other network in our university. The OPs and ORs were running
on Ubuntu OS 14.04.2 LTS CPU 2.60 GHz 32 bit with 4 GB of
RAM. We maintained the same memory and CPU for all the
ORs to gain similar performance across the entire network. We
run our setup ORs in the Tor network for more than a month
to gain stability in performance. We configured our setup ORs

Fig. 3 The measurement method, solid lines indicate the initial circuit built
by all the OPs. The dashed lines indicate the switched circuit passing
through different TCP connection. The configured bandwidth for all
the ORs is 1.5 Mbps.
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at the entry and middle position to relay traffic within Tor and,
the exit ORs opens the TCP port 80 to reach our web server
(https://www.dropbox.com/home). We work with the Tor stable
source code 0.2.4.19 for all the OPs and ORs in our testbed. The
ORs were running in the Internet with the bandwidth capacity of
1.5 Mbps. The entire OPs were uploading a 12.3 MB file simul-
taneously to the web server. The solid lines indicate the initial
circuit built by OPs and the dashed lines indicate the switched
circuit built after the old circuit is congested. The entries ORs are
configured to open two TCP connections for OPs circuit to route
their traffics through the Tor network. This is to improve the flow
rates of data, TCP window sizes and the end-to-end TCP through-
put in proportion to RTTs along the circuit. We use Netem em-
ulator tool to enforce delay effects for the incoming TCP traffics
to all the OPs. The delays enforced to OP1, OP2, OP3 and OP4 to
the ORs are 120 ms, 60 ms, 20 ms and 10 ms, respectively. These
settings enable us to configure circuit as bulk and light traffics
through the Tor network.
5.1.2 Parameters Settings

The parameters setting of the measurement evaluations are ex-
plained below.

Socket Buffer Size: We configured the TCP socket buffer size
varying from minimum 8 KB to average 16 KB. To measure the
TCP socket buffer usage over time, we executed the libevent echo
socket script to output the kernel memory usage. The confirma-
tion results can show us that connecting any constrain ORs to
higher TCP capacities can indeed increase the throughput for the
entire Tor network.

EWMA Parameter (γ): In our experiment, γ is the fractional
weight of the previous buffer estimate in the EWMA estimator
for the current buffer occupancy of the incoming circuit traffics.
We experimented with γ = 0.7. By setting the gamma parameter
as γ = 0.7, we are able to distinguished between the bulk and
light circuit traffics. This was done for per-circuit output buffer
allocated for incoming traffic on the selected OR.

5.2 Measurement Method
We performed the measurements for network capacity, end-to-

end throughput and latency for default 3 hops circuit through ORs
setup in our laboratory testbed. From the experiment topology in
Fig. 3, we allocated both the entry OR1 and entry OR2 to calculate
the EWMA of transfer cells to each circuit output buffer every 15
seconds. We made this choice to increase the time to properly
measure each circuit cell count and, time that cell transfer to cor-
responding output buffer in Tor. The EWMA algorithm gives us
the estimated value of cells occupied by each Tor output buffer.
5.2.1 Circuit Traffic Analysis

Our analysis focuses on reducing the congestion in Tor by in-
creasing the capacity in the Tor network. We measured the cir-
cuit traffic before congestion and when reaching the congestion
state based on the buffer usage over time and socket un-writable
event. We collected timing information from our Tor ORs using
libpse [22] and recorded the time points when the cells enter the
circuit queue, when they are moved from the circuit queue to the
output buffer of the connection, and when they leave the output
buffer. We performed 60 repeated measurements during upload-

ing a 12.3 MB file to the web server.
5.2.1.1 OR Capacity

We used node monitor program script that runs on each OR
to analyze the OR capacity, which changes over time in terms of
data flow rates. The node monitor program output the OR ca-
pacity that shows the number of bytes that a relay can forward
per second on all circuits going through it. We calculated the
changes in ORs capacity by taking the differences of capacity
“after switching” the active bulk circuit and, “before switching”
the circuit traffics Ca f ter − Cbe f ore. The increase of OR capacity
after switching shows an improvement to our proposed method.
5.2.1.2 End-to-end Throughput

To measure the circuit end-to-end throughput from the OPs to
the web server during upload, we used a Tor bandwidth monitor
(TorCtl script) to measure the OR connections events. In addition,
we pushed a bandwidth probe packet through the TorCtl port and
measured the end-to-end throughput from OP to the web server.
We performed 60 repeated measurements after 10 minutes inter-
vals when upload is completed *5.
5.2.1.3 End-to-end Latency

The end-to-end latency is measured by sending a single cell of
512 bytes (a TCP data packet which is part of an HTTP request)
from the OP to the web server via a 3-hop circuit made through
the n nodes (entry OR, middle OR and the exit OR). The aver-
age end-to-end latency varies depending on the extent of circuit’s
congestion, and the both side directions of all selected nodes. We
obtained the delays experience by a single cell along the circuit
and through the ORs (due to queuing and processing delays in the
node) by applying the measurement method of Wang et al. [6].

Practically, we used the node monitor program to confirmed
the node based delays by capturing the incoming and outgoing
transfer rates of the data from the receiving TCP socket to Tor
input buffer (upstream), and from the Tor output buffer down to
the sending TCP socket (downstream).

Circuits that are multiplexed over a single TCP connection can
be affected when a packet drops occur. Hence, each incoming cir-
cuit can experience increased end-to-end latency when this prob-
lem occurs. This means that packet is eligible to be dropped twice
as often in the remaining incoming circuits. We illustrate this
problem by showing the effective drop rates, which is the ratio of
packets dropped to the total number of packets reported during
measurements.

The results of our experiment measurements are shown in the
next subsection.

5.3 Experiment Results
5.3.1 Analysis of Circuit Switching

We performed a series of experiments on our experiment
testbed by transferring files to analyze and show the effectiveness
of the circuit switching method. In addition we measured the per-
formance for each client circuit before it was congested and after
congestion occurred.

During upload of 12.3 MB file to the web server, we detected
congestion occur at the entry OR1 because OP2 and OP3 circuits

*5 Note that we only measure our own circuit that we build through our
setup ORs.
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Table 1 EWMA values for each circuit with moving average of cells to the
Tor output buffer.

are largely occupying the output buffer, which goes above the
maximum threshold β and the TCP socket cannot accept any more
new data.
5.3.1.1 EWMA Values for each OP Circuit

Table 1 shows the output of EWMA values for each client cir-
cuit which transfers cells to corresponding output buffer at the
entry OR1. The table result shows the unfair distribution of cells
transferred from all the OPs. OP2 and OP3 are higher compared
to OP1 and OP4 circuit. The result matches with the previous
findings [2], [6], [8], [16], [18] that delays on ORs are the prin-
cipal contributor to Tor overall congestion delays. More impor-
tantly, we observed that although we enforce link delays to each
respective OP circuit to entry OR1, the OP2 and OP3 still trans-
fer data quicker to obtained higher EWMA values of transferring
cells compared to OP4 circuit. The variance of delays on all ORs
affects the performance of OP4 circuit though it has a very lower
link delay. It is very likely that the Tor circuit scheduling algo-
rithm itself plays a role in the variation in delays across a given
router.
5.3.1.2 Time to Switch Circuit

To evaluate the appropriateness of α and β on switch timing in
Algorithm 1, we performed an experiment for different values of
α and β thresholds and made decisions based on switch timing
when active bulk circuit switches to different TCP connection on
entry OR nodes. Switch timing is the time when sending the last
cell on the old circuit path up to when the first cell is sent to the
new circuit. Circuit switching occurs when there is a bottleneck
in the output buffer occupancy in Tor (i.e., when the cells queue
rises above the minimum α and maximum β thresholds values in
the entry ORs), which are monitored by the EWMA algorithm.
We evaluated the switch timing by uploading a 12.3 MB file for
60 repeated times. The threshold values for α and β are directly
configured in the Algorithm 1 that runs in the entry ORs.

Figure 4 shows the cumulative distribution of circuit switch
timing to evaluate the appropriateness of α and β used in Algo-
rithm 1. We observed that 50% of circuit switch timing when
α = 0.05 and β = 0.1 is less than 1 second. This switch timing
indicates the time it took the entry OR1 to successfully switch
the active bulk circuit to different TCP connection and continues
on with the data transmission at the position of data discontin-
ued in the previous circuit. When we configured the α = 0.1 and
β = 0.5, 50% of switch timing of active bulk circuit to different
TCP connection is also less than 1 second, whereas 50% of circuit
switch timing of α = 0.3 and β = 0.75 is less than 2.15 seconds.
When further configured the α = 0.5 and β = 0.9, 50% of circuit
switch timing is less than 3 seconds, which is significantly higher
compared to other threshold values. We observed that when in-
creasing the minimum α and maximum β threshold values, the
switch timing also increases due to more cells queue up in the

Fig. 4 Cumulative distributions of circuit switch timing with appropriate α
and β used in Algorithm 1.

Fig. 5 Cumulative distributions of switching time for all the circuits
switched to different TCP connection at the entry OR1 and entry OR2

nodes, when α = 0.1 and β = 0.5.

Tor output buffer. As a result, the entry OR1 requires more time
to process the cells and send it to the corresponding output buffer.
On the other hand, when lower the α to 0.05 and β to 0.1, the
circuit switching delay is low and the transfer rates of cells pass-
ing through the entry OR is also low. This is because the output
buffer occupancy quickly reached the maximum threshold value
β = 0.1 (3.2 KB). Furthermore, when configuring the α = 0.05
and β = 0.1, a single entry OR cannot accommodate large num-
ber of incoming circuits due to smaller output buffer size. As a
result, we selected the most appropriate minimum α and maxi-
mum β thresholds values as α = 0.1 and β = 0.5, because it has
smaller average circuit switch timing required to switch the active
bulk circuit to a different TCP connection.

After obtaining the appropriate α and β, we tested the appropri-
ateness of α and β to whole laboratory testbed experiment for the
entry OR1 and entry OR2 to obtain the average delays of circuit
switching during uploading a 12.3 MB file to the web server. We
performed 60 repeated measurements at the entry OR1 and en-
try OR2 nodes for all circuits, and observed the switching times
of active circuit to different TCP connection. We combined all
the measurement results and calculated the distribution of circuit
switching time to obtain the average delays. Figure 5 shows the
cumulative distribution of switching times at the entry OR1 and
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Fig. 6 Cumulative distribution of all OR capacities after and before switch-
ing the circuit, Ca f ter −Cbe f ore.

entry OR2 nodes, when α = 0.1 and β = 0.5. The results show
that 50% of circuit switching time at the entry OR1 and entry
OR2 are both less than 1 second to successfully switch the circuit
and continue on with the data transmission at the position of data
discontinued on previous circuit.
5.3.2 OR Capacities After and Before Switching the Circuit

To improve the flow rates and reduce the congestion along the
multiplexed circuit, the entry OR1 switches both OP2 and OP3 to
different TCP connections, which goes through the middle OR2

and the middle OR2 further transfer the traffics to the exit OR2

(see Fig. 3). The OP2 and OP3 get a new circuit path through mid-
dle OR2 which improves the capacity of the network and reduce
the bottleneck on entry OR1. We performed 60 repeated mea-
surements during uploading of 12.3 MB file to the web server, to
obtain the reliable results of ORs capacities changes *6.

Figure 6 shows the differences of OR capacities for entry ORs,
middle ORs and exit ORs. We observed the changes in Tor router
capacities before and after bulk circuits switched and, calculated
the differences of capacities by Ca f ter − Cbe f ore. The difference
shows the improvement of network capacities.

In overall tests that we performed, 50% of the increased ORs
capacities after taking the differences of OR capacities Ca f ter −
Cbe f ore for entry OR1, middle OR1 and exit OR1 are less than
1 Mbps, 1.02 Mbps and 1.01 Mbps, respectively.

We also measured the entry OR2, middle OR2 and exit OR2,
under the same condition for all the OPs circuits, and observed
the results consistently showed significant improvements of ORs
capacities after switching the bulk circuits. 50% of increased ca-
pacities at the entry OR2, middle OR2 and exit OR2 are 1.3 Mbps,
1.4 Mbps and 1.2 Mbps. The slight improvement in capacities for
all the ORs after switching the bulk circuit indicates the through-
put of light circuit traffic is improved, and able to transfer quickly
the data at any point in time. The results showed that after switch-
ing the circuit gain better capacities compared to before switching
the bulk circuit *7.

When OP4 circuit traffic load switches to all three OR2 nodes,
the load of traffic for OP4 circuit “before switching” and “after

*6 The flow of traffic is from the client OPs to the web server.
*7 Before switching the bulk circuit is when all the incoming circuit traffics

are multiplexed to single outgoing TCP connection.

Table 2 Comparisons of Tor multiplex circuits with the combination re-
sults of separate TCP connections for all OPs after circuit switched.
The effective drop rate is the ratio of packets dropped to the total
number of packets we observed in the experiment. The end-to-end
throughputs are measured from the OPs to the web server.

switching” is measured by each OR capacity and throughputs.
The end-to-end throughput for old OP4 circuit (before switch-
ing) is 88 ± 24 KB/s. This result of throughput is lower and in-
dicates a bottleneck occurs along the selected three OR1 nodes.
The average capacity of entry OR1 before switching the OP4 cir-
cuit (solid blue line) is 0.98 Mbps, for middle OR1 is 1.01 Mbps
and for exit OR1 is 0.78 Mbps. After switching the OP4 cir-
cuit to all three OR2 nodes (blue dash line), the average capac-
ities for entry OR2, middle OR2 and exit OR2 are 1.98 Mbps,
1.81 Mbps and 1.87 Mbps respectively. Since all the OR2 nodes
are less congested due to handling less traffics compared to all
three OR1 nodes, the end-to-end throughput for OP4 circuit af-
ter switching (blue dash line) to new circuit path is improved by
120 ± 13 KB/s. Note that the initial capacities of all three OR2

nodes (i.e., before OP4 circuit traffic passes through all three OR2

nodes) are 3.28 Mbps for entry OR2, 3.21 Mbps for middle OR2,
and 3.07 Mbps for exit OR2. Our approach also improves all three
OR1 nodes capacities after switching the OP4 circuit to all OR2

nodes, by increasing the capacities to 1.98 Mbps for entry OR1,
2.03 Mbps for middle OR1 and 1.79 Mbps for exit OR1. The dif-
ferences of the OR capacities after switching and before switch-
ing gives the results in Fig. 6. This improvement in OR capacities
helps to improve the flow rates of the current OP4 circuit passing
through all three OR2 nodes and increases the overall network
capacities.

In overall experiment measurements, we observed in Fig. 6 that
98% of the measurement shows increases of capacities for all
ORs after bulk circuit is switched. Only 2% of our test shows
no improvement. At one instance, the exit OR1 and entry OR2

have the capacity of 0 Mbps, which indicates the OR capacity
before and after switched are the same. Moreover, the experi-
ment results show that if we can appropriately select the circuit
to switch based on the higher capacity of ORs, we can be able to
improve the performance. Furthermore, by connecting congested
TCP connection to higher ORs capacity improves the capacity of
the network and flow rates of data.
5.3.3 End-to-end Throughput

Table 2 shows the impact of increasing the network capacity to
average end-to-end throughputs, for all the circuits from the client
OPs to the web server. Figure 7 shows the cumulative distribu-
tion of end-to-end throughput for all circuits. For both results,
we compared the Tor multiplex circuits with the results of cir-
cuit switching approach. Note that circuit switching results for
all OPs are measured beginning from the initial stage when the
light and bulk circuits are multiplexed to single TCP connection,
to when the bulk circuit is switched to different TCP connection.
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Fig. 7 Cumulative distribution of end-to-end throughput from the client OPs
to the web server.

In Table 2, we showed the effective drop rate of multiplex cir-
cuits compared to circuit switching to different TCP connection.
The effective drop rate is the percentage ratio of packets dropped
to the total number of packets we observed in the experiment.
From the result, we observed the ORs that switched the circuit to
different TCP connections for all OPs gain better average end-to-
end throughput compared to the Tor multiplexed circuits. How-
ever, there are issues that arise in our evaluation method which we
need to consider. The average end-to-end throughput for switch-
ing the active bulk circuit to different TCP connections showed
higher variances (95% confidence interval is quite large). The
reason is 0.09% of packet drop occurs during switching the active
bulk circuits with higher EWMA values to different TCP connec-
tion.

Therefore, the packet losses became a problem for our control
scheme because it contributes to additional delay. However, the
benefit of our approach is packet loss does not affect throughput
in total. The obvious reason is that each TCP sub-flow of the cir-
cuit traffic is not affecting each other in-terms of queuing delay
or packet drops in the output buffers. As a result, the average
end-to-end throughput is still improved. Figure 7 shows that 50%
of end-to-end throughput for Tor multiplexed circuits is less than
134 KB/s, whereas 50% of end-to-end throughput for switching
the OPs circuits at the entry ORs after congestion occurred is less
than 264 KB/s. The distribution of end-to-end throughput for cir-
cuit switching approach at the entry ORs shows the improvement
in network throughput of the total cells sent along the light and
bulk circuits.

In case of the Tor multiplex circuits, Tor suffers an unreason-
able throughputs reduction when 0.04% packet drops occur as
shown in Table 2. Packet losses or reordering causes the socket
to indicate no data is available to read even if other circuits have
their sequential cells available in the buffers. On the other hand,
packets’ sitting in the output kernel buffer and causes the socket
to un-writable because of no space.
5.3.4 End-to-end Latency

Figure 8 shows the cumulative distribution of the end-to-
end latency for Tor multiplex circuits compared with the circuit
switching approach for all the clients when congestion occurs.
Tor multiplex circuits referred to all the OPs circuits that are mul-

Fig. 8 Cumulative distribution of end-to-end latency from the client OPs to
the web server.

Fig. 9 Experiment topology for circuit switching method in a live Tor Net-
work.

tiplexed in entry ORs, middle ORs and exit ORs. The end-to-end
latency is measured for every 60 measurement tests when upload-
ing a file. The distribution of end-to-end latency for all circuits
when switching the bulk circuit traffics to different TCP connec-
tions shows, 50% of end-to-end latency is less than 1.68 seconds,
whereas 50% of end-to-end latency when multiplexing all the cir-
cuits to one TCP connection is less than 2.65 seconds. From the
result, the circuit switching approach enhances the flow rates of
packets and has lower end-to-end latency in comparison to Tor
multiplex circuits.

Testing done on our setup ORs shows that when increasing the
capacity of network by applying circuit switching method, the
end-to-end throughput in the Tor network increases and the over-
all end-to-end latency decreases. Our next approach is to test our
method with the public ORs in the live Tor network, and observe
if the control metrics we applied to detect the congestion on the
entry ORs is effective.

5.4 Analysis of Circuit Switching in a Live Tor Network
In this subsection, we discuss and show the effectiveness of

switching method for improving the end-to-end throughput and
the capacity of the Tor network. We tested the switching circuit
approach when uploading the same file size of 12.3 MB to the
web server.

Figure 9 shows the topology for circuit switching method in
a live Tor network. We selected 50 ORs from the Tor directory
server, based on the advertised bandwidths and fast, stable per-
formance flags. From the ORs lists, we allocated the middle and
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exit ORs. The middle ORs relay traffic within Tor network and
the exit ORs have the exit policy to relay traffic outside of Tor.

In this paper, we run our own setup entry OR and connected
it to the middle and exit ORs from the live Tor network. The
objective is to easily control and observe the circuit switching al-
gorithm that monitors the four OPs circuits that multiplex at a
single entry OR, up to time when the congestion occurs. In ad-
dition, to analyze any improvements in throughput after the bulk
circuit is switched. We ensure that the entry OR located in our
testbed must have the guard flag at the entry point to confirm the
high uptime, stable performance and have higher than the median
of advertised bandwidths of all other ORs *8.

We analyzed the performance when distributing the traffics
across 25 middle ORs and 25 exit ORs when the entry OR1

switches the circuit to different TCP connections. The circuit
switching protocols applied in the live Tor are same with the steps
explained in Sections 4.3.1 and 4.3.2. As shown in Fig. 9, the en-
try OR1 switches the bulk circuit one-by-one from the current list
of running ORs in the Tor network to distribute the traffics.

We measured the default 3-hop circuits to understand the net-
work capacity, end-to-end throughput and latency delays faced by
cells into various types of constituent delays that lead to higher
congestion and packet drops.

Since we only use our web server as the destination and the
middle and exit ORs are located in the public Tor network, we
can measure both end-to-end latencies and throughput from OPs
to the web server. However, we do not have access to either node
delay information or public Tor ORs capacity (i.e., the actual ca-
pacity used on public ORs when transferring data) to reach our
web server. Therefore, to measure the end-to-end throughput
and latency in the live Tor network, we make use of the feed-
back (HTTP response time) from the web server beginning from
when we push the bandwidth probe packets through the TorCtl
port from the client OPs. In addition, we confirmed the OR ca-
pacity by directly measuring the setup entry OR on our testbed.
Furthermore, we applied the Tor bandwidth monitor to estimate
the overall network capacity and throughput rates from OPs to the
web server during upload. We repeated the measurements for 60
times after 10 minutes intervals during uploading files.
5.4.1 OR Capacities After and Before Switching the Circuit

Since our evaluation is focused on reducing the congestion by
increasing the network capacity when applying the circuit switch-
ing method, we measured the entry OR1 capacity by calculating
the capacities of after switching the circuit and before switching
the circuit Ca f ter − Cbe f ore. Note we can only monitor our entry
OR capacity that change over time, because we have full control
over it.

Figure 10 shows the distribution of entry OR1 capacities which
increase after switching the circuit to another TCP connection.
We observed that 50% of capacity measured at the entry OR1 is
less than 1.7 Mbps. This increase of OR1 capacity shows the im-
provement of flow rates after entry OR1 switches the bulk circuits
to other higher ORs capacity in the public Tor network. However,
in some cases we realized that some public Tor routers are highly

*8 Note that we selected and worked with the public ORs in the live Tor
network, but we only monitored our own circuit traffics.

Fig. 10 Cumulative distribution of capacities in entry OR1 for after and be-
fore switching the circuit Ca f ter −Cbe f ore. Before switching is when
all the OPs circuits are multiplexed to one TCP connection.

Table 3 Average end-to-end throughputs measured from OPs to the web
server. We compared the Tor multiplex circuit and the circuit
switching approach for all OPs.

congested with other cross-circuit traffics in the live Tor network.
Therefore when we switched the bulk circuit to another TCP con-
nection after congestion occurs at the entry OR1, we observed
no improvement in the OR capacities. 10% of the measurements
show the capacity changes at the entry OR1 is below 0 Mbps. In
addition, most of the ORs selected in the live Tor have the ca-
pacity of 500 KB/s to 10 Mbps. Therefore the bottleneck that was
experienced along the middle and exit ORs still affects the vari-
ances of network capacity.

In overall measurements, we observed that 90% of increase
capacity in the entry OR1 is less than 3 Mbps. This small im-
provement in capacity increase shows the throughput entry OR1

is able to transfer to a circuit is increased as well, after connected
to higher ORs capacities in the live Tor network.
5.4.2 End-to-end Throughput

Table 3 shows the average end-to-end throughput measured
for all four OP circuits to the web server. Figure 11 shows the
distribution of end-to-end throughput.

We observed in Table 3 that the average end-to-end throughput
degrades for Tor multiplex circuits when packet drop occurs at
the rate of 0.03%. The results in the live Tor network confirm the
results in Table 2, which we tested on our setup testbed environ-
ment.

From our observations in the testbed environment (Table 2) and
the live Tor network (Table 3), the main reason which causes the
increase of effective drop rates of the proposed method is that
when the entry ORs send the SWITCH CONN control cell to
other ORs for circuit switching and no SWITCH ACK is sent
from either middle ORs or exit ORs. The entry ORs tears down
the attempted switch circuit and does not quickly attach the re-

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.5

Fig. 11 Cumulative distribution of end-to-end throughputs measured from
OPs to the web server. We compared the Tor multiplex circuit and
the circuit switching approach for all OPs.

quest’s stream to different TCP connection. In that case, Tor con-
siders the reason to send the CLOSE relay cell and drops off all
the remaining cells. The client OPs have to restart a new circuit
and retransmit the whole data again at the beginning. This prob-
lem occasionally happens when switching the bulk circuit to ORs
which are highly congested with many incoming circuits and has
very lower capacity.

However, though Tor multiplexes circuits to one TCP connec-
tions gain lower overall drop rates compared to switching method,
the behavior of one circuit drops can adversely affect all the other
incoming circuits’ and reduce the average end-to-end throughput.
Considering the average end-to-end throughput for all the circuits
after the bulk circuits switched to different TCP connection in the
live Tor network. The average end-to-end throughput for all the
circuits is higher compared to when Tor multiplexed circuits to
one TCP connection. In overall distribution measurements, we
observed in Fig. 11 that 50% of end-to-end throughput for cir-
cuit switching is less than 350 KB/s, whereas 50% of end-to-end
throughput for Tor multiplex circuits is less than 250 KB/s.

We concluded that even if the proposed control scheme is only
installed in the entry ORs, the communication quality is still im-
proved according to our measurement results. This improvement
means better transfer rates and lower congestion on all the se-
lected ORs. The problem to our circuit switching method is the
effect of dropping cells along the circuit as shown in Table 3.
Switching of active TCP connection to different connection took
an average delay of 1 second to be successfully completed and
continues on with the data transmission. We observed that the av-
erage delay of 1 second is caused by the cells which are dropped.
5.4.3 End-to-end Latency

Figure 12 shows the end-to-end latency results for Tor multi-
plex circuits (before circuit switch) compared to all OP circuits
after switching the bulk circuit traffic to different TCP connec-
tion. The result shows significant improvements when applying
the switching method in the live Tor network. 50% of end-to-end
latency measured for all the OPs is less than 1.7 seconds; whereas
50% of Tor multiplexed circuits is less than 2.6 seconds. The de-
lay time of 2.6 seconds is too high which can cause the client OPs
to detect congestion very late. In addition, Tor users can felt the

Fig. 12 Cumulative distribution of the end-to-end latency from the client
OPs to the web server.

slowness of transferring data to the web server.
From the result, as compared with the conventional approach

where Tor multiplexes circuits to one TCP connection, the end-to-
end latency of almost all OPs circuit can be reduced by switching
the bulk circuit to a different TCP connection. This result shows
that by separating the connection-sharing among bulk and light
circuits, we can reduce the end-to-end latency in Tor and improve
the flow rates of cells.

6. Conclusion and Future Work

In this work, we improved the end-to-end throughput of data
transfer through the Tor network by applying our circuit switch-
ing method. We discovered and showed that the use of different
TCP connections on some hops does increase the network capac-
ity and reduce the overall end-to-end latency. We used the two
metrics to assess the network congestion, the Tor output buffer
occupancy and the TCP socket un-writable events. We observed
that packet losses are a problem for our control scheme because
it contributes to additional delay when switching the active TCP
connections.

For our future work, the main focus is to improve the prob-
lems we faced in our current work and the limitation concerning
the dynamic selection of circuit when switching the active bulk
traffics. In addition, we wish to improve the congestion detection
method in the current Tor algorithm.
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