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Abstract: In the wiretap model of secure communication, Alice is connected to Bob and Eve by two noisy channels.
Wyner’s insight was that the difference in noise between the two channels can be used to provide perfect secrecy for
communication between Alice and Bob, against the eavesdropper Eve. In Wyner’s model, the adversary is passive. We
consider a coding-theoretic model for wiretap channels with active adversaries who can choose their view of the com-
munication channel and also add adversarial noise to the channel. We give an overview of the security definition and
the known results for this model, and discuss its relation to two important cryptographic primitives: secure message
transmission and robust secret sharing. In particular, we show that this model unifies the study of wiretap channels and
secure message transmission in networks.
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1. Introduction

In the most basic secure communication scenario, Alice wants
to securely send a message m to Bob over a channel that is eaves-
dropped by Eve. Noise is inherent in all communication systems,
and so Alice must also ensure that Bob correctly receives the mes-
sage. Formal modelling and analysis of the problem of secure and
reliable communication over an eavesdropped channel has two
distinct solution approaches.

Shannon’s approach. Shannon [1] proposed a two-step so-
lution, wherein the first step Alice and Bob remove the noise
from the channel and construct a reliable channel from Alice to
Bob. To formalize this step, Shannon founded information theory,
modelled a noisy channel, and defined the capacity of a channel
as the highest rate of error-free transmission over the channel.
Modelling a channel requires estimating the noise in the channel
(i.e., finding channel transition probability) and using this esti-
mate to employ an appropriate error-correcting code. In the sec-
ond step, once a reliable channel between Alice and Bob is estab-
lished, Alice and Bob can use a shared secret key to encrypt their
communication. Using information-theoretic measures, Shannon
defined perfect secrecy, and showed that perfect secrecy is pos-
sible using a one-time-pad (OTP) encryption system. In a OTP,
a binary message is XORed with a random binary string of the
same length as the message, hence effectively masking the mes-
sage with pure noise. The binary string is the cryptographic key,
which must be shared between the sender and the receiver.

Wyner’s approach. In Ref. [2], Wyner proposed a radically dif-
ferent approach. He noted that noise is in fact a friend of the cryp-
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tographer, since it partially obstructs the view of the eavesdrop-
per. In Wyner’s original model and its generalization to broadcast

channels [3], the sender is connected to the receiver over a noisy
channel that is called the main channel, and to the eavesdropper
over a second noisy channel called the wiretap channel. The se-
crecy capacity of a wiretap channel is an extension of Shannon’s
channel capacity for reliable communication, with the extra re-
quirement that the rate of information leakage about the message
to the adversary approaches zero as the message length goes to
infinity.

To provide reliable communication between Alice and Bob,
both of the above approaches require Alice to be able to esti-
mate the noise in the main channel. Wyner’s model however
also requires estimating the noise in the eavesdropper’s channel.
Shannon’s model does not require this estimate, but assumes a
shared secret key between Alice and Bob, hence effectively re-
quiring a solution to the key establishment problem.

Solving the key establishment problem (and hence Shannon’s
solution approach) without making any assumption about the ad-
versary Eve is impossible. Wyner’s approach can be seen as as-
suming that Eve’s channel has a minimum level of noise. This is
a physical assumption on the environment of the communication.
A different type of assumption is limiting Eve’s computational
power.

1.1 Computational Cryptography
In computational cryptography, Eve is assumed to have

polynomial-time computation. With this assumption, Diffie and
Hellman [4] gave an elegant solution to the key establishment
problem that allows Alice and Bob to share a secret key over a
noise-free channel eavesdropped by an adversary. Here, eaves-
dropping provides a perfect view of the communication to the ad-
versary, since the noise-free channel is accessible to the adversary
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also.
The security of the Diffie-Hellman key agreement protocol re-

lies on the difficulty of the Diffie-Hellman (DH) problem. For a
cyclic group with generator g, the computational DH problem re-
quires that, given the knowledge of ga and gb, finding gab remain
hard. A second hard problem that is the basis of the DH algorithm
security is the Discrete Logarithm (DL) problem, which assumes
that finding a from ga is hard.

Shor [5] gave an efficient (polynomial time) quantum algorithm
for the DL problem, and so effectively showed that DH key es-
tablishment becomes insecure if quantum computers exist. Ad-
vances in algorithms and computer technologies give strong mo-
tivations to the study of alternative approaches to providing se-
curity, including replacing computational assumptions with other
reasonable non-computational assumptions.

1.2 Physical Assumptions
Wyner’s model relies on a physical assumption about the noise

in the eavesdropper’s channel. The model has attracted consider-
able attention and provides a natural model for wireless commu-
nication in which the sender’s transmission is intercepted by an
eavesdropper who is within the reception distance of the sender.
There is a large body of research [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18] on the wiretap model, its exten-
sions, and implementations. In the original Wyner’s model, se-
crecy of communication is quantified by 1

n H(M|Z), where M is
a uniformly distributed random variable associated with the mes-
sage of length n, and Z is the random variable representing the
adversary’s view of the channel. Perfect secrecy of communi-
cation requires that the above rate of equivocation become arbi-
trarily small for large n. Reliability of communication requires
that the average error rate (over all messages) is arbitrarily small
for large n. The secrecy capacity of a channel is the highest rate
of communication that achieves perfect secrecy and reliability as
defined above.

The secrecy capacity of a degraded wiretap channel, where the
wiretapper channel is a concatenation of the main channel and
a second noisy channel, and the existence of codes that achieve
secrecy capacity was given in Ref. [2], and its generalization to
broadcast channel in Ref. [3]. The followup works have strength-
ened the definition of secrecy to inlcude the total information
leakage, and not rate of leakage. The capacity results are not
affected by this new measure.
1.2.1 Active Adversaries

Wyner and Ozarow [19] introduced the wiretap II model, in
which the main channel is noiseless and the wiretap channel can
be seen as an erasure channel, where the adversary can choose a
subset of codeword components for eavesdropping. The subset is
of size pN, where N is the length of the codeword sent over the
channel and p is a constant,

In both Wyner’s models, the adversary can eavesdrop on com-
munication but does not tamper with it. In the original wiretap
model, Eve’s view is probabilistic, and in the wiretap II model,
it is chosen by Eve. Active adversaries that modify the trans-
mission over the main channel have been considered in recent
years [11], [20], [21]. In these works, active adversaries are mod-

elled by an arbitrarily varying wiretap channel, where the chan-
nels from the sender to the receiver and the adversary are spec-
ified by a set of transition probabilities Pr(y, z|x, s), x ∈ X, y ∈
Y, z ∈ Z, s ∈ S that depend on the state of the channel, rep-
resented by a random variable S that is unknown to Alice and
Bob. Here, X,Y andZ are Alice’s input alphabet, and Bob’s and
Eve’s output alphabet, respectively. The results in these works
are existential and do not give explicit constructions.

In Ref. [22], an adversarial model for a wiretap channel with a
jamming adversary is proposed in which the adversary can eaves-
drop and corrupt the communication. The adversary’s power is
specified by a pair of constants (ρr, ρw) denoting the fraction of
the codeword that is read and modified by the adversary, respec-
tively. The goal of communication in Ref. [22] is reliability. This
is later extended [23] to Adversarial Wiretap Channels (AWTP),
which consider the same adversary model but requires both re-
liability and secrecy for the communication. In this paper, we
give an overview of this model and the known results, its rela-
tion to two important cryptographic primitives, and outline di-
rections for future research. We first show that AWTP channels,
although motivated by active adversaries in point-to-point com-
munication, are closely related to Secure Message Transmission

(SMT), a cryptographic primitive for providing secrecy and relia-
bility in networks that are partially controlled by a Byzantine ad-
versary, and provide a natural coding-theoretic framework for the
study of these protocols. We then show that for special parame-
ter values, an AWTP code provides a robust secret sharing (RSS),
a widely studied cryptographic primitive for distributed applica-
tions. These relationships allow constructions and bounds from
one to be used in the other, enriching and expanding the study
of these areas. We also review the known results when the same
adversarial channel is considered, but the goal of communication
is only reliability.

Organization: In Section 2, we introduce the model and give
an overview of the main results. In Section 3, we outline our
capacity-achieving construction. In Section 4, we present the re-
lationship between SMT and AWTP channels. Section 5 is on
the relationship between robust secret sharing schemes and the
AWTP model. In Section 6, we introduce reliable communica-
tion (no secrecy) over the same adversarial channel and discuss
the relation with list-decodable codes. Section 7 concludes the
paper.

2. Adversarial Wiretap Channel

Let Σ denote a channel alphabet with a group structure, N de-
note the length of a codeword, and SUPP(x) be the set of indices
where xi is not zero. Let [N] = {1, · · · ,N}, S r = {i1, · · · , iρr N} ⊆
[N] and S w = { j1, · · · , jρwN} ⊆ [N].

Definition 1 A (ρr, ρw) adversarial wiretap channel (AWTP
channel) is an adversarial channel that is partially controlled by
an adversary. The adversary has two capabilities: 1) Eavesdrop-
ping (Reading): The adversary can select a subset S r of codeword
components where |S r | = ρrN, for eavesdropping. 2) Jamming
(Writing): The adversary can add errors to a subset S w of the
codeword components where |S w| = ρwN.

The adversary is adaptive and selects the elements of S r, S w
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and the added noise, one by one using all their information in
each selection. The adversary of an AWTP channel is called re-

stricted if they are limited to choosing the same set for reading
and writing; i.e., S = S r = S w and |S | = ρN.

Adversarial wiretap codes (AWTP code) are used for secure
and reliable communication over AWTP channels.

Definition 2 An Adversarial Wiretap Code (AWTP code) of
length N over an alphabet Σ for a (ρr, ρw)-AWTP channel has
two algorithms: a probabilistic encoding algorithm AWTPenc :
M × R → C ⊂ ΣN , and a deterministic decoding algorithm
ΣN → M. The code guarantees secure and reliable communi-
cation over an AWTP channel, where security and reliability are
defined as follows:
( 1 ) Secrecy: Secrecy is defined as the indistinguishability of the

adversary’s view of the communication for any two mes-
sages m1,m2 ∈ M, and is measured by the statistical distance
between the views of the two messages:

SD(View(AWTPenc(m1), rA),

View(AWTPenc(m2), rA)) ≤ ε, ∀m1,m2 ∈ M.
( 2 ) Reliability: The probability that the adversary outputs an in-

correct message m′ � m is bounded by δ. That is, for any
adversary chosen message distribution:

Pr(MS � MR) ≤ δ.

A code provides δ-strong reliability if it only outputs the cor-
rect message or ⊥, and the probability of the decoder out-
putting ⊥ is bounded by δ.

The AWTP code is perfectly secure if ε = 0.
The above definitions are the strongest notions of secrecy and

reliability for wiretap channels. The secrecy definition is equiva-
lent to semantic security, which is the strongest notion of security
for encryption systems [17]. The reliability requirement is for any
message and is equivalent to the worst case error.

A family of AWTP codes C is a family {CN}N∈N of AWTP codes
indexed by N, where CN has length N.

Definition 3 (i) The rate of an (ε, δ)-AWTP code over a
(ρr, ρw)-AWTP channel is R(CN) = log |M|

N logΣ .
(ii) A rate R(C) is achievable by a code family over a (ρr, ρw)-
AWTP channel if for any small ξ > 0, there exists N > N0 such
that for all CN with N > N0, we have 1

N logΣ |M| ≥ R(C) − ξ, and
the decoding error is δ < ξ.
(iii) The secrecy capacity of a (ρr, ρw)-AWTP channel is denoted
by C and is the highest achievable rate of AWTP code families
for the channel.

2.1 Upper Bound on the Rate
Upper bounds on the rate of a code, a code family, and the se-

crecy capacity of AWTP channels have been derived in Ref. [24].
The upper bound on the code rate is derived by considering a spe-
cial adversarial strategy and requiring the code to provide security
and reliability against this strategy. This bound is then extended
to code families and secrecy capacity.

Theorem 1 (i) The rate of an (ε, δ)-AWTP code for a (ρr, ρw)-
AWTP channel is upper bounded by,

R(CN) ≤ 1 − ρr − ρw + 2ερr

(
1 + log|Σ|

1
ε

)
+ 2H(δ). (1)

(ii) The achievable rate of a code family is bounded by:

R(Cε) ≤ 1 − ρr − ρw + 2ερr

(
1 + log|Σ|

1
ε

)
. (2)

The secrecy capacity of a (ρr, ρw)-AWTP channel is upper
bounded by,

Cε ≤ 1 − ρr − ρw + 2ερr

(
1 + log|Σ|

1
ε

)
. (3)

For the special case of ε = 0, we have:

C0 ≤ 1 − ρr − ρw. (4)

This last bound can be explained by noting that the components of
a codeword that are either eavesdropped or corrupted cannot con-
tribute to secure and reliable transmission of information. Since
the capacity result must hold for all adversaries and so all possi-
ble choices of S r and S w, for an adversary that uses S r ∩ S w = ∅
we will have the rate bounded by 1 − ρr − ρw.

2.2 Restricted Channels
In restricted AWTP channels, the adversary’s choice is limited

to S r = S w and the channel is specified by a single parameter
ρ = ρr = ρw. The proof strategy of Theorem 1 can be used for
this subset of AWTP channels to prove the following upper bound
on the rate of AWTP codes and the secrecy capacity of AWTP
channels.

Theorem 2 (i) The rate of an (ε, δ)-AWTP code for a re-
stricted ρ-AWTP channel is bounded by:

R(CN) ≤ 1 − 2ρ + 2ερ

(
1 + log|Σ|

1
ε

)
+ 2H(δ). (5)

(ii) The achievable rate of a code family and the secrecy capacity
of a restricted ρ-AWTP channel are upper bounded by:

R(Cε) ≤ 1 − 2ρ + 2ερ

(
1 + log|Σ|

1
ε

)
, (6)

and

Cε ≤ 1 − 2ρ + 2ερ

(
1 + log|Σ|

1
ε

)
. (7)

For the special case of ε = 0 we have,

C0 ≤ 1 − 2ρ. (8)

In Section 4, we will use the above bounds to derive new bounds
on the transmission rate of secure message transmission proto-
cols.

3. AWTP Code Construction

In Ref. [24], an efficient capacity-achieving (0, δ)-AWTP code
family C = {CN : N ∈ N} was constructed for (ρr, ρw)-AWTP
channels with polynomial-time encoding and decoding. The con-
struction uses three building blocks: (i) an Algebraic Manip-
ulation Detection code, (ii) a Folded Reed-Solomon code, and
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(iii) a Subspace Evasive Set. We give an outline of these building
blocks, and the intuition behind the construction.

1) Algebraic Manipulation Detection Code (AMD code): An
AMD code [25] is used to detect algebraic manipulation of a
codeword when the adversary is oblivious to the codeword. A
codeword is an element of ΣN , where Σ has a group structure, and
the adversarial tampering is by adding (component wise) a noise
vector to the codeword. We use the AMD code given in Ref. [25]
over an extension field. Let φ be a bijection between a vector v in
F

N
q and an element of FqN . The AMD code (x, r, t) is generated as

follows:

t = f (x, r) = φ−1

⎛⎜⎜⎜⎜⎜⎜⎝φ(r)d+2 +

d∑
i=1

φ(xi)φ(r)i

⎞⎟⎟⎟⎟⎟⎟⎠ mod qN .

For the AMD code above, the success probability of an adver-
sary in tampering with a codeword (x, r, t) and constructing a new
codeword (x′ = x + Δx, r′ = r + Δr, t′ = t + Δt) that satisfies
t′ = f (x′, r′) is no more than d+1

qN .
2) Folded Reed-Solomon Code (FRS code): An error-

correcting code over Σ = Fq with length N is a subset of ΣN . A
(ρ, �) list decodable code [26] can decode a corrupted codeword
that has at most ρN errors, and output a list of codewords of size
at most �. Compared to uniquely decodable codes, list decod-
able codes can decode a larger fraction of errors. FRS codes [27]
give an explicit construction of list decodable codes with an effi-
cient encoding algorithm. A decoding algorithm for FRS codes
is given in Ref. [28], where decoding is by finding a solution to
a set of linear equations. The output of the decoder is a list of
codewords, where the list size is exponential in N.

3) Subspace Evasive Set: Subspace evasive sets [28] have been
used to reduce the decoding list size of list decodable codes. A
subset evasive set is a subset of Fn

q with the property that it has
small intersection with every k-dimensional affine subspace. Dvir
et al. [29] gave an efficient construction of subspace evasive sets
over large fields, and used it to reduce the list size of the FRS
code to a constant.

The intuition behind our construction of AWTP codes is as fol-
lows. We use a list decodable code (FRS code) to correct the ρwN

errors in the corrupted received codeword. The decoder output is
a list of codewords, and we need to identify the sent codeword in
this list. For this, the message of the codeword is given a special
structure using an AMD code. This allows Bob to use the decod-
ing algorithm of the AMD code to check the message part of the
codewords in the list, and identify the sent codeword. To guaran-
tee perfect secrecy, the view of the adversary, given by the ρrN

read components of the codeword, must be independent of the
sent message. This is achieved by appending a sufficient num-
ber (ρrN) of random elements to the AMD codeword. To achieve
efficient decoding, the AMD codeword with the appended ran-
domness is encoded using the subspace evasive set in Ref. [29],
and the resulting element of the subspace evasive set is used as
the message of the FRS code.

Theorem 3 For any small 0 < ξ < 1, there is a (0, δ)-AWTP
code CN of length N for a (ρr, ρw)-AWTP channel. The rate of the
code is R(CN) = 1−ρr−ρw−ξ, the alphabet size is |Σ| = O(q1/ξ2 ),
and the decoding error is bounded by δ < ξ. Both encoding and

decoding computation of the AWTP code are polynomial time
in N. The AWTP code family C achieves the secrecy capacity
R(C) = 1 − ρr − ρw.

4. AWTP Codes and Secure Message Trans-
mission

An AWTP channel models an adversarial point-to-point wire-
tap channel. Interestingly, the codes that provide security for
these channels can also be used to construct secure protocols
for node-to-node communication in networks that are partially
controlled by an adversary. In Secure Message Transmission
(SMT) [30], Alice and Bob are connected through a set of N

node-disjoint paths that are called wires. The adversary can adap-
tively choose a subset of wires to eavesdrop and arbitrarily mod-
ify. Although the original model considered adversaries who se-
lect distinct sets of wires for listening, corrupting, and block-
ing, the most widely studied SMT adversary is a (t,N)-threshold
adversary who adaptively selects t out of N wires and has full
control over them. A 1-round (ε, δ)-SMT protocol has a pair
(SMTenc,SMTdec) of algorithms to encode and decode the mes-
sage, and guarantees privacy loss is at most ε and probability of
error is bounded by δ.

Definition 4 A (t,N)-threshold (ε, δ)-secure message trans-
mission (SMT) protocol satisfies the following properties for any
choice of t wires by the adversary:
• Secrecy: For any pair of messages m1,m2 ∈ M,

max
m1 ,m2

SD(ViewA(SMTenc(m1), rA),

ViewA(SMTenc(m1), rA)) ≤ εS MT .

• Reliability: The probability of the receiver outputting an incor-
rect message is bounded by,

Pr(MS � MR) ≤ δS MT ,

where the message distribution is chosen by the adversary.
An SMT protocol is perfectly secure if ε = 0, and perfectly

reliable if δ = 0. It has been shown that an (ε, δ)-SMT protocol
can be constructed only if N ≥ 2t + 1, and 1-round (0, 0)-SMT
protocol requires N ≥ 3t + 1.

An SMT protocol has one or more rounds, with each round
consisting of a message from Alice to Bob or vice versa. The
efficiency of SMT protocols is measured by the transmission rate
of the protocol and the computational time of the encoder and the
decoder. The transmission rate of an SMT protocol is defined by
τ(S MT ) = Length of Transmission over all Wires

Message Length . For 1-round (0, 0)-SMT
protocols the lower bound on the transmission rate is N

N−3t [31],
and for (0, δ)-SMT, the bound is N

N−2t [32]. An SMT protocol is
called transmission optimal if its transmission rate asymptotically
approaches the corresponding lower bound. The computational
complexity of a protocol is the total computation of Alice and
Bob. An SMT protocol is efficient if both Alice and Bob have
polynomial time computation.

4.1 AWTP Codes and 1-round SMT
AWTP codes and 1-round SMT protocols are closely related.
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However, one needs to consider subtle differences in their def-
initions. AWTP codes are defined over an alphabet Σ, and so
all components of a codeword are elements of Σ. An SMT pro-
tocol, however, may use different alphabet sets for transmission
over different wires. Without loss of generality for threshold SMT
protocols, we will consider symmetric SMT protocols that use the
same set of possible values for all wires *1. All known thresh-
old SMT protocols are symmetric. The relation between 1-round
SMT protocols and AWTP codes is given below.

Theorem 4 (Ref. [23]) There is a one to one correspondence
between (ε, δ)-AWTP codes for a ρ-restricted AWTP channel and
1-round symmetric (εS MT , δS MT )-SMT protocols against (t,N)-
threshold adversaries, with t = ρN, εS MT = ε, and δS MT = δ.
The one-to-one correspondence is by identifying each wire with
a component of the codeword. A main observation is that when
S r = S w, the additive error and arbitrary error are the same. That
is, a codeword component ci that is seen by the adversary (i ∈ S r)
can be changed to an arbitrary value ĉi by choosing the noise
value a = ĉi − ci to be added to the component. The security and
reliability relations follow from the corresponding definitions in
the two primitives. The transmission rate of a 1-round (ε, δ) sym-
metric SMT protocol can be bounded using the above relationship
between SMT protocols and AWTP codes.

Theorem 5 For a 1-round (ε, δ) symmetric SMT protocol, the
transmission rate is lower bounded by:

τ(S MT ) ≥ N

N − 2t + 2tε
(
1 + log|V|(

1
ε
)
)
+ 2H(δ)

. (9)

For ε = 0 and vanishing δ, the bound reduces to τ(S MT ) ≥ N
N−2t .

Bound (9) is the only known bound on the transmission rate of
(ε, δ)-SMT protocols.

The construction of (0, δ)-AWTP codes outlined in Section 3
gives the construction of an efficient 1-round (0, δ)-SMT protocol
for t = αN where 0 < α < 1/2 is a real-valued constant.

Theorem 6 A 1-round SMT for t = αN can be constructed
from the (0, δ)-AWTP code in Theorem 3. The protocol has effi-
cient encoding and decoding and its transmission rate approaches
the optimal rate for sufficiently large N.

5. AWTP and Robust Secret Sharing (RSS)

Secret sharing schemes were independently proposed by
Shamir [33] and Blakely [34], and are a foundational primitive
in secure distributed computation. In the original model of secret
sharing, in the share distribution phase a trusted dealer distributes
the shares of a secret among a group of players such that dur-
ing the reconstruction phases, any authorized subset of players,
also called access sets, can reconstruct the secret by pooling their
shares together. This is the correctness property of the scheme.
Perfect security requires that the players who do not form an ac-
cess set learn no information about the secret. In (t,N)-threshold

secret sharing, any subset of t + 1 players is an access set. We
consider (t,N)-threshold secret sharing schemes.

In the original model of secret sharing schemes, the adversary
is passive and the goal is to provide perfect secrecy against the

*1 This class of protocols was also considered in Ref. [32] (page 12).

leakage of the secret to an unauthorized set. A stronger form of
the adversary is when the players that are controlled by the adver-
sary present modified shares during the reconstruction phase. The
most basic requirement in this case is that the set of all shares in
the system can reconstruct the secret. In other words, there is suf-
ficient information in the system to recover the secret. In robust
secret sharing (RSS) [35], [36], [37], there is a dealer D, N play-
ers P1, · · · , PN , a reconstructor R, and an adversary A. An RSS
scheme has two phases, each with an associated protocol, called
share distribution and reconstruction, respectively. In the share
distribution phase, the dealer D takes a secret s, computes the
shares s1, · · · , sN , and sends the ith share si to the player Pi over
a secure channel. In the reconstruction phase, the reconstructor
R receives some values from each player Pi for i = 1, · · · ,N,
and uses these values to reconstruct the secret. The adversary A
can adaptively corrupt t out of N players. In the sharing phase,
the adversary A learns P′i s share si for all the corrupted players,
but remains passive. During the reconstruction phase, the adver-
sary can modify the information that the corrupted players send
to R. If the adversary is non-rushing, A decides on the informa-
tion of corrupted players at the start of the reconstruction phase
and before seeing the information of other players. Rushing ad-
versaries, on the other hand, can observe the information that the
non-corrupted players send to the reconstructor, and then decide
on the information that the corrupted players provide. We only
consider non-rushing adversaries.

Definition 5 In a (t, δRS S )-robust threshold secret sharing
scheme ((t, δRS S )-RSS), for any distribution on s ∈ S and any
subset of corrupted players, the following two requirements hold.
• Privacy: The adversary has no information about the secret

s before the reconstruction phase starts.
• Reconstructability: Players send some information to the re-

constructor R who uses the information to reconstruct the
secret. The correct secret is output with probability at least
1 − δ.

The set of shares in Shamir (t,N)-secret sharing form a code-
word of a Reed-Solomon code. It immediately follows that
Shamir secret sharing is a RSS when t < N/3, and it is impos-
sible to have robustness when t > N/2. The efficient construction
of RSS schemes for the range N/3 ≤ t < N/2 has been an inter-
esting research question.

The efficiency of robust secret sharing schemes is measured
by the share redundancy and the computational complexity. It is
known [38] that for secret sharing with perfect secrecy, the share
size is at least equal to the secret size. Share redundancy η is the
extra information that a player must store to achieve robustness.
That is, η = maxi(log |Si|)− log |S|. Here, Si is the set of possible
shares for player Pi. The computational complexity of robust se-
cret sharing is the computational efficiency of share distribution
and secret reconstruction.

5.1 AWTP Codes and RSS
In RSS, the share sizes may be different. For threshold RSS,

without loss of generality we consider symmetric RSS protocols
that use the same set of possible shares for all players. That is, in
a symmetric RSS scheme S j = S is independent of j. All known
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constructions of threshold RSS are symmetric.
A (t,N)-RSS has the requirement that any t + 1 correct shares

must reconstruct the secret. There is no corresponding require-
ment for AWTP protocols and so in general the two primitives
are not the same. For N = 2t + 1, however, the two primitives
have identical security and reliability requirements.

Theorem 7 There is a one to one correspondence between
a (0, δ)-AWTP code CN for restricted ρ-AWTP channels, and a
(t, δRS S )-symmetric RSS scheme where t = ρN, ρ = N−1

2N and
δ = δRS S .

Note that in the above theorem, the correspondence between
the AWTP code and the RSS is for a specific value of ρ, which is
a function of N. One may use the upper bound on the rate of a
(0, δ)-AWTP code CN for a restricted ρ-AWTP channel to obtain
a lower bound on η in this case. However, this results in a trivial
lower bound. This is not surprising because AWTP codes have
less “structure” (allowing arbitrary 0 < ρ < 1, S r � S w and do
not require t+1 shares to reconstruct the secret) and so the bound
obtained from this less structured primitive may not give a good
bound for the special case of ρ = N−1

2N , S r = S w, and the secret
must be reconstructible from t + 1 correct shares.
Construction. The construction of a (0, δ)-AWTP code for
(ρr, ρw)-AWTP channels in Section 3 can be used to construct a
(t, δ)-RSS for N = 2t+1. By choosing v = 6N+1, w = u = v2, and
R = 1

2N , we obtain a (t, δ)-RSS scheme for N = 2t+1 with decod-

ing error δ ≤ O(NN log log N )
qN . Since u = O(N2) and q = O(N log log N),

the redundancy of the RSS is:

η = log |Σ| − log |M|
= u log q − u

2
log q = O(N2 log N log log N).

The RSS scheme has log 1
δ
= O(N log N log log N), which im-

plies η = N log 1
δ
. This is not as good performance as the best

known RSS schemes [37]. However, the scheme allows the cor-
ruption set of the adversary in the sharing and reconstruction
phase to be different. That is the adversary can corrupt a subset
S r of players during the sharing phase to learn their shares, and
choose a second subset S w of players during the reconstruction
phase and modify their submitted values by adding noise values
to them. This is, the only known RSS with this property.

6. Reliable Communication

Reliable communication when the channel corruption is adver-
sarial (and not probabilistic) dates back to Hamming [39], who
proposed a channel that can introduce arbitrary error subject to
the limit on the number of errors. In Hamming’s model, the chan-
nel has access to the whole codeword. In our notation, |S r | = N

and |S w| ≤ pN, where p is a constant showing the fraction of
a codeword that is corrupted. Reliable communication over ad-
versarial channels, where the adversary’s capabilities are speci-
fied by a pair of parameters (ρr, ρw), 0 ≤ ρr, ρw ≤ 1 specifying
the sizes of the adversary’s read and write sets, have been con-
sidered in Ref. [22]. The adversarial channel was called limited

view adversarial channels (LV adversary channel) and the codes
that provide reliable communication were referred to as limited

view adversary codes (LV-code). The adversary’s capabilities in a

(ρr, ρw)-LV channel are the same as their capabilities in a (ρr, ρw)-
AWTP channel. The goal of an LV-code however is to only pro-
vide reliability for the communication.

Definition 6 (Refs. [22], [40]) Let Σ be an additive group. A
Limited View Adversary Code (LV-code) for a (ρr, ρw)-LV adver-
sarial channel is defined by a pair (LVACenc, LVACdec) of en-
coding and decoding algorithms with the following properties.
The encoding algorithm LVACenc : M → CN maps messages
in M to codewords in CN ⊂ ΣN , and the decoding algorithm
LVACdec : ΣN → M outputs an element ofM for any element
of ΣN . For any sent message m, the probability that the decoder
outputs a message m′ � m is at most δ. That is for any m ∈ M
and any adversary strategy, we have:

Pr(LVACdec(LVACenc(m) + e) � m) ≤ δ,

where e ∈ ΣN and |SUPP(e)| ≤ ρwN.
The above definition of reliability is for strong LV codes. In weak

LV codes the decoding error probability is the average over all
messages:

Pr(MS � MR) ≤ δ.

Upper bounds on the rate of LV-codes and LV-code families
have been derived in Ref. [40].

Theorem 8 (i) The rate of an LV-code CN over a (ρr, ρw)-LV
adversary channel is bounded by:

R(CN) ≤ 1 − ρw + 2H(δ).

(ii) The achievable rate of a code family is bounded by:

R(CN) ≤ 1 − ρw,

and the capacity of LV adversarial channels is upper bounded by:

C ≤ 1 − ρw. (10)

Construction. An efficient capacity-achieving LV adversary
code family C = {CN : N ∈ N} for a (ρr, ρw)-LV adversary chan-
nel was given in Ref. [40]. The building blocks of the construc-
tion are: (i) a Message Authentication Code (MAC), (ii) a Folded
Reed-Solomon Code, and (iii) an Adversarial Wiretap Code.

A message authentication code is a shared key cryptographic
primitive that provides security against adversarial tampering of
a message. Assume Alice and Bob share a secret key k. A MAC
system consists of a pair of algorithms (Tag,Ver) with the follow-
ing properties. For a message m, the Tag algorithm generates a
tag t = TAG(k,m) that is appended to the message. The Ver algo-
rithm takes a tagged message Ver(k, (m′, t′)) and outputs accept
or reject for authentic and forged messages, respectively.

The outline of the construction is as follows. To encode a mes-
sage block m, Alice chooses a random key r and constructs a
tagged message (m, t), which is then encoded using a list decod-
able code. The key block r is encoded using an AWTP code. The
ith component of the LV code consists of the ith component of the
AWTP code concatenated with the ith component of the list de-
codable code. The receiver decodes the received word of the list
decidable code and generates a list of possible codewords. It then
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decodes the received (corrupted) codeword of the AWTP code
and finds the MAC key. The MAC verification algorithm is used
to identify the sent codeword in the list.

Theorem 9 There is an LV code family C = {CN} for a
(ρr, ρw)-LV adversary channel with rate R(C) = 1−ρw if the read-
ing and writing parameters of the channel satisfy ρr+ρw < 1. The
encoding and decoding algorithms are polynomial time in N.
The above construction is capacity achieving. The restriction
ρr + ρw < 1 follows from the requirement of AWTP codes that
is used as a building block in the construction.

LV-codes are in one-to-one correspondence [40] with Reliable
Message Transmission (RMT) protocols [41]. The RMT adver-
sary is the same as the SMT adversary, however the goal of com-
municants is only reliability. The relationship between LV codes
and 1-round RMT allows a unified study of these two apparently
different problems and relates and enriches the results in the two
areas.

7. Concluding Remarks

AWTP channels provide a coding-theoretic model for wire-
tap channels when an active adversary can choose their view of
the communication and also add noise to the transmission. The
model naturally extends the wiretap II model and gives a coding-
theoretic model for active adversaries for the wiretap. This can
be seen as the relation between Hamming’s model and Shannon’s
model of noisy channels. We outlined an upper bound on the rate
of a code and a code family, and the explicit construction of a
code family that achieves the rate upper bound (and hence capac-
ity) of the code family.

AWTP channels capture an important cryptographic primitive
for networks (SMT) and are closely related to another crypto-
graphic primitive known as robust secret sharing (RSS). In both
cases, AWTP presents a more powerful adversary model by al-
lowing the reading set S r and writing set S w to be different. The
efficiency measures of SMT and RSS are transmission rate and
share redundancy, respectively. The upper bound on the rate of
AWTP codes gives a lower bound on the transmission rate of
(ε, δ)-SMT, and this is the only known lower bound on the trans-
mission rate of SMT when ε > 0. The rate bound of AWTP codes
does not give a useful result for RSS.

Interestingly, the known lower bound on the transmission rate
of (0, δ)-SMT gives an upper bound on the rate of restricted (0, δ)-
AWTP codes given by R(CN) ≤ 1 − 2ρ, which also holds for any

(0, δ)-AWTP code, since the adversary in the latter is more pow-
erful. This upper bound is tighter than the upper bound on rate
that is obtained from bound (1) in Theorem 1, by letting ε = 0
and requiring S r = S w.

SMT and RSS adversaries are special cases of AWTP chan-
nels when S r = S w, and so using a construction in one of the
former two adversarial models does not necessarily give a secure
construction for AWTP codes. A secure construction for AWTP
channels, however, directly gives a corresponding construction
for SMT, and when N = 2t + 1, for RSS. We showed that the
capacity-achieving construction in Section 3 gives an asymptoti-
cally optimal 1-round SMT construction. The RSS construction
obtained from this AWTP code, however, does not have the best

known efficiency. In both SMT and RSS, security is against a
stronger adversary.

Using the same adversarial model but requiring only reliabil-
ity for the communication, results in LV codes. By limiting the
adversary’s view of the communication, these codes can achieve
the capacity of 1− ρw with unique decoding. If the adversary can
see the whole codeword, the same capacity is achievable only
by list decodable codes, where the decoder outputs a list of pos-
sible codewords. Our capacity-achieving construction requires
ρr + ρw < 1. It is an open question if this is a necessary condition
for capacity achieving LV codes.

LV codes also raise an interesting open question on the relation
between the list size and the parameters ρr and ρw the specify the
limitation on the view and the corruption power of the adversary.
For full view adversary (ρr = 1), the decoder can only decode to a
list of possible codewords. For ρr < 1, unique decoding becomes
possible (in our construction for ρw < 1− ρr). In between the two
limits, the relationship remains unknown.

Capacity-achieving constructions of AWTP codes and LV
codes are for large alphabets. Construction of capacity-achieving
codes for small alphabets is an open question. Extensions of
AWTP channels when communicants can interact over the chan-
nel, or have access to resources such as a public discussion chan-
nel, are interesting directions for future research. Finally limiting
the view of the adversary in error detecting codes relaxes the def-
inition of AMD codes when the adversary has access to part of
the codeword.
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